Spaces:
Running
Running
File size: 2,560 Bytes
9afc52f 182adbd 4644b40 9358586 1d6fa11 dbc4628 9358586 182adbd 34165ae 9358586 4644b40 9358586 dbc4628 4644b40 9358586 4644b40 34165ae 4644b40 34165ae 1d6fa11 34165ae dbc4628 34165ae dbc4628 9358586 34165ae 9358586 dbc4628 9358586 1d6fa11 9358586 1d6fa11 9358586 1d6fa11 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 |
import streamlit as st
import json
import os
from Chunker import CodeChunker
# Function to load JSON data
def load_json_file(file_path):
with open(file_path, 'r') as file:
return json.load(file)
# Function to read code from an uploaded file
def read_code_from_file(uploaded_file):
return uploaded_file.getvalue().decode("utf-8")
# Setup Streamlit page
st.set_page_config(page_title="Cintra Code Chunker", layout="wide")
# Assuming app.py and mock_codefiles.json are in the same directory
json_file_path = os.path.join(os.path.dirname(__file__), 'mock_codefiles.json')
code_files_data = load_json_file(json_file_path)
# Extract filenames and contents
code_files = list(code_files_data.keys())
# UI Elements
st.title('Cintra Code Chunker')
# Create two columns for file selection and file upload
col1, col2 = st.columns(2)
with col1:
# File selection dropdown
selected_file_name = st.selectbox("Select an example code file", code_files)
with col2:
# File upload
uploaded_file = st.file_uploader("Or upload your code file", type=['py', 'js', 'css'])
# Determine the content and file extension based on selection or upload
if uploaded_file is not None:
code_content = read_code_from_file(uploaded_file)
file_extension = uploaded_file.name.split('.')[-1]
else:
code_content = code_files_data.get(selected_file_name, "")
file_extension = selected_file_name.split('.')[-1] if selected_file_name else None
# Determine the language for syntax highlighting
def get_language_by_extension(file_extension):
if file_extension in ['py', 'python']:
return 'python'
elif file_extension in ['js', 'jsx', 'javascript']:
return 'javascript'
elif file_extension == 'css':
return 'css'
else:
return None # Default to no syntax highlighting if extension is not recognized
language = get_language_by_extension(file_extension)
# User input for Token Chunk Size
token_chunk_size = st.number_input('Token Chunk Size Target', min_value=5, max_value=1000, value=25)
col1, col2 = st.columns(2)
with col1:
st.subheader('Original File')
st.code(code_content, language=language)
# Initialize the code chunker
code_chunker = CodeChunker(file_extension=file_extension)
# Chunk the code content
chunked_code_dict = code_chunker.chunk(code_content, token_chunk_size)
# Automatically display chunks without needing to select
with col2:
st.subheader('Chunked Code')
for chunk_key, chunk_code in chunked_code_dict.items():
st.code(chunk_code, language=language) |