Spaces:
Sleeping
Sleeping
Update tasks/audio.py
Browse files- tasks/audio.py +12 -6
tasks/audio.py
CHANGED
@@ -9,7 +9,13 @@ from .utils.evaluation import AudioEvaluationRequest
|
|
9 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
10 |
|
11 |
from dotenv import load_dotenv
|
12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
load_dotenv()
|
14 |
|
15 |
router = APIRouter()
|
@@ -40,9 +46,9 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
40 |
}
|
41 |
# Load and prepare the dataset
|
42 |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
43 |
-
|
44 |
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
|
45 |
-
|
46 |
# Split dataset
|
47 |
train_test = dataset["train"]
|
48 |
test_dataset = dataset["test"]
|
@@ -70,10 +76,10 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
70 |
|
71 |
# Correctly access the audio data
|
72 |
audio_data = [example["array"] for example in dataset["test"]["audio"]]
|
73 |
-
|
74 |
# Prédiction sur tout le dataset
|
75 |
results = classifier(audio_data, batch_size=8)
|
76 |
-
|
77 |
predictions = []
|
78 |
for result in results:
|
79 |
# Check if result is a dictionary
|
@@ -118,5 +124,5 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
118 |
"test_seed": request.test_seed
|
119 |
}
|
120 |
}
|
121 |
-
|
122 |
return results
|
|
|
9 |
from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
10 |
|
11 |
from dotenv import load_dotenv
|
12 |
+
import logging
|
13 |
+
|
14 |
+
# Configurer le logging
|
15 |
+
logging.basicConfig(level=logging.INFO)
|
16 |
+
|
17 |
+
# Utiliser le logging au lieu de print
|
18 |
+
logging.info("Début du fichier python")
|
19 |
load_dotenv()
|
20 |
|
21 |
router = APIRouter()
|
|
|
46 |
}
|
47 |
# Load and prepare the dataset
|
48 |
# Because the dataset is gated, we need to use the HF_TOKEN environment variable to authenticate
|
49 |
+
logging.info("Chargement des données")
|
50 |
dataset = load_dataset(request.dataset_name,token=os.getenv("HF_TOKEN"))
|
51 |
+
logging.info("Données chargées")
|
52 |
# Split dataset
|
53 |
train_test = dataset["train"]
|
54 |
test_dataset = dataset["test"]
|
|
|
76 |
|
77 |
# Correctly access the audio data
|
78 |
audio_data = [example["array"] for example in dataset["test"]["audio"]]
|
79 |
+
logging.info("Début des prédictions")
|
80 |
# Prédiction sur tout le dataset
|
81 |
results = classifier(audio_data, batch_size=8)
|
82 |
+
logging.info("Fin des prédictions")
|
83 |
predictions = []
|
84 |
for result in results:
|
85 |
# Check if result is a dictionary
|
|
|
124 |
"test_seed": request.test_seed
|
125 |
}
|
126 |
}
|
127 |
+
logging.info("Returning results")
|
128 |
return results
|