|
import streamlit as st |
|
from transformers import pipeline |
|
import sounddevice as sd |
|
import numpy as np |
|
|
|
|
|
st.markdown("<h1 style='text-align: center; color: #FF6347;'>π€ Text-to-Speech with Bark Model πΆ</h1>", unsafe_allow_html=True) |
|
|
|
|
|
st.markdown("<h3 style='text-align: center; color: #4682B4;'>Convert your text into lifelike speech instantly!</h3>", unsafe_allow_html=True) |
|
st.markdown("---") |
|
|
|
|
|
synthesizer = pipeline("text-to-speech", model="suno/bark") |
|
|
|
|
|
text = st.text_area( |
|
"Enter the text you want to convert to speech:", |
|
placeholder="Type something interesting...", |
|
height=150, |
|
) |
|
|
|
|
|
if st.button("ποΈ Convert to Speech"): |
|
if text.strip() == "": |
|
st.error("Please enter some text before converting!") |
|
else: |
|
with st.spinner("Generating speech... πΆ"): |
|
|
|
speech = synthesizer(text) |
|
|
|
|
|
audio_data = speech["audio"] |
|
audio_data = np.int16(audio_data / np.max(np.abs(audio_data)) * 32767) |
|
|
|
|
|
sampling_rate = speech["sampling_rate"] |
|
sd.play(audio_data, sampling_rate) |
|
sd.wait() |
|
|
|
|
|
st.success("π Speech generation complete!") |
|
|
|
|
|
st.markdown("<footer style='text-align: center; color: #708090; font-size: 12px;'>Created with β€οΈ using Streamlit and Transformers</footer>", unsafe_allow_html=True) |
|
|