code-chunker / app.py
CintraAI's picture
updated requirements
4644b40
raw
history blame
2.12 kB
import streamlit as st
from utils import load_json, count_tokens
import json
import os
# Set up the Streamlit page configuration
st.set_page_config(page_title="Cintra Code Chunker", layout="wide")
# Slider to select a value
x = st.slider("Select a value")
st.write(x, "squared is", x * x)
code_files_directory = "example_code_files"
code_files = os.listdir(code_files_directory)
# Dropdown menu for the user to select a code file
selected_file = st.selectbox("Select a code file", code_files)
file_path = os.path.join(code_files_directory, selected_file)
with open(file_path, "r") as file:
code_content = file.read()
st.code(code_content, language="python")
def main():
# Streamlit widgets for file selection
st.title("Cintra Code Chunker")
uploaded_file = st.file_uploader("Choose a file")
if uploaded_file is not None:
# Displaying the original file content
file_content = uploaded_file.getvalue().decode("utf-8")
st.text_area("File content", value=file_content, height=250, max_chars=50000)
# Input for token chunk size target
token_chunk_size = st.slider(
"Select token chunk size target", min_value=10, max_value=500, value=100
)
# Button to trigger chunking process
if st.button("Chunk Code"):
# Assuming the existence of a function to chunk code based on token size
# This is a placeholder for the actual chunking logic which would likely involve
# the 'count_tokens' function from utils.py and some logic to split the code into chunks
# For demonstration, we'll just show a message
st.success(
f"Code has been chunked with a target of {token_chunk_size} tokens per chunk."
)
# Displaying the chunked code - this would be replaced with actual chunked code display logic
st.text_area(
"Chunked Code",
value="Chunked code would appear here...",
height=250,
max_chars=50000,
)
if __name__ == "__main__":
main()