Spaces:
Sleeping
Sleeping
Update tasks/audio.py
Browse files- tasks/audio.py +8 -3
tasks/audio.py
CHANGED
@@ -39,7 +39,7 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
39 |
logging.info("Données chargées")
|
40 |
|
41 |
test_dataset = dataset["test"]
|
42 |
-
|
43 |
# Start tracking emissions
|
44 |
tracker.start()
|
45 |
tracker.start_task("inference")
|
@@ -51,7 +51,9 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
51 |
audio_arrays = [x["array"] for x in examples["audio"]]
|
52 |
return feature_extractor(audio_arrays, sampling_rate=feature_extractor.sampling_rate, padding="longest", max_length=16000, truncation=True, return_tensors="pt")
|
53 |
|
54 |
-
encoded_data_test = test_dataset.map(preprocess_function, remove_columns="audio", batched=True, keep_in_memory=False)
|
|
|
|
|
55 |
# Pipeline de classification
|
56 |
classifier = pipeline("audio-classification", model="CindyDelage/Challenge_HuggingFace_DFG_FrugalAI", device=-1)
|
57 |
|
@@ -60,10 +62,13 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
60 |
|
61 |
for data in encoded_data_test:
|
62 |
# Récupérer les données audio et le label
|
63 |
-
|
|
|
64 |
|
65 |
predicted_label = result[0]['label']
|
66 |
predictions.append(1 if predicted_label == 'environment' else 0)
|
|
|
|
|
67 |
|
68 |
# Nettoyage mémoire après chaque batch
|
69 |
#del input_values
|
|
|
39 |
logging.info("Données chargées")
|
40 |
|
41 |
test_dataset = dataset["test"]
|
42 |
+
del dataset
|
43 |
# Start tracking emissions
|
44 |
tracker.start()
|
45 |
tracker.start_task("inference")
|
|
|
51 |
audio_arrays = [x["array"] for x in examples["audio"]]
|
52 |
return feature_extractor(audio_arrays, sampling_rate=feature_extractor.sampling_rate, padding="longest", max_length=16000, truncation=True, return_tensors="pt")
|
53 |
|
54 |
+
encoded_data_test = test_dataset.map(preprocess_function, remove_columns="audio", batched=True, streaming=True, keep_in_memory=False)
|
55 |
+
del feature_extractor
|
56 |
+
del audio_arrays
|
57 |
# Pipeline de classification
|
58 |
classifier = pipeline("audio-classification", model="CindyDelage/Challenge_HuggingFace_DFG_FrugalAI", device=-1)
|
59 |
|
|
|
62 |
|
63 |
for data in encoded_data_test:
|
64 |
# Récupérer les données audio et le label
|
65 |
+
with torch.no_grad():
|
66 |
+
result = classifier(np.asarray(data["input_values"]))
|
67 |
|
68 |
predicted_label = result[0]['label']
|
69 |
predictions.append(1 if predicted_label == 'environment' else 0)
|
70 |
+
del result
|
71 |
+
del predicted_label
|
72 |
|
73 |
# Nettoyage mémoire après chaque batch
|
74 |
#del input_values
|