|
import pandas as pd |
|
import numpy as np |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.ensemble import RandomForestRegressor |
|
from sklearn.preprocessing import LabelEncoder, RobustScaler |
|
from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score |
|
from sklearn.pipeline import Pipeline |
|
import joblib |
|
import matplotlib.pyplot as plt |
|
import seaborn as sns |
|
import os |
|
|
|
|
|
file_path = "CAR/CTP_Model1.csv" |
|
data = pd.read_csv(file_path, low_memory=False) |
|
|
|
|
|
def remove_outliers_iqr(df, column, multiplier=1.5): |
|
Q1 = df[column].quantile(0.25) |
|
Q3 = df[column].quantile(0.75) |
|
IQR = Q3 - Q1 |
|
lower_bound = Q1 - multiplier * IQR |
|
upper_bound = Q3 + multiplier * IQR |
|
return df[(df[column] >= lower_bound) & (df[column] <= upper_bound)] |
|
|
|
|
|
data = remove_outliers_iqr(data, 'price', multiplier=2) |
|
data = data[data['price'] > 100] |
|
|
|
|
|
def create_features(df): |
|
df = df.copy() |
|
current_year = 2024 |
|
df['age'] = current_year - df['year'] |
|
df['age_squared'] = df['age'] ** 2 |
|
df['mileage_per_year'] = np.clip(df['odometer'] / (df['age'] + 1), 0, 200000) |
|
return df |
|
|
|
data = create_features(data) |
|
|
|
|
|
categorical_features = ['make', 'model', 'condition', 'fuel', 'title_status', |
|
'transmission', 'drive', 'size', 'type', 'paint_color'] |
|
|
|
label_encoders = {} |
|
encoding_dict = {} |
|
|
|
for feature in categorical_features: |
|
if feature in data.columns: |
|
le = LabelEncoder() |
|
data[feature] = le.fit_transform(data[feature]) |
|
label_encoders[feature] = le |
|
|
|
encoding_dict[feature] = dict(zip(le.classes_, le.transform(le.classes_))) |
|
|
|
|
|
encoding_df = pd.DataFrame.from_dict(encoding_dict, orient='index').transpose() |
|
encoding_df.to_csv("categorical_encodings.csv", index=False) |
|
|
|
|
|
numeric_features = ['year', 'odometer', 'age', 'age_squared', 'mileage_per_year'] |
|
features = numeric_features + categorical_features |
|
X = data[features] |
|
y = np.log1p(data['price']) |
|
|
|
|
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) |
|
|
|
|
|
model = Pipeline([ |
|
('scaler', RobustScaler()), |
|
('regressor', RandomForestRegressor( |
|
n_estimators=300, max_depth=25, random_state=42, n_jobs=-1)) |
|
]) |
|
|
|
|
|
model.fit(X_train, y_train) |
|
|
|
|
|
y_pred = model.predict(X_test) |
|
rmse = mean_squared_error(y_test, y_pred, squared=False) |
|
mae = mean_absolute_error(y_test, y_pred) |
|
r2 = r2_score(y_test, y_pred) |
|
|
|
print(f"RMSE: {rmse:.2f}, MAE: {mae:.2f}, R²: {r2:.4f}") |
|
|
|
|
|
joblib.dump(model, "car_price_modelv3.pkl") |
|
print("Model saved successfully.") |
|
|
|
viz_path = '/Users/estebanm/Desktop/carShopping_tool/CAR/visualizations' |
|
os.makedirs(viz_path, exist_ok=True) |
|
|
|
|
|
plt.figure(figsize=(10, 6)) |
|
sns.histplot(data=data, x='price', bins=50) |
|
plt.title('Price Distribution') |
|
plt.savefig(os.path.join(viz_path, 'price_distribution_plot.png')) |
|
plt.close() |
|
|
|
|
|
actual_prices = np.expm1(y_test) |
|
predicted_prices = np.expm1(y_pred) |
|
|
|
plt.figure(figsize=(10, 6)) |
|
plt.scatter(actual_prices, predicted_prices, alpha=0.5) |
|
plt.plot([actual_prices.min(), actual_prices.max()], [actual_prices.min(), actual_prices.max()], 'r--') |
|
plt.xlabel('Actual Price') |
|
plt.ylabel('Predicted Price') |
|
plt.title('Actual vs Predicted Prices') |
|
plt.savefig(os.path.join(viz_path, 'actual_vs_predicted_scatter.png')) |
|
plt.close() |
|
|
|
|
|
feature_importance = model.named_steps['regressor'].feature_importances_ |
|
feature_names = numeric_features + categorical_features |
|
|
|
plt.figure(figsize=(12, 6)) |
|
importance_df = pd.DataFrame({'feature': feature_names, 'importance': feature_importance}) |
|
importance_df = importance_df.sort_values('importance', ascending=True) |
|
plt.barh(importance_df['feature'], importance_df['importance']) |
|
plt.title('Feature Importance') |
|
plt.savefig(os.path.join(viz_path, 'feature_importance_plot.png')) |
|
plt.close() |
|
|
|
|
|
residuals = actual_prices - predicted_prices |
|
plt.figure(figsize=(10, 6)) |
|
sns.histplot(residuals, bins=50) |
|
plt.title('Residuals Distribution') |
|
plt.xlabel('Residuals') |
|
plt.savefig(os.path.join(viz_path, 'residuals_distribution_plot.png')) |
|
plt.close() |