Spaces:
Sleeping
Sleeping
File size: 35,470 Bytes
c29489c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 |
import pyshark
import threading
import time
import numpy as np
import pandas as pd
from queue import Queue, Empty
import netifaces as net
import os
import joblib
from threading import Lock
import streamlit as st
current_dir = os.path.dirname(os.path.abspath(__file__))
MODEL_PATH = os.path.join(current_dir, 'Anomaly_Model.joblib')
flow_dict_lock = threading.Lock()
FEATURE_NAMES = [
' Destination Port',
' Flow Duration',
' Total Fwd Packets',
' Total Backward Packets',
'Total Length of Fwd Packets',
' Total Length of Bwd Packets',
' Fwd Packet Length Max',
' Fwd Packet Length Min',
' Fwd Packet Length Mean',
' Fwd Packet Length Std',
'Bwd Packet Length Max',
' Bwd Packet Length Min',
' Bwd Packet Length Mean',
' Bwd Packet Length Std',
'Flow Bytes/s',
' Flow Packets/s',
' Flow IAT Mean',
' Flow IAT Std',
' Flow IAT Max',
' Flow IAT Min',
'Fwd IAT Total',
' Fwd IAT Mean',
' Fwd IAT Std',
' Fwd IAT Max',
' Fwd IAT Min',
'Bwd IAT Total',
' Bwd IAT Mean',
' Bwd IAT Std',
' Bwd IAT Max',
' Bwd IAT Min',
'Fwd PSH Flags',
' Bwd PSH Flags',
' Fwd URG Flags',
' Bwd URG Flags',
' Fwd Header Length',
' Bwd Header Length',
'Fwd Packets/s',
' Bwd Packets/s',
' Min Packet Length',
' Max Packet Length',
' Packet Length Mean',
' Packet Length Std',
' Packet Length Variance',
'FIN Flag Count',
' SYN Flag Count',
' RST Flag Count',
' PSH Flag Count',
' ACK Flag Count',
' URG Flag Count',
' CWE Flag Count',
' ECE Flag Count',
' Down/Up Ratio',
' Average Packet Size',
' Avg Fwd Segment Size',
' Avg Bwd Segment Size',
' Fwd Header Length.1',
'Fwd Avg Bytes/Bulk',
' Fwd Avg Packets/Bulk',
' Fwd Avg Bulk Rate',
' Bwd Avg Bytes/Bulk',
' Bwd Avg Packets/Bulk',
'Bwd Avg Bulk Rate',
'Subflow Fwd Packets',
' Subflow Fwd Bytes',
' Subflow Bwd Packets',
' Subflow Bwd Bytes',
'Init_Win_bytes_forward',
' Init_Win_bytes_backward',
' act_data_pkt_fwd',
' min_seg_size_forward',
'Active Mean',
' Active Std',
' Active Max',
' Active Min',
'Idle Mean',
' Idle Std',
' Idle Max',
' Idle Min'
]
# Add verification after loading the model
def verify_features():
"""Verify that we have all required features and they match exactly"""
print(f"\nFeature Verification:")
print(f"Total features in training data: {len(FEATURE_NAMES)}")
print(f"Features in loaded model: {len(pipeline['selected_features'])}")
# Check for missing features
missing_features = set(FEATURE_NAMES) - set(pipeline['selected_features'])
if missing_features:
print("\nWARNING: Missing features in model:")
for feature in missing_features:
print(f"- {feature}")
# Check for extra features
extra_features = set(pipeline['selected_features']) - set(FEATURE_NAMES)
if extra_features:
print("\nWARNING: Extra features in model:")
for feature in extra_features:
print(f"- {feature}")
# Print first few features for verification
print("\nFirst 5 features:")
for i, feature in enumerate(FEATURE_NAMES[:5]):
print(f"{i+1}. '{feature}'")
# Add these constants at the top
PACKET_TIMEOUT = 60 # Flow expiration timeout in seconds
QUEUE_SIZE = 10000 # Maximum packet queue size
VERBOSE = False # Enable/disable detailed logging
# Add a packet counter class
class PacketStats:
def __init__(self):
self.total_packets = 0
self.ddos_flows = 0
self.benign_flows = 0
self.start_time = time.time()
self.lock = threading.Lock()
def update_stats(self, is_ddos):
with self.lock:
self.total_packets += 1
if is_ddos:
self.ddos_flows += 1
else:
self.benign_flows += 1
def print_stats(self):
with self.lock:
elapsed_time = time.time() - self.start_time
print(f"\nMonitoring Statistics:")
print(f"Running time: {elapsed_time:.2f} seconds")
print(f"Total packets processed: {self.total_packets}")
print(f"DDoS flows detected: {self.ddos_flows}")
print(f"Benign flows detected: {self.benign_flows}")
try:
print("Loading model...")
# Use the constructed path to load the model
model_data = joblib.load(MODEL_PATH)
pipeline = {
'model': model_data['model'],
'scaler': model_data['model'].named_steps['scaler'],
'selector': model_data['model'].named_steps['feature_selection'],
'variance_selector': model_data['model'].named_steps['variance_threshold'],
'selected_features': model_data['feature_names']
}
print("Model loaded successfully")
except Exception as e:
print(f"Error loading model: {e}")
raise
class Flow:
def is_expired(self, timeout=60):
return (time.time() - self.flow_end_time) > timeout
def __init__(self, src_ip, src_port, dst_ip, dst_port, protocol):
# Flow identifiers
self.src_ip = src_ip
self.src_port = src_port
self.dst_ip = dst_ip
self.dst_port = dst_port
self.protocol = protocol
# Packet tracking
self.total_fwd_packets = 0
self.total_bwd_packets = 0
self.total_length_fwd_packets = 0
self.total_length_bwd_packets = 0
# Packet lengths
self.fwd_packet_lengths = []
self.bwd_packet_lengths = []
self.packet_lengths = [] # All packet lengths
# Inter-arrival times
self.fwd_iat = []
self.bwd_iat = []
self.flow_iat = []
self.last_fwd_packet_time = None
self.last_bwd_packet_time = None
self.last_packet_time = None
# Header lengths
self.fwd_header_length = 0
self.bwd_header_length = 0
# Flags
self.fin_flag_count = 0
self.syn_flag_count = 0
self.rst_flag_count = 0
self.psh_flag_count = 0
self.ack_flag_count = 0
self.urg_flag_count = 0
self.cwe_flag_count = 0
self.ece_flag_count = 0
# Window sizes
self.init_win_bytes_forward = None
self.init_win_bytes_backward = None
self.act_data_pkt_fwd = 0
self.min_seg_size_forward = None
# Active and Idle times
self.flow_start_time = time.time()
self.flow_end_time = self.flow_start_time
self.active_times = []
self.idle_times = []
self.last_active_time = None
# Other features
self.flow_packet_times = []
def add_packet(self, packet, direction):
try:
if not hasattr(packet, 'sniff_timestamp'):
if VERBOSE:
print(f"Packet missing sniff_timestamp: {packet}")
return
current_time = float(packet.sniff_timestamp)
self.flow_end_time = current_time
# Track packet times for flow IAT
self.flow_packet_times.append(current_time)
if len(self.flow_packet_times) > 1:
iat = self.flow_packet_times[-1] - self.flow_packet_times[-2]
self.flow_iat.append(iat)
# Packet length - add error checking
try:
packet_length = int(packet.length)
except (AttributeError, ValueError) as e:
if VERBOSE:
print(f"Error getting packet length: {e}, packet: {packet}")
return
self.packet_lengths.append(packet_length)
# Detailed error handling for IP addresses
try:
if hasattr(packet, 'ip'):
src_ip = packet.ip.src
dst_ip = packet.ip.dst
elif hasattr(packet, 'ipv6'):
src_ip = packet.ipv6.src
dst_ip = packet.ipv6.dst
else:
if VERBOSE:
print(f"Packet has no IP layer: {packet}")
return
except AttributeError as e:
if VERBOSE:
print(f"Error accessing IP addresses: {e}, packet: {packet}")
return
current_time = float(packet.sniff_timestamp)
self.flow_end_time = current_time
# Track packet times for flow IAT
self.flow_packet_times.append(current_time)
if len(self.flow_packet_times) > 1:
iat = self.flow_packet_times[-1] - self.flow_packet_times[-2]
self.flow_iat.append(iat)
# Packet length
packet_length = int(packet.length)
self.packet_lengths.append(packet_length)
# Header length calculation
header_length = 14 # Ethernet header
if hasattr(packet, 'ip'):
src_ip = packet.ip.src
dst_ip = packet.ip.dst
elif hasattr(packet, 'ipv6'):
src_ip = packet.ipv6.src
dst_ip = packet.ipv6.dst
else:
return
if hasattr(packet, 'tcp'):
header_length += int(packet.tcp.hdr_len or 0)
if hasattr(packet.tcp, 'flags'):
flags = int(packet.tcp.flags_hex, 16)
self.fin_flag_count += bool(flags & 0x01)
self.syn_flag_count += bool(flags & 0x02)
self.rst_flag_count += bool(flags & 0x04)
self.psh_flag_count += bool(flags & 0x08)
self.ack_flag_count += bool(flags & 0x10)
self.urg_flag_count += bool(flags & 0x20)
self.ece_flag_count += bool(flags & 0x40)
self.cwe_flag_count += bool(flags & 0x80)
if direction == 'forward' and self.init_win_bytes_forward is None:
self.init_win_bytes_forward = int(packet.tcp.window_size or 0)
elif direction == 'backward' and self.init_win_bytes_backward is None:
self.init_win_bytes_backward = int(packet.tcp.window_size or 0)
if self.min_seg_size_forward is None:
self.min_seg_size_forward = int(packet.tcp.hdr_len or 0)
elif hasattr(packet, 'udp'):
header_length += 8
if direction == 'forward':
self.total_fwd_packets += 1
self.total_length_fwd_packets += packet_length
self.fwd_packet_lengths.append(packet_length)
self.fwd_header_length += header_length
self.act_data_pkt_fwd += 1
if self.last_fwd_packet_time is not None:
iat = current_time - self.last_fwd_packet_time
self.fwd_iat.append(iat)
self.last_fwd_packet_time = current_time
else:
self.total_bwd_packets += 1
self.total_length_bwd_packets += packet_length
self.bwd_packet_lengths.append(packet_length)
self.bwd_header_length += header_length
if self.last_bwd_packet_time is not None:
iat = current_time - self.last_bwd_packet_time
self.bwd_iat.append(iat)
self.last_bwd_packet_time = current_time
except Exception as e:
if VERBOSE:
print(f"Error processing packet: {str(e)}")
print(f"Packet details: {packet}")
import traceback
print(traceback.format_exc())
def compute_features(self):
# Compute statistical features for packet lengths
fwd_pl_array = np.array(self.fwd_packet_lengths)
bwd_pl_array = np.array(self.bwd_packet_lengths)
all_pl_array = np.array(self.packet_lengths)
# Handle empty arrays
if len(fwd_pl_array) == 0:
fwd_pl_array = np.array([0])
if len(bwd_pl_array) == 0:
bwd_pl_array = np.array([0])
if len(all_pl_array) == 0:
all_pl_array = np.array([0])
if len(self.fwd_iat) == 0:
self.fwd_iat = [0]
if len(self.bwd_iat) == 0:
self.bwd_iat = [0]
if len(self.flow_iat) == 0:
self.flow_iat = [0]
flow_duration = (self.flow_end_time - self.flow_start_time) * 1e6 # in microseconds
# Compute features
features = {
' Destination Port': self.dst_port,
' Flow Duration': flow_duration,
' Total Fwd Packets': self.total_fwd_packets,
' Total Backward Packets': self.total_bwd_packets,
'Total Length of Fwd Packets': self.total_length_fwd_packets,
' Total Length of Bwd Packets': self.total_length_bwd_packets,
' Fwd Packet Length Max': np.max(fwd_pl_array),
' Fwd Packet Length Min': np.min(fwd_pl_array),
' Fwd Packet Length Mean': np.mean(fwd_pl_array),
' Fwd Packet Length Std': np.std(fwd_pl_array),
'Bwd Packet Length Max': np.max(bwd_pl_array),
' Bwd Packet Length Min': np.min(bwd_pl_array),
' Bwd Packet Length Mean': np.mean(bwd_pl_array),
' Bwd Packet Length Std': np.std(bwd_pl_array),
'Flow Bytes/s': ((self.total_length_fwd_packets + self.total_length_bwd_packets) / flow_duration) * 1e6 if flow_duration > 0 else 0,
' Flow Packets/s': ((self.total_fwd_packets + self.total_bwd_packets) / flow_duration) * 1e6 if flow_duration > 0 else 0,
' Flow IAT Mean': np.mean(self.flow_iat),
' Flow IAT Std': np.std(self.flow_iat),
' Flow IAT Max': np.max(self.flow_iat),
' Flow IAT Min': np.min(self.flow_iat),
'Fwd IAT Total': sum(self.fwd_iat),
' Fwd IAT Mean': np.mean(self.fwd_iat),
' Fwd IAT Std': np.std(self.fwd_iat),
' Fwd IAT Max': np.max(self.fwd_iat),
' Fwd IAT Min': np.min(self.fwd_iat),
'Bwd IAT Total': sum(self.bwd_iat),
' Bwd IAT Mean': np.mean(self.bwd_iat),
' Bwd IAT Std': np.std(self.bwd_iat),
' Bwd IAT Max': np.max(self.bwd_iat),
' Bwd IAT Min': np.min(self.bwd_iat),
'Fwd PSH Flags': 0,
' Bwd PSH Flags': 0,
' Fwd URG Flags': 0,
' Bwd URG Flags': 0,
' Fwd Header Length': self.fwd_header_length,
' Bwd Header Length': self.bwd_header_length,
'Fwd Packets/s': (self.total_fwd_packets / flow_duration) * 1e6 if flow_duration > 0 else 0,
' Bwd Packets/s': (self.total_bwd_packets / flow_duration) * 1e6 if flow_duration > 0 else 0,
' Min Packet Length': np.min(all_pl_array),
' Max Packet Length': np.max(all_pl_array),
' Packet Length Mean': np.mean(all_pl_array),
' Packet Length Std': np.std(all_pl_array),
' Packet Length Variance': np.var(all_pl_array),
'FIN Flag Count': self.fin_flag_count,
' SYN Flag Count': self.syn_flag_count,
' RST Flag Count': self.rst_flag_count,
' PSH Flag Count': self.psh_flag_count,
' ACK Flag Count': self.ack_flag_count,
' URG Flag Count': self.urg_flag_count,
' CWE Flag Count': self.cwe_flag_count,
' ECE Flag Count': self.ece_flag_count,
' Down/Up Ratio': (self.total_fwd_packets / self.total_bwd_packets) if self.total_bwd_packets > 0 else 0,
' Average Packet Size': (np.mean(all_pl_array)) if len(all_pl_array) > 0 else 0,
' Avg Fwd Segment Size': (self.total_length_fwd_packets / self.total_fwd_packets) if self.total_fwd_packets > 0 else 0,
' Avg Bwd Segment Size': (self.total_length_bwd_packets / self.total_bwd_packets) if self.total_bwd_packets > 0 else 0,
' Fwd Header Length.1': self.fwd_header_length,
'Fwd Avg Bytes/Bulk': 0,
' Fwd Avg Packets/Bulk': 0,
' Fwd Avg Bulk Rate': 0,
' Bwd Avg Bytes/Bulk': 0,
' Bwd Avg Packets/Bulk': 0,
'Bwd Avg Bulk Rate': 0,
'Subflow Fwd Packets': self.total_fwd_packets,
' Subflow Fwd Bytes': self.total_length_fwd_packets,
' Subflow Bwd Packets': self.total_bwd_packets,
' Subflow Bwd Bytes': self.total_length_bwd_packets,
'Init_Win_bytes_forward': self.init_win_bytes_forward or 0,
' Init_Win_bytes_backward': self.init_win_bytes_backward or 0,
' act_data_pkt_fwd': self.act_data_pkt_fwd,
' min_seg_size_forward': self.min_seg_size_forward or 0,
'Active Mean': 0,
' Active Std': 0,
' Active Max': 0,
' Active Min': 0,
'Idle Mean': 0,
' Idle Std': 0,
' Idle Max': 0,
' Idle Min': 0,
}
for feature in FEATURE_NAMES:
if feature not in features:
features[feature] = 0
return features
def get_all_interfaces():
"""
Get all available network interfaces with their IP addresses.
"""
try:
interfaces = net.interfaces()
excluded_interfaces = ['lo', 'lo0', 'bridge', 'docker', 'vmnet']
available_interfaces = []
for iface in interfaces:
if any(excluded in iface for excluded in excluded_interfaces):
continue
try:
addrs = net.ifaddresses(iface)
ip_info = addrs.get(net.AF_INET)
if ip_info:
ip_addr = ip_info[0].get('addr', 'N/A')
available_interfaces.append((iface, ip_addr))
else:
available_interfaces.append((iface, 'N/A'))
except ValueError:
continue
return available_interfaces
except Exception as e:
print(f"Error getting network interfaces: {e}")
return []
def capture_packets(interface_name, packet_queue, stop_event):
try:
capture = pyshark.LiveCapture(interface=interface_name)
for packet in capture.sniff_continuously():
if stop_event.is_set():
break
packet_queue.put(packet)
except Exception as e:
print(f"Error capturing packets: {e}")
NUM_THREADS = 4 # Number of threads for packet processing
def start_processing_threads(packet_queue, flow_dict, pipeline, stats):
"""
Start multiple threads to process packets in parallel.
"""
for _ in range(NUM_THREADS):
thread = threading.Thread(
target=process_packets,
args=(packet_queue, flow_dict, pipeline, stats),
daemon=True
)
thread.start()
def process_packets(packet_queue, flow_dict, pipeline, stats):
while True:
try:
try:
packet = packet_queue.get(timeout=1)
except Empty:
continue
if not hasattr(packet, 'ip'):
if VERBOSE:
print(f"Skipping non-IP packet: {packet}")
continue
# Extract packet information outside the lock
try:
if not hasattr(packet.ip, 'src') or not hasattr(packet.ip, 'dst'):
if VERBOSE:
print(f"Packet missing IP addresses: {packet}")
continue
src_ip = packet.ip.src
dst_ip = packet.ip.dst
# Get port information
if hasattr(packet, 'tcp'):
src_port = int(packet.tcp.srcport)
dst_port = int(packet.tcp.dstport)
protocol = 'TCP'
elif hasattr(packet, 'udp'):
src_port = int(packet.udp.srcport)
dst_port = int(packet.udp.dstport)
protocol = 'UDP'
else:
continue
# Create flow keys
forward_key = (src_ip, src_port, dst_ip, dst_port, protocol)
backward_key = (dst_ip, dst_port, src_ip, src_port, protocol)
# Update stats first
stats.update_stats(False)
# Now use the lock when accessing flow_dict
with flow_dict_lock:
# Get or create flow
if forward_key in flow_dict:
flow = flow_dict[forward_key]
direction = 'forward'
elif backward_key in flow_dict:
flow = flow_dict[backward_key]
direction = 'backward'
else:
flow = Flow(src_ip, src_port, dst_ip, dst_port, protocol)
flow_dict[forward_key] = flow
direction = 'forward'
# Add packet to flow while still holding the lock
flow.add_packet(packet, direction)
# Check for expired flows while holding the lock
for flow_key, flow in list(flow_dict.items()):
if flow.is_expired(timeout=60):
try:
# Extract features and make prediction
features = flow.compute_features()
features_df = pd.DataFrame([features])
features_df = features_df[pipeline['selected_features']]
X = features_df.copy()
X = pipeline['variance_selector'].transform(X)
X = pipeline['scaler'].transform(X)
X = pipeline['selector'].transform(X)
prediction = pipeline['model'].predict(X)
# Log prediction
src_ip, src_port, dst_ip, dst_port, proto = flow_key
status = 'DDoS' if prediction[0] == 1 else 'Normal'
packets = flow.total_fwd_packets + flow.total_bwd_packets
print(f"[{time.strftime('%H:%M:%S')}] {src_ip}:{src_port} β {dst_ip}:{dst_port} | {proto} | Packets: {packets} | Status: {status}")
except Exception as e:
print(f"Prediction error: {e}")
finally:
del flow_dict[flow_key]
except AttributeError as e:
if VERBOSE:
print(f"Packet parsing error: {e}")
continue
except Exception as e:
if VERBOSE:
print(f"Processing error: {e}")
continue
def process_packets(packet_queue, flow_dict, pipeline, stats):
while True:
try:
try:
packet = packet_queue.get(timeout=1)
except Empty:
continue
if not hasattr(packet, 'ip'):
if VERBOSE:
print(f"Skipping non-IP packet: {packet}")
continue
try:
# Extract flow information with error checking
if not hasattr(packet.ip, 'src') or not hasattr(packet.ip, 'dst'):
if VERBOSE:
print(f"Packet missing IP addresses: {packet}")
continue
src_ip = packet.ip.src
dst_ip = packet.ip.dst
# Get port information with better error handling
if hasattr(packet, 'tcp'):
try:
src_port = int(packet.tcp.srcport)
dst_port = int(packet.tcp.dstport)
protocol = 'TCP'
except (AttributeError, ValueError) as e:
if VERBOSE:
print(f"Error getting TCP ports: {e}")
continue
elif hasattr(packet, 'udp'):
try:
src_port = int(packet.udp.srcport)
dst_port = int(packet.udp.dstport)
protocol = 'UDP'
except (AttributeError, ValueError) as e:
if VERBOSE:
print(f"Error getting UDP ports: {e}")
continue
else:
if VERBOSE:
print(f"Packet is neither TCP nor UDP: {packet}")
continue
# Process flow and update statistics
forward_key = (src_ip, src_port, dst_ip, dst_port, protocol)
backward_key = (dst_ip, dst_port, src_ip, src_port, protocol)
# Update stats first
stats.update_stats(False)
# Get or create flow
if forward_key in flow_dict:
flow = flow_dict[forward_key]
direction = 'forward'
elif backward_key in flow_dict:
flow = flow_dict[backward_key]
direction = 'backward'
else:
flow = Flow(src_ip, src_port, dst_ip, dst_port, protocol)
flow_dict[forward_key] = flow
direction = 'forward'
flow.add_packet(packet, direction)
except AttributeError as e:
if VERBOSE:
print(f"Packet parsing error: {e}")
print(f"Packet details: {packet}")
continue
except Exception as e:
if VERBOSE:
print(f"Processing error: {e}")
import traceback
print(traceback.format_exc())
continue
def select_interface(interfaces):
"""Select network interface for packet capture"""
if len(interfaces) == 1:
# If only one active interface, automatically select it
interface_name = interfaces[0][0]
print(f"Automatically selected interface: {interface_name} (IP: {interfaces[0][1]})")
return interface_name
# Display multiple active interfaces and let user select
print("\nAvailable Network Interfaces:")
for idx, (iface, ip_addr) in enumerate(interfaces):
print(f"{idx}: {iface} (IP: {ip_addr})")
while True:
try:
selected_idx = int(input("\nSelect interface index for capture: "))
if 0 <= selected_idx < len(interfaces):
return interfaces[selected_idx][0]
print("Invalid selection. Try again.")
except ValueError:
print("Please enter a valid number.")
def predict_flow(flow, pipeline):
"""Make prediction for a single flow"""
features = flow.compute_features()
features_df = pd.DataFrame([features])
features_df = features_df[pipeline['selected_features']]
X = features_df.copy()
X = pipeline['variance_selector'].transform(X)
X = pipeline['scaler'].transform(X)
X = pipeline['selector'].transform(X)
return pipeline['model'].predict(X)[0]
def start_capture_threads(interface_name, packet_queue, flow_dict, pipeline, stats, stop_event):
"""Start capture and processing threads"""
capture_thread = threading.Thread(
target=capture_packets,
args=(interface_name, packet_queue, stop_event),
daemon=True
)
processing_thread = threading.Thread(
target=process_packets,
args=(packet_queue, flow_dict, pipeline, stats),
daemon=True
)
capture_thread.start()
processing_thread.start()
return [capture_thread, processing_thread]
def cleanup(stop_event, threads, stats):
"""Clean up threads and display final statistics"""
stop_event.set()
for thread in threads:
thread.join(timeout=5)
stats.print_stats()
print("\nCapture stopped.")
def main():
print("Network Traffic DDoS Monitor")
# Verify features first thing in main
verify_features()
# Initialize statistics
stats = PacketStats()
# Initialize queue and flow tracking
packet_queue = Queue(maxsize=QUEUE_SIZE)
flow_dict = {}
# Get interfaces and setup capture
interfaces = [(iface, ip) for iface, ip in get_all_interfaces() if ip != 'N/A']
if not interfaces:
print("No active network interfaces found.")
return
interface_name = select_interface(interfaces)
print(f"\nStarting capture on: {interface_name}")
# Start capture
stop_event = threading.Event()
threads = start_capture_threads(interface_name, packet_queue, flow_dict, pipeline, stats, stop_event)
try:
while True:
time.sleep(10)
stats.print_stats()
except KeyboardInterrupt:
print("\nStopping capture...")
finally:
cleanup(stop_event, threads, stats)
# Feature extraction and prediction
print("\nProcessing captured network flows...")
features_list = []
predictions = []
for flow_key, flow in flow_dict.items():
try:
# Get features
features = flow.compute_features()
features_list.append(features)
# Create DataFrame with only the required features
features_df = pd.DataFrame([features])
feature_vector = pd.DataFrame(columns=pipeline['selected_features'])
for feature in pipeline['selected_features']:
feature_vector[feature] = features_df.get(feature, 0)
# Apply the pipeline transformations
X = pipeline['variance_selector'].transform(feature_vector)
X = pipeline['scaler'].transform(X)
X = pipeline['selector'].transform(X)
# Make prediction
prediction = pipeline['model'].predict(X)
predictions.append(prediction[0])
# Print prediction
src_ip, src_port, dst_ip, dst_port, proto = flow_key
print(f"Flow: {src_ip}:{src_port} -> {dst_ip}:{dst_port} ({proto})")
print(f"Prediction: {'BENIGN' if prediction[0] == 0 else 'DDoS'}")
print(f"Total packets: Forward={flow.total_fwd_packets}, Backward={flow.total_bwd_packets}")
print("-" * 50)
except Exception as e:
print(f"Error processing flow: {str(e)}")
# Save results if we have any
if features_list:
df = pd.DataFrame(features_list)
df['Prediction'] = predictions
output_file = 'network_traffic_predictions.csv'
df.to_csv(output_file, index=False)
print(f"\nFeatures and predictions saved to {output_file}")
print(f"Total flows captured: {len(features_list)}")
else:
print("No network flows were captured.")
def streamlit_app():
st.title("Real-Time Network Traffic DDoS Monitor")
st.markdown("Monitor your network traffic in real time and detect potential DDoS attacks.")
# Initialize session state
if 'is_scanning' not in st.session_state:
st.session_state.is_scanning = False
if 'packet_queue' not in st.session_state:
st.session_state.packet_queue = Queue(maxsize=QUEUE_SIZE)
if 'flow_dict' not in st.session_state:
st.session_state.flow_dict = {}
if 'stats' not in st.session_state:
st.session_state.stats = PacketStats()
if 'stop_event' not in st.session_state:
st.session_state.stop_event = threading.Event()
if 'selected_interface' not in st.session_state:
st.session_state.selected_interface = None
# Get interfaces and handle interface selection
interfaces = [(iface, ip) for iface, ip in get_all_interfaces() if ip != 'N/A']
if not interfaces:
st.error("No active network interfaces found.")
return
# Automatic interface selection if only one available
if len(interfaces) == 1:
if not st.session_state.selected_interface:
st.session_state.selected_interface = interfaces[0][0]
st.info(f"Using network interface: {st.session_state.selected_interface} (IP: {interfaces[0][1]})")
else:
# Show selection box only if multiple interfaces available
st.session_state.selected_interface = st.selectbox(
"Select Network Interface",
[iface[0] for iface in interfaces],
key='interface_select'
)
# Control buttons in the same row
col1, col2 = st.columns(2)
with col1:
if st.button("Start Scanning", key='start_button'):
st.session_state.is_scanning = True
st.session_state.stop_event.clear()
threads = start_capture_threads(
st.session_state.selected_interface,
st.session_state.packet_queue,
st.session_state.flow_dict,
pipeline,
st.session_state.stats,
st.session_state.stop_event
)
st.session_state.threads = threads
with col2:
if st.button("Stop Scanning", key='stop_button'):
st.session_state.is_scanning = False
if hasattr(st.session_state, 'stop_event'):
st.session_state.stop_event.set()
if hasattr(st.session_state, 'threads'):
for thread in st.session_state.threads:
thread.join(timeout=5)
# Display statistics
if st.session_state.is_scanning:
stats_container = st.container()
with stats_container:
st.markdown("### Statistics:")
col1, col2, col3 = st.columns(3)
with col1:
st.metric("Total Packets", st.session_state.stats.total_packets)
with col2:
st.metric("DDoS Flows", st.session_state.stats.ddos_flows)
with col3:
st.metric("Benign Flows", st.session_state.stats.benign_flows)
# Display active flows
flow_data = []
for flow_key, flow in st.session_state.flow_dict.items():
src_ip, src_port, dst_ip, dst_port, protocol = flow_key
packets = flow.total_fwd_packets + flow.total_bwd_packets
flow_data.append([src_ip, src_port, dst_ip, dst_port, protocol, packets])
if flow_data:
st.markdown("### Active Flows")
df = pd.DataFrame(flow_data,
columns=["Src IP", "Src Port", "Dst IP", "Dst Port", "Protocol", "Packets"])
st.dataframe(df, use_container_width=True)
if st.session_state.is_scanning:
time.sleep(0.01)
st.rerun()
if __name__ == "__main__":
st.set_page_config(
page_title="DDoS Monitor",
page_icon="π",
layout="wide",
initial_sidebar_state="collapsed"
)
streamlit_app() |