Spaces:
Runtime error
Runtime error
File size: 4,851 Bytes
58f37a3 210af37 58f37a3 210af37 58f37a3 210af37 58f37a3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 |
import torch, torchvision
from monai.networks.nets import UNet
from monai.networks.layers import Norm
from monai.inferers import sliding_window_inference
import PIL
from torchvision.utils import save_image
import numpy as np
model = UNet(
spatial_dims=3,
in_channels=1,
out_channels=2,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
norm=Norm.BATCH,
)
model.load_state_dict(torch.load("weights/model.pt", map_location=torch.device('cpu')))
import gradio as gr
def load_image0():
return load_image(0)
def load_image1():
return load_image(1)
def load_image2():
return load_image(2)
def load_image3():
return load_image(3)
def load_image4():
return load_image(4)
def load_image5():
return load_image(5)
def load_image6():
return load_image(6)
def load_image7():
return load_image(7)
def load_image8():
return load_image(8)
def load_image(index):
return [index, f"thumbnails/val_image{index}.png", f"thumbnails_label/val_label{index}.png"]
def predict(index):
val_data = torch.load(f"samples/val_data{index}.pt")
model.eval()
with torch.no_grad():
roi_size = (160, 160, 160)
sw_batch_size = 4
val_outputs = sliding_window_inference(val_data, roi_size, sw_batch_size, model)
meta_tsr = torch.argmax(val_outputs, dim=1)[0, :, :, 80]
pil_image = torchvision.transforms.functional.to_pil_image(meta_tsr.to(torch.float32))
return pil_image
with gr.Blocks(title="Spleen 3D segmentation with MONAI - ClassCat",
css=".gradio-container {background:azure;}"
) as demo:
sample_index = gr.State([])
gr.HTML("""<div style="font-family:'Times New Roman', 'Serif'; font-size:16pt; font-weight:bold; text-align:center; color:royalblue;">Spleen 3D segmentation with MONAI</div>""")
gr.HTML("""<h4 style="color:navy;">1. Select an example, which includes input images and label images, by clicking "Example x" button.</h4>""")
with gr.Row():
input_image = gr.Image(label="a piece of input image data", type="filepath")
label_image = gr.Image(label="label image", type="filepath")
output_image = gr.Image(label="predicted image", type="pil")
with gr.Row():
with gr.Column():
ex_btn0 = gr.Button("Example 1")
ex_btn0.style(full_width=False, css="width:20px;")
ex_image0 = gr.Image(value='thumbnails/val_image0.png', interactive=False, label='ex 1')
ex_image0.style(width=128, height=128)
with gr.Column():
ex_btn1 = gr.Button("Example 2")
ex_btn1.style(full_width=False, css="width:20px;")
ex_image1 = gr.Image(value='thumbnails/val_image1.png', interactive=False, label='ex 2')
ex_image1.style(width=128, height=128)
with gr.Column():
ex_btn2 = gr.Button("Example 3")
ex_btn2.style(full_width=False, css="width:20px;")
ex_image2 = gr.Image(value='thumbnails/val_image2.png', interactive=False, label='ex 3')
ex_image2.style(width=128, height=128)
with gr.Column():
ex_btn3 = gr.Button("Example 4")
ex_btn3.style(full_width=False, css="width:20px;")
ex_image3 = gr.Image(value='thumbnails/val_image3.png', interactive=False, label='ex 4')
ex_image3.style(width=128, height=128)
with gr.Column():
ex_btn4 = gr.Button("Example 5")
ex_btn4.style(full_width=False, css="width:20px;")
ex_image4 = gr.Image(value='thumbnails/val_image4.png', interactive=False, label='ex 5')
ex_image4.style(width=128, height=128)
with gr.Column():
ex_btn5 = gr.Button("Example 6")
ex_btn5.style(full_width=False, css="width:20px;")
ex_image5 = gr.Image(value='thumbnails/val_image5.png', interactive=False, label='ex 6')
ex_image5.style(width=128, height=128)
ex_btn0.click(fn=load_image0, outputs=[sample_index, input_image, label_image])
ex_btn1.click(fn=load_image1, outputs=[sample_index, input_image, label_image])
ex_btn2.click(fn=load_image2, outputs=[sample_index, input_image, label_image])
ex_btn3.click(fn=load_image3, outputs=[sample_index, input_image, label_image])
ex_btn4.click(fn=load_image4, outputs=[sample_index, input_image, label_image])
ex_btn5.click(fn=load_image5, outputs=[sample_index, input_image, label_image])
gr.HTML("""<br/>""")
gr.HTML("""<h4 style="color:navy;">2. Then, click "Infer" button to predict a segmentation image. It will take about 15 seconds (on cpu)</h4>""")
send_btn = gr.Button("Infer")
send_btn.click(fn=predict, inputs=[sample_index], outputs=[output_image])
#demo.queue()
demo.launch(debug=True)
### EOF ###
|