Cipher29 commited on
Commit
556c3e3
1 Parent(s): ce95425

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -19
app.py CHANGED
@@ -492,8 +492,8 @@ def generate_gpt_response(prompt, dataset):
492
  st.dataframe(dataset_response) # Show results to the user
493
  return f"I found some information in our dataset about {make.title()} {model.title() if model else ''}. Please see the details above."
494
 
495
- # If no match is found, fall back to GPT response
496
- openai.api_key = "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"
497
  system_message = {
498
  "role": "system",
499
  "content": (
@@ -698,9 +698,7 @@ def predict_with_ranges(inputs, model, label_encoders):
698
  'min_price': min_price,
699
  'max_price': max_price
700
  }
701
- # --- Main Application ---
702
  def main():
703
- # Load necessary data and models
704
  try:
705
  original_data = load_datasets()
706
  model, label_encoders = load_model_and_encodings()
@@ -713,23 +711,32 @@ def main():
713
 
714
  with tab1:
715
  st.title("Car Price Prediction")
716
- # [Previous prediction interface code]
717
- inputs, predict_button = create_prediction_interface()
718
 
719
- if predict_button:
720
- st.write(f"Analyzing {inputs['year']} {inputs['make'].title()} {inputs['model'].title()}...")
721
- prediction_results = predict_with_ranges(inputs, model, label_encoders)
 
 
 
722
 
723
- st.markdown(f"""
724
- ### Price Analysis
725
- - **Estimated Range**: ${prediction_results['min_price']:,.2f} - ${prediction_results['max_price']:,.2f}
726
- - **Model Prediction**: ${prediction_results['predicted_price']:,.2f}
727
- """)
728
-
729
- # Generate and display the graph
730
- fig = create_market_trends_plot_with_model(model, inputs["make"], inputs, label_encoders)
731
- if fig:
732
- st.pyplot(fig)
 
 
 
 
 
 
 
 
733
 
734
  with tab2:
735
  st.title("Car Image Analysis")
 
492
  st.dataframe(dataset_response) # Show results to the user
493
  return f"I found some information in our dataset about {make.title()} {model.title() if model else ''}. Please see the details above."
494
 
495
+
496
+ openai.api_key = st.secrets["GPT_TOKEN"]
497
  system_message = {
498
  "role": "system",
499
  "content": (
 
698
  'min_price': min_price,
699
  'max_price': max_price
700
  }
 
701
  def main():
 
702
  try:
703
  original_data = load_datasets()
704
  model, label_encoders = load_model_and_encodings()
 
711
 
712
  with tab1:
713
  st.title("Car Price Prediction")
 
 
714
 
715
+ # Create two columns
716
+ col1, col2 = st.columns([2, 1])
717
+
718
+ with col1:
719
+ # Prediction interface code
720
+ inputs, predict_button = create_prediction_interface()
721
 
722
+ if predict_button:
723
+ st.write(f"Analyzing {inputs['year']} {inputs['make'].title()} {inputs['model'].title()}...")
724
+ prediction_results = predict_with_ranges(inputs, model, label_encoders)
725
+
726
+ st.markdown(f"""
727
+ ### Price Analysis
728
+ - **Estimated Range**: ${prediction_results['min_price']:,.2f} - ${prediction_results['max_price']:,.2f}
729
+ - **Model Prediction**: ${prediction_results['predicted_price']:,.2f}
730
+ """)
731
+
732
+ # Generate and display the graph
733
+ fig = create_market_trends_plot_with_model(model, inputs["make"], inputs, label_encoders)
734
+ if fig:
735
+ st.pyplot(fig)
736
+
737
+ with col2:
738
+ # Add the chat assistant here
739
+ create_assistant_section(original_data)
740
 
741
  with tab2:
742
  st.title("Car Image Analysis")