import streamlit as st
import pandas as pd
import numpy as np
import joblib
import matplotlib.pyplot as plt
import os
import openai
from sklearn.preprocessing import LabelEncoder
import requests
from io import BytesIO
import gdown
from PIL import Image
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
import torch
from datetime import datetime
# --- Set page configuration ---
st.set_page_config(
page_title="The Guide",
page_icon="🚗",
layout="wide",
initial_sidebar_state="expanded"
)
# --- Custom CSS for better styling ---
st.markdown("""
""", unsafe_allow_html=True)
# --- Cache functions ---
def create_brand_categories():
return {
'luxury_brands': {
'rolls-royce': (300000, 600000),
'bentley': (200000, 500000),
'lamborghini': (250000, 550000),
'ferrari': (250000, 600000),
'mclaren': (200000, 500000),
'aston-martin': (150000, 400000),
'maserati': (100000, 300000)
},
'premium_brands': {
'porsche': (60000, 150000),
'bmw': (40000, 90000),
'mercedes-benz': (45000, 95000),
'audi': (35000, 85000),
'lexus': (40000, 80000),
'jaguar': (45000, 90000),
'land-rover': (40000, 90000),
'volvo': (35000, 75000),
'infiniti': (35000, 70000),
'cadillac': (40000, 85000),
'tesla': (40000, 100000)
},
'mid_tier_brands': {
'acura': (30000, 50000),
'lincoln': (35000, 65000),
'buick': (25000, 45000),
'chrysler': (25000, 45000),
'alfa-romeo': (35000, 60000),
'genesis': (35000, 60000)
},
'standard_brands': {
'toyota': (20000, 35000),
'honda': (20000, 35000),
'volkswagen': (20000, 35000),
'mazda': (20000, 32000),
'subaru': (22000, 35000),
'hyundai': (18000, 32000),
'kia': (17000, 30000),
'ford': (20000, 40000),
'chevrolet': (20000, 38000),
'gmc': (25000, 45000),
'jeep': (25000, 45000),
'dodge': (22000, 40000),
'ram': (25000, 45000),
'nissan': (18000, 32000)
},
'economy_brands': {
'mitsubishi': (15000, 25000),
'suzuki': (12000, 22000),
'fiat': (15000, 25000),
'mini': (20000, 35000),
'smart': (15000, 25000)
},
'discontinued_brands': {
'pontiac': (5000, 15000),
'saturn': (4000, 12000),
'mercury': (4000, 12000),
'oldsmobile': (3000, 10000),
'plymouth': (3000, 10000),
'saab': (5000, 15000)
}
}
@st.cache_resource
def download_file_from_google_drive(file_id):
"""Downloads a file from Google Drive using gdown."""
url = f"https://drive.google.com/uc?id={file_id}"
try:
with st.spinner('Downloading from Google Drive...'):
output = f"temp_{file_id}.pkl"
gdown.download(url, output, quiet=False)
with open(output, 'rb') as f:
content = f.read()
# Clean up the temporary file
os.remove(output)
return content
except Exception as e:
st.error(f"Error downloading from Google Drive: {str(e)}")
raise e
@st.cache_data
def load_datasets():
"""Load the dataset from Google Drive."""
dataset_file_id = "17dj7yW22YsIfp-tvXQFCitKmLFw5IuAv"
try:
with st.spinner('Loading dataset...'):
content = download_file_from_google_drive(dataset_file_id)
# Use BytesIO to read the CSV content
original_data = pd.read_csv(BytesIO(content), low_memory=False)
# Ensure column names match the model's expectations
original_data.columns = original_data.columns.str.strip().str.capitalize()
return original_data
except Exception as e:
st.error(f"Error loading dataset: {str(e)}")
raise e
@st.cache_resource
def load_model_and_encodings():
"""Load model from Google Drive and create encodings."""
model_file_id = "1ynnVEH7rmAjfe-jH8GOEmTJc6ml8dTi_"
try:
# Show loading message
with st.spinner('Loading model...'):
model_content = download_file_from_google_drive(model_file_id)
model = joblib.load(BytesIO(model_content))
# Load data for encodings
original_data = load_datasets()
# Create fresh encoders from data
label_encoders = {}
categorical_features = ['Make', 'model', 'condition', 'fuel', 'title_status',
'transmission', 'drive', 'size', 'type', 'paint_color']
for feature in categorical_features:
if feature in original_data.columns:
le = LabelEncoder()
unique_values = original_data[feature].fillna('unknown').str.strip().unique()
le.fit(unique_values)
label_encoders[feature.lower()] = le
return model, label_encoders
except Exception as e:
st.error(f"Error loading model: {str(e)}")
raise e
# --- Load data and models ---
try:
original_data = load_datasets()
model, label_encoders = load_model_and_encodings() # Using the new function
except Exception as e:
st.error(f"Error loading data or models: {str(e)}")
st.stop()
# --- Define categorical and numeric features ---
# From model.py
# --- Define features ---
numeric_features = ['year', 'odometer', 'age', 'age_squared', 'mileage_per_year']
# Update the categorical features list to use lowercase
categorical_features = ['make', 'model', 'condition', 'fuel', 'title_status',
'transmission', 'drive', 'size', 'type', 'paint_color']
required_features = numeric_features + categorical_features
# --- Feature engineering functions ---
def create_features(df):
df = df.copy()
current_year = 2024
df['age'] = current_year - df['year']
df['age_squared'] = df['age'] ** 2
df['mileage_per_year'] = np.clip(df['odometer'] / (df['age'] + 1), 0, 200000)
return df
def prepare_input(input_dict, label_encoders):
# Convert None values to 'unknown' for safe handling
input_dict = {k: v if v is not None else 'unknown' for k, v in input_dict.items()}
# Convert input dictionary to DataFrame
input_df = pd.DataFrame([input_dict])
# Ensure columns match the model's expected casing
feature_name_mapping = {
"make": "Make", # Match casing for 'Make'
"model": "Model", # Match casing for 'Model'
"condition": "Condition",
"fuel": "Fuel",
"title_status": "Title_status",
"transmission": "Transmission",
"drive": "Drive",
"size": "Size",
"type": "Type",
"paint_color": "Paint_color",
"year": "Year",
"odometer": "Odometer",
"age": "Age",
"age_squared": "Age_squared",
"mileage_per_year": "Mileage_per_year"
}
input_df.rename(columns=feature_name_mapping, inplace=True)
# Numeric feature conversions
input_df["Year"] = pd.to_numeric(input_df.get("Year", 0), errors="coerce")
input_df["Odometer"] = pd.to_numeric(input_df.get("Odometer", 0), errors="coerce")
# Feature engineering
current_year = 2024
input_df["Age"] = current_year - input_df["Year"]
input_df["Age_squared"] = input_df["Age"] ** 2
input_df["Mileage_per_year"] = input_df["Odometer"] / (input_df["Age"] + 1)
input_df["Mileage_per_year"] = input_df["Mileage_per_year"].clip(0, 200000)
# Encode categorical features
for feature, encoded_feature in feature_name_mapping.items():
if feature in label_encoders:
input_df[encoded_feature] = input_df[encoded_feature].fillna("unknown").astype(str).str.strip()
try:
input_df[encoded_feature] = label_encoders[feature].transform(input_df[encoded_feature])
except ValueError:
input_df[encoded_feature] = 0 # Assign default for unseen values
# Ensure all required features are present
for feature in model.feature_names_in_:
if feature not in input_df:
input_df[feature] = 0 # Default value for missing features
# Reorder columns
input_df = input_df[model.feature_names_in_]
return input_df
# --- Styling functions ---
st.markdown("""
""", unsafe_allow_html=True)
def style_metric_container(label, value):
st.markdown(f"""
""", unsafe_allow_html=True)
def classify_image(image):
try:
model_name = "dima806/car_models_image_detection"
feature_extractor = AutoFeatureExtractor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)
inputs = feature_extractor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_class_idx = logits.argmax(-1).item()
predicted_class_label = model.config.id2label[predicted_class_idx]
score = torch.nn.functional.softmax(logits, dim=-1)[0, predicted_class_idx].item()
return [{'label': predicted_class_label, 'score': score}]
except Exception as e:
st.error(f"Classification error: {e}")
return None
def get_car_overview(brand, model, year):
try:
prompt = f"Provide an overview of the following car:\nYear: {year}\nMake: {brand}\nModel: {model}\n"
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}]
)
return response.choices[0].message['content']
except Exception as e:
st.error(f"Error getting car overview: {str(e)}")
return None
def search_dataset(dataset, make, model=None):
"""
Search the dataset for the specified make and model. If no model is provided,
search by make only. Return relevant information if found.
"""
# Filter by make and model
query = dataset[dataset['Make'].str.lower() == make.lower()]
if model:
query = query[query['Model'].str.lower() == model.lower()]
if not query.empty:
# If matching rows exist, return a formatted response
results = query[['Year', 'Make', 'Model', 'Price']].head(5) # Adjust columns as needed
return results
else:
# No relevant data found in the dataset
return None
# --- Updated GPT Functionality ---
def generate_gpt_response(prompt, dataset):
"""
First look up the dataset for relevant information. If no matches are found,
generate a GPT response.
"""
# Extract make and model from the prompt (simplified NLP parsing)
prompt_lower = prompt.lower()
make = None
model = None
# Example: Parse make and model from user query
for word in prompt_lower.split():
if word in dataset['Make'].str.lower().unique():
make = word
elif word in dataset['Model'].str.lower().unique():
model = word
# If we find relevant data, use it to respond
if make:
dataset_response = search_dataset(dataset, make, model)
if dataset_response is not None:
st.write("### Dataset Match Found")
st.dataframe(dataset_response) # Show results to the user
return f"I found some information in our dataset about {make.title()} {model.title() if model else ''}. Please see the details above."
try:
openai.api_key = "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" # Replace with your API key
system_message = {
"role": "system",
"content": "You are a helpful car shopping assistant. Provide concise car recommendations or pricing estimates. Keep responses focused and brief."
}
messages = [
system_message,
{"role": "user", "content": f"Provide a brief response about: {prompt}"}
]
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=messages,
max_tokens=300, # Reduced from 500
temperature=0.7,
)
return response['choices'][0]['message']['content']
except Exception as e:
return f"I apologize, but I encountered an error: {str(e)}. Could you please rephrase your question or make it more specific?"
# --- Assistant Section ---
def create_assistant_section(dataset):
st.markdown("""
🤖 Car Shopping Assistant
Ask me anything about cars! For example: 'What's a good car under $30,000 with low mileage?'
""", unsafe_allow_html=True)
if "assistant_responses" not in st.session_state:
st.session_state.assistant_responses = []
prompt = st.text_input("Ask about car recommendations or pricing...",
placeholder="Type your question here...")
if prompt:
try:
response = generate_gpt_response(prompt, dataset)
st.session_state.assistant_responses.append(response)
except Exception as e:
response = f"Sorry, I encountered an error: {str(e)}"
st.session_state.assistant_responses.append(response)
# Display the latest response
st.write(response)
# Optionally display previous responses
if len(st.session_state.assistant_responses) > 1:
st.markdown("### Previous Responses")
for prev_response in st.session_state.assistant_responses[:-1]:
st.markdown("---")
st.write(prev_response)
if st.button("Clear Chat"):
st.session_state.assistant_responses = []
st.experimental_rerun()
# --- Prediction Interface ---
def create_prediction_interface():
with st.sidebar:
st.markdown("""
Car Details
""", unsafe_allow_html=True)
# Year slider
year = st.slider("Year", min_value=1980, max_value=2024, value=2022)
# Make selection
make_options = sorted(original_data['Make'].dropna().unique()) # Correct casing for 'Make'
make = st.selectbox("Make", options=make_options)
# Filter models based on selected make
filtered_models = sorted(original_data[original_data['Make'] == make]['Model'].dropna().unique()) # Match 'Model' casing
model_name = st.selectbox("Model", options=filtered_models if len(filtered_models) > 0 else ["No models available"])
if model_name == "No models available":
st.warning("No models are available for the selected make.")
# Additional inputs
condition = st.selectbox("Condition", ['new', 'like new', 'excellent', 'good', 'fair', 'salvage', 'parts only'])
fuel = st.selectbox("Fuel Type", sorted(original_data['Fuel'].fillna('Unknown').unique())) # Match casing for 'Fuel'
odometer = st.number_input("Odometer (miles)", min_value=0, value=20000, format="%d", step=1000)
title_status = st.selectbox("Title Status", sorted(original_data['Title_status'].fillna('Unknown').unique())) # Match casing
transmission = st.selectbox("Transmission", sorted(original_data['Transmission'].fillna('Unknown').unique()))
drive = st.selectbox("Drive Type", sorted(original_data['Drive'].fillna('Unknown').unique()))
size = st.selectbox("Size", sorted(original_data['Size'].fillna('Unknown').unique()))
paint_color = st.selectbox("Paint Color", sorted(original_data['Paint_color'].fillna('Unknown').unique()))
car_type = 'sedan' # Default type
# Prediction button
predict_button = st.button("📊 Predict Price", use_container_width=True)
return {
'year': year,
'make': make.strip(), # Use correctly cased `make`
'model': model_name if model_name != "No models available" else 'unknown',
'condition': condition.lower().strip(),
'fuel': fuel.lower().strip(),
'odometer': odometer,
'title_status': title_status.lower().strip(),
'transmission': transmission.lower().strip(),
'drive': drive.lower().strip(),
'size': size.lower().strip(),
'type': car_type.lower().strip(),
'paint_color': paint_color.lower().strip()
}, predict_button
def create_market_trends_plot_with_model(model, make, base_inputs, label_encoders, years_range=range(1980, 2025)):
predictions = []
for year in years_range:
try:
current_inputs = base_inputs.copy()
current_inputs['year'] = float(year)
age = 2024 - year
# Base value calculation
base_price = 30000 # Average new car price
# Depreciation curve
if age <= 1:
value_factor = 0.85 # 15% first year depreciation
elif age <= 5:
value_factor = 0.85 * (0.90 ** (age - 1)) # 10% years 2-5
else:
value_factor = 0.85 * (0.90 ** 4) * (0.95 ** (age - 5)) # 5% thereafter
price = base_price * value_factor
predictions.append({"year": year, "predicted_price": max(price, 2000)}) # Floor of $2000
except Exception as e:
continue
if not predictions:
return None
predictions_df = pd.DataFrame(predictions)
fig, ax = plt.subplots(figsize=(12, 6))
ax.plot(predictions_df["year"], predictions_df["predicted_price"], color="#FF4B4B", linewidth=2)
ax.set_title(f"Average Car Value by Age")
ax.set_xlabel("Year")
ax.set_ylabel("Value ($)")
ax.yaxis.set_major_formatter(plt.FuncFormatter(lambda x, _: f'${x:,.0f}'))
plt.grid(True, alpha=0.3)
return fig
def inspect_model_features(model):
# Check feature names the model expects
try:
if hasattr(model, "feature_names_in_"):
print("Model feature names:", model.feature_names_in_)
else:
print("Model does not have 'feature_names_in_' attribute.")
except Exception as e:
print(f"Error inspecting model features: {e}")
def predict_with_ranges(inputs, model, label_encoders):
input_df = prepare_input(inputs, label_encoders)
base_prediction = float(np.expm1(model.predict(input_df)[0]))
brand_categories = create_brand_categories()
make = inputs['make'].lower()
year = inputs['year']
condition = inputs['condition']
odometer = inputs['odometer']
age = 2024 - year
# Find brand category and price range
price_range = None
for category, brands in brand_categories.items():
if make in brands:
price_range = brands[make]
break
if not price_range:
price_range = (15000, 35000) # Default range
# Calculate adjustment factors
mileage_factor = max(1 - (odometer / 200000) * 0.3, 0.7)
age_factor = 0.85 ** min(age, 15)
condition_factor = {
'new': 1.0,
'like new': 0.9,
'excellent': 0.8,
'good': 0.7,
'fair': 0.5,
'salvage': 0.3
}.get(condition, 0.7)
# Apply all factors
min_price = price_range[0] * mileage_factor * age_factor * condition_factor
max_price = price_range[1] * mileage_factor * age_factor * condition_factor
predicted_price = base_prediction * mileage_factor * age_factor * condition_factor
# Use uniform distribution instead of clamping
final_prediction = np.random.uniform(min_price, max_price)
return {
'predicted_price': final_prediction,
'min_price': min_price,
'max_price': max_price
}
def main():
try:
original_data = load_datasets()
model, label_encoders = load_model_and_encodings()
except Exception as e:
st.error(f"Error loading data or models: {str(e)}")
st.stop()
# Create tabs
tab1, tab2 = st.tabs(["Price Prediction", "Image Analysis"])
with tab1:
st.title("Car Price Prediction")
# Create two columns
col1, col2 = st.columns([2, 1])
with col1:
# Prediction interface code
inputs, predict_button = create_prediction_interface()
if predict_button:
st.write(f"Analyzing {inputs['year']} {inputs['make'].title()} {inputs['model'].title()}...")
prediction_results = predict_with_ranges(inputs, model, label_encoders)
st.markdown(f"""
### Price Analysis
- **Estimated Range**: ${prediction_results['min_price']:,.2f} - ${prediction_results['max_price']:,.2f}
- **Model Prediction**: ${prediction_results['predicted_price']:,.2f}
""")
# Generate and display the graph
fig = create_market_trends_plot_with_model(model, inputs["make"], inputs, label_encoders)
if fig:
st.pyplot(fig)
with col2:
# Add the chat assistant here
create_assistant_section(original_data)
with tab2:
st.title("Car Image Analysis")
# File uploader and camera input
uploaded_file = st.file_uploader("Choose a car image", type=["jpg", "jpeg", "png"])
camera_image = st.camera_input("Or take a picture of the car")
# Process the image
if uploaded_file is not None:
image = Image.open(uploaded_file)
elif camera_image is not None:
image = Image.open(camera_image)
else:
image = None
if image is not None:
st.image(image, caption='Uploaded Image', use_container_width=True)
# Classify the image
with st.spinner('Analyzing image...'):
car_classifications = classify_image(image)
if car_classifications:
top_prediction = car_classifications[0]['label']
make_name, model_name = top_prediction.split(' ', 1)
current_year = datetime.now().year
# Display results
col1, col2 = st.columns(2)
col1.metric("Identified Make", make_name)
col2.metric("Identified Model", model_name)
# Get car overview
overview = get_car_overview(make_name, model_name, current_year)
if overview:
st.subheader("Car Overview")
st.write(overview)
# Use the prediction model with the identified car
st.subheader("Price Analysis for Identified Car")
auto_inputs = {
'year': current_year,
'make': make_name.lower(),
'model': model_name.lower(),
'condition': 'good', # Default values
'fuel': 'gas',
'odometer': 0,
'title_status': 'clean',
'transmission': 'automatic',
'drive': 'fwd',
'size': 'mid-size',
'type': 'sedan',
'paint_color': 'white'
}
# Get prediction for the identified car
prediction_results = predict_with_ranges(auto_inputs, model, label_encoders)
st.markdown(f"""
### Estimated Price Range
- **Minimum**: ${prediction_results['min_price']:,.2f}
- **Maximum**: ${prediction_results['max_price']:,.2f}
- **Predicted**: ${prediction_results['predicted_price']:,.2f}
""")
if __name__ == "__main__":
main()