CindyDelage commited on
Commit
80a180c
·
verified ·
1 Parent(s): ad28419

Update tasks/audio.py

Browse files
Files changed (1) hide show
  1. tasks/audio.py +8 -3
tasks/audio.py CHANGED
@@ -39,7 +39,7 @@ async def evaluate_audio(request: AudioEvaluationRequest):
39
  logging.info("Données chargées")
40
 
41
  test_dataset = dataset["test"]
42
-
43
  # Start tracking emissions
44
  tracker.start()
45
  tracker.start_task("inference")
@@ -51,7 +51,9 @@ async def evaluate_audio(request: AudioEvaluationRequest):
51
  audio_arrays = [x["array"] for x in examples["audio"]]
52
  return feature_extractor(audio_arrays, sampling_rate=feature_extractor.sampling_rate, padding="longest", max_length=16000, truncation=True, return_tensors="pt")
53
 
54
- encoded_data_test = test_dataset.map(preprocess_function, remove_columns="audio", batched=True, keep_in_memory=False)
 
 
55
  # Pipeline de classification
56
  classifier = pipeline("audio-classification", model="CindyDelage/Challenge_HuggingFace_DFG_FrugalAI", device=-1)
57
 
@@ -60,10 +62,13 @@ async def evaluate_audio(request: AudioEvaluationRequest):
60
 
61
  for data in encoded_data_test:
62
  # Récupérer les données audio et le label
63
- result = classifier(np.asarray(data["input_values"]))
 
64
 
65
  predicted_label = result[0]['label']
66
  predictions.append(1 if predicted_label == 'environment' else 0)
 
 
67
 
68
  # Nettoyage mémoire après chaque batch
69
  #del input_values
 
39
  logging.info("Données chargées")
40
 
41
  test_dataset = dataset["test"]
42
+ del dataset
43
  # Start tracking emissions
44
  tracker.start()
45
  tracker.start_task("inference")
 
51
  audio_arrays = [x["array"] for x in examples["audio"]]
52
  return feature_extractor(audio_arrays, sampling_rate=feature_extractor.sampling_rate, padding="longest", max_length=16000, truncation=True, return_tensors="pt")
53
 
54
+ encoded_data_test = test_dataset.map(preprocess_function, remove_columns="audio", batched=True, streaming=True, keep_in_memory=False)
55
+ del feature_extractor
56
+ del audio_arrays
57
  # Pipeline de classification
58
  classifier = pipeline("audio-classification", model="CindyDelage/Challenge_HuggingFace_DFG_FrugalAI", device=-1)
59
 
 
62
 
63
  for data in encoded_data_test:
64
  # Récupérer les données audio et le label
65
+ with torch.no_grad():
66
+ result = classifier(np.asarray(data["input_values"]))
67
 
68
  predicted_label = result[0]['label']
69
  predictions.append(1 if predicted_label == 'environment' else 0)
70
+ del result
71
+ del predicted_label
72
 
73
  # Nettoyage mémoire après chaque batch
74
  #del input_values