CindyDelage commited on
Commit
2031133
·
verified ·
1 Parent(s): 10e13fa

Update tasks/audio.py

Browse files
Files changed (1) hide show
  1. tasks/audio.py +12 -6
tasks/audio.py CHANGED
@@ -9,7 +9,13 @@ from .utils.evaluation import AudioEvaluationRequest
9
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
10
 
11
  from dotenv import load_dotenv
12
- print("here I am")
 
 
 
 
 
 
13
  load_dotenv()
14
 
15
  router = APIRouter()
@@ -40,9 +46,9 @@ async def evaluate_audio(request: AudioEvaluationRequest):
40
  }
41
  # Load and prepare the dataset
42
  # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
43
- print("here I am 2")
44
  dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
45
- print("here I am 3")
46
  # Split dataset
47
  train_test = dataset["train"]
48
  test_dataset = dataset["test"]
@@ -70,10 +76,10 @@ async def evaluate_audio(request: AudioEvaluationRequest):
70
 
71
  # Correctly access the audio data
72
  audio_data = [example["array"] for example in dataset["test"]["audio"]]
73
- print("here I am prediction")
74
  # Prédiction sur tout le dataset
75
  results = classifier(audio_data, batch_size=8)
76
-
77
  predictions = []
78
  for result in results:
79
  # Check if result is a dictionary
@@ -118,5 +124,5 @@ async def evaluate_audio(request: AudioEvaluationRequest):
118
  "test_seed": request.test_seed
119
  }
120
  }
121
-
122
  return results
 
9
  from .utils.emissions import tracker, clean_emissions_data, get_space_info
10
 
11
  from dotenv import load_dotenv
12
+ import logging
13
+
14
+ # Configurer le logging
15
+ logging.basicConfig(level=logging.INFO)
16
+
17
+ # Utiliser le logging au lieu de print
18
+ logging.info("Début du fichier python")
19
  load_dotenv()
20
 
21
  router = APIRouter()
 
46
  }
47
  # Load and prepare the dataset
48
  # Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
49
+ logging.info("Chargement des données")
50
  dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
51
+ logging.info("Données chargées")
52
  # Split dataset
53
  train_test = dataset["train"]
54
  test_dataset = dataset["test"]
 
76
 
77
  # Correctly access the audio data
78
  audio_data = [example["array"] for example in dataset["test"]["audio"]]
79
+ logging.info("Début des prédictions")
80
  # Prédiction sur tout le dataset
81
  results = classifier(audio_data, batch_size=8)
82
+ logging.info("Fin des prédictions")
83
  predictions = []
84
  for result in results:
85
  # Check if result is a dictionary
 
124
  "test_seed": request.test_seed
125
  }
126
  }
127
+ logging.info("Returning results")
128
  return results