Spaces:
Sleeping
Sleeping
File size: 56,003 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 |
"""
Algorithms for finding optimum branchings and spanning arborescences.
This implementation is based on:
J. Edmonds, Optimum branchings, J. Res. Natl. Bur. Standards 71B (1967),
233–240. URL: http://archive.org/details/jresv71Bn4p233
"""
# TODO: Implement method from Gabow, Galil, Spence and Tarjan:
#
# @article{
# year={1986},
# issn={0209-9683},
# journal={Combinatorica},
# volume={6},
# number={2},
# doi={10.1007/BF02579168},
# title={Efficient algorithms for finding minimum spanning trees in
# undirected and directed graphs},
# url={https://doi.org/10.1007/BF02579168},
# publisher={Springer-Verlag},
# keywords={68 B 15; 68 C 05},
# author={Gabow, Harold N. and Galil, Zvi and Spencer, Thomas and Tarjan,
# Robert E.},
# pages={109-122},
# language={English}
# }
import string
from dataclasses import dataclass, field
from enum import Enum
from operator import itemgetter
from queue import PriorityQueue
import networkx as nx
from networkx.utils import py_random_state
from .recognition import is_arborescence, is_branching
__all__ = [
"branching_weight",
"greedy_branching",
"maximum_branching",
"minimum_branching",
"minimal_branching",
"maximum_spanning_arborescence",
"minimum_spanning_arborescence",
"ArborescenceIterator",
"Edmonds",
]
KINDS = {"max", "min"}
STYLES = {
"branching": "branching",
"arborescence": "arborescence",
"spanning arborescence": "arborescence",
}
INF = float("inf")
@py_random_state(1)
def random_string(L=15, seed=None):
return "".join([seed.choice(string.ascii_letters) for n in range(L)])
def _min_weight(weight):
return -weight
def _max_weight(weight):
return weight
@nx._dispatch(edge_attrs={"attr": "default"})
def branching_weight(G, attr="weight", default=1):
"""
Returns the total weight of a branching.
You must access this function through the networkx.algorithms.tree module.
Parameters
----------
G : DiGraph
The directed graph.
attr : str
The attribute to use as weights. If None, then each edge will be
treated equally with a weight of 1.
default : float
When `attr` is not None, then if an edge does not have that attribute,
`default` specifies what value it should take.
Returns
-------
weight: int or float
The total weight of the branching.
Examples
--------
>>> G = nx.DiGraph()
>>> G.add_weighted_edges_from([(0, 1, 2), (1, 2, 4), (2, 3, 3), (3, 4, 2)])
>>> nx.tree.branching_weight(G)
11
"""
return sum(edge[2].get(attr, default) for edge in G.edges(data=True))
@py_random_state(4)
@nx._dispatch(edge_attrs={"attr": "default"})
def greedy_branching(G, attr="weight", default=1, kind="max", seed=None):
"""
Returns a branching obtained through a greedy algorithm.
This algorithm is wrong, and cannot give a proper optimal branching.
However, we include it for pedagogical reasons, as it can be helpful to
see what its outputs are.
The output is a branching, and possibly, a spanning arborescence. However,
it is not guaranteed to be optimal in either case.
Parameters
----------
G : DiGraph
The directed graph to scan.
attr : str
The attribute to use as weights. If None, then each edge will be
treated equally with a weight of 1.
default : float
When `attr` is not None, then if an edge does not have that attribute,
`default` specifies what value it should take.
kind : str
The type of optimum to search for: 'min' or 'max' greedy branching.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
B : directed graph
The greedily obtained branching.
"""
if kind not in KINDS:
raise nx.NetworkXException("Unknown value for `kind`.")
if kind == "min":
reverse = False
else:
reverse = True
if attr is None:
# Generate a random string the graph probably won't have.
attr = random_string(seed=seed)
edges = [(u, v, data.get(attr, default)) for (u, v, data) in G.edges(data=True)]
# We sort by weight, but also by nodes to normalize behavior across runs.
try:
edges.sort(key=itemgetter(2, 0, 1), reverse=reverse)
except TypeError:
# This will fail in Python 3.x if the nodes are of varying types.
# In that case, we use the arbitrary order.
edges.sort(key=itemgetter(2), reverse=reverse)
# The branching begins with a forest of no edges.
B = nx.DiGraph()
B.add_nodes_from(G)
# Now we add edges greedily so long we maintain the branching.
uf = nx.utils.UnionFind()
for i, (u, v, w) in enumerate(edges):
if uf[u] == uf[v]:
# Adding this edge would form a directed cycle.
continue
elif B.in_degree(v) == 1:
# The edge would increase the degree to be greater than one.
continue
else:
# If attr was None, then don't insert weights...
data = {}
if attr is not None:
data[attr] = w
B.add_edge(u, v, **data)
uf.union(u, v)
return B
class MultiDiGraph_EdgeKey(nx.MultiDiGraph):
"""
MultiDiGraph which assigns unique keys to every edge.
Adds a dictionary edge_index which maps edge keys to (u, v, data) tuples.
This is not a complete implementation. For Edmonds algorithm, we only use
add_node and add_edge, so that is all that is implemented here. During
additions, any specified keys are ignored---this means that you also
cannot update edge attributes through add_node and add_edge.
Why do we need this? Edmonds algorithm requires that we track edges, even
as we change the head and tail of an edge, and even changing the weight
of edges. We must reliably track edges across graph mutations.
"""
def __init__(self, incoming_graph_data=None, **attr):
cls = super()
cls.__init__(incoming_graph_data=incoming_graph_data, **attr)
self._cls = cls
self.edge_index = {}
import warnings
msg = "MultiDiGraph_EdgeKey has been deprecated and will be removed in NetworkX 3.4."
warnings.warn(msg, DeprecationWarning)
def remove_node(self, n):
keys = set()
for keydict in self.pred[n].values():
keys.update(keydict)
for keydict in self.succ[n].values():
keys.update(keydict)
for key in keys:
del self.edge_index[key]
self._cls.remove_node(n)
def remove_nodes_from(self, nbunch):
for n in nbunch:
self.remove_node(n)
def add_edge(self, u_for_edge, v_for_edge, key_for_edge, **attr):
"""
Key is now required.
"""
u, v, key = u_for_edge, v_for_edge, key_for_edge
if key in self.edge_index:
uu, vv, _ = self.edge_index[key]
if (u != uu) or (v != vv):
raise Exception(f"Key {key!r} is already in use.")
self._cls.add_edge(u, v, key, **attr)
self.edge_index[key] = (u, v, self.succ[u][v][key])
def add_edges_from(self, ebunch_to_add, **attr):
for u, v, k, d in ebunch_to_add:
self.add_edge(u, v, k, **d)
def remove_edge_with_key(self, key):
try:
u, v, _ = self.edge_index[key]
except KeyError as err:
raise KeyError(f"Invalid edge key {key!r}") from err
else:
del self.edge_index[key]
self._cls.remove_edge(u, v, key)
def remove_edges_from(self, ebunch):
raise NotImplementedError
def get_path(G, u, v):
"""
Returns the edge keys of the unique path between u and v.
This is not a generic function. G must be a branching and an instance of
MultiDiGraph_EdgeKey.
"""
nodes = nx.shortest_path(G, u, v)
# We are guaranteed that there is only one edge connected every node
# in the shortest path.
def first_key(i, vv):
# Needed for 2.x/3.x compatibility
keys = G[nodes[i]][vv].keys()
# Normalize behavior
keys = list(keys)
return keys[0]
edges = [first_key(i, vv) for i, vv in enumerate(nodes[1:])]
return nodes, edges
class Edmonds:
"""
Edmonds algorithm [1]_ for finding optimal branchings and spanning
arborescences.
This algorithm can find both minimum and maximum spanning arborescences and
branchings.
Notes
-----
While this algorithm can find a minimum branching, since it isn't required
to be spanning, the minimum branching is always from the set of negative
weight edges which is most likely the empty set for most graphs.
References
----------
.. [1] J. Edmonds, Optimum Branchings, Journal of Research of the National
Bureau of Standards, 1967, Vol. 71B, p.233-240,
https://archive.org/details/jresv71Bn4p233
"""
def __init__(self, G, seed=None):
self.G_original = G
# Need to fix this. We need the whole tree.
self.store = True
# The final answer.
self.edges = []
# Since we will be creating graphs with new nodes, we need to make
# sure that our node names do not conflict with the real node names.
self.template = random_string(seed=seed) + "_{0}"
import warnings
msg = "Edmonds has been deprecated and will be removed in NetworkX 3.4. Please use the appropriate minimum or maximum branching or arborescence function directly."
warnings.warn(msg, DeprecationWarning)
def _init(self, attr, default, kind, style, preserve_attrs, seed, partition):
"""
So we need the code in _init and find_optimum to successfully run edmonds algorithm.
Responsibilities of the _init function:
- Check that the kind argument is in {min, max} or raise a NetworkXException.
- Transform the graph if we need a minimum arborescence/branching.
- The current method is to map weight -> -weight. This is NOT a good approach since
the algorithm can and does choose to ignore negative weights when creating a branching
since that is always optimal when maximzing the weights. I think we should set the edge
weights to be (max_weight + 1) - edge_weight.
- Transform the graph into a MultiDiGraph, adding the partition information and potoentially
other edge attributes if we set preserve_attrs = True.
- Setup the buckets and union find data structures required for the algorithm.
"""
if kind not in KINDS:
raise nx.NetworkXException("Unknown value for `kind`.")
# Store inputs.
self.attr = attr
self.default = default
self.kind = kind
self.style = style
# Determine how we are going to transform the weights.
if kind == "min":
self.trans = trans = _min_weight
else:
self.trans = trans = _max_weight
if attr is None:
# Generate a random attr the graph probably won't have.
attr = random_string(seed=seed)
# This is the actual attribute used by the algorithm.
self._attr = attr
# This attribute is used to store whether a particular edge is still
# a candidate. We generate a random attr to remove clashes with
# preserved edges
self.candidate_attr = "candidate_" + random_string(seed=seed)
# The object we manipulate at each step is a multidigraph.
self.G = G = MultiDiGraph_EdgeKey()
for key, (u, v, data) in enumerate(self.G_original.edges(data=True)):
d = {attr: trans(data.get(attr, default))}
if data.get(partition) is not None:
d[partition] = data.get(partition)
if preserve_attrs:
for d_k, d_v in data.items():
if d_k != attr:
d[d_k] = d_v
G.add_edge(u, v, key, **d)
self.level = 0
# These are the "buckets" from the paper.
#
# As in the paper, G^i are modified versions of the original graph.
# D^i and E^i are nodes and edges of the maximal edges that are
# consistent with G^i. These are dashed edges in figures A-F of the
# paper. In this implementation, we store D^i and E^i together as a
# graph B^i. So we will have strictly more B^i than the paper does.
self.B = MultiDiGraph_EdgeKey()
self.B.edge_index = {}
self.graphs = [] # G^i
self.branchings = [] # B^i
self.uf = nx.utils.UnionFind()
# A list of lists of edge indexes. Each list is a circuit for graph G^i.
# Note the edge list will not, in general, be a circuit in graph G^0.
self.circuits = []
# Stores the index of the minimum edge in the circuit found in G^i
# and B^i. The ordering of the edges seems to preserve the weight
# ordering from G^0. So even if the circuit does not form a circuit
# in G^0, it is still true that the minimum edge of the circuit in
# G^i is still the minimum edge in circuit G^0 (despite their weights
# being different).
self.minedge_circuit = []
# TODO: separate each step into an inner function. Then the overall loop would become
# while True:
# step_I1()
# if cycle detected:
# step_I2()
# elif every node of G is in D and E is a branching
# break
def find_optimum(
self,
attr="weight",
default=1,
kind="max",
style="branching",
preserve_attrs=False,
partition=None,
seed=None,
):
"""
Returns a branching from G.
Parameters
----------
attr : str
The edge attribute used to in determining optimality.
default : float
The value of the edge attribute used if an edge does not have
the attribute `attr`.
kind : {'min', 'max'}
The type of optimum to search for, either 'min' or 'max'.
style : {'branching', 'arborescence'}
If 'branching', then an optimal branching is found. If `style` is
'arborescence', then a branching is found, such that if the
branching is also an arborescence, then the branching is an
optimal spanning arborescences. A given graph G need not have
an optimal spanning arborescence.
preserve_attrs : bool
If True, preserve the other edge attributes of the original
graph (that are not the one passed to `attr`)
partition : str
The edge attribute holding edge partition data. Used in the
spanning arborescence iterator.
seed : integer, random_state, or None (default)
Indicator of random number generation state.
See :ref:`Randomness<randomness>`.
Returns
-------
H : (multi)digraph
The branching.
"""
self._init(attr, default, kind, style, preserve_attrs, seed, partition)
uf = self.uf
# This enormous while loop could use some refactoring...
G, B = self.G, self.B
D = set()
nodes = iter(list(G.nodes()))
attr = self._attr
G_pred = G.pred
def desired_edge(v):
"""
Find the edge directed toward v with maximal weight.
If an edge partition exists in this graph, return the included edge
if it exists and no not return any excluded edges. There can only
be one included edge for each vertex otherwise the edge partition is
empty.
"""
edge = None
weight = -INF
for u, _, key, data in G.in_edges(v, data=True, keys=True):
# Skip excluded edges
if data.get(partition) == nx.EdgePartition.EXCLUDED:
continue
new_weight = data[attr]
# Return the included edge
if data.get(partition) == nx.EdgePartition.INCLUDED:
weight = new_weight
edge = (u, v, key, new_weight, data)
return edge, weight
# Find the best open edge
if new_weight > weight:
weight = new_weight
edge = (u, v, key, new_weight, data)
return edge, weight
while True:
# (I1): Choose a node v in G^i not in D^i.
try:
v = next(nodes)
except StopIteration:
# If there are no more new nodes to consider, then we *should*
# meet the break condition (b) from the paper:
# (b) every node of G^i is in D^i and E^i is a branching
# Construction guarantees that it's a branching.
assert len(G) == len(B)
if len(B):
assert is_branching(B)
if self.store:
self.graphs.append(G.copy())
self.branchings.append(B.copy())
# Add these to keep the lengths equal. Element i is the
# circuit at level i that was merged to form branching i+1.
# There is no circuit for the last level.
self.circuits.append([])
self.minedge_circuit.append(None)
break
else:
if v in D:
# print("v in D", v)
continue
# Put v into bucket D^i.
# print(f"Adding node {v}")
D.add(v)
B.add_node(v)
# End (I1)
# Start cycle detection
edge, weight = desired_edge(v)
# print(f"Max edge is {edge!r}")
if edge is None:
# If there is no edge, continue with a new node at (I1).
continue
else:
# Determine if adding the edge to E^i would mean its no longer
# a branching. Presently, v has indegree 0 in B---it is a root.
u = edge[0]
if uf[u] == uf[v]:
# Then adding the edge will create a circuit. Then B
# contains a unique path P from v to u. So condition (a)
# from the paper does hold. We need to store the circuit
# for future reference.
Q_nodes, Q_edges = get_path(B, v, u)
Q_edges.append(edge[2]) # Edge key
else:
# Then B with the edge is still a branching and condition
# (a) from the paper does not hold.
Q_nodes, Q_edges = None, None
# End cycle detection
# THIS WILL PROBABLY BE REMOVED? MAYBE A NEW ARG FOR THIS FEATURE?
# Conditions for adding the edge.
# If weight < 0, then it cannot help in finding a maximum branching.
# This is the root of the problem with minimum branching.
if self.style == "branching" and weight <= 0:
acceptable = False
else:
acceptable = True
# print(f"Edge is acceptable: {acceptable}")
if acceptable:
dd = {attr: weight}
if edge[4].get(partition) is not None:
dd[partition] = edge[4].get(partition)
B.add_edge(u, v, edge[2], **dd)
G[u][v][edge[2]][self.candidate_attr] = True
uf.union(u, v)
if Q_edges is not None:
# print("Edge introduced a simple cycle:")
# print(Q_nodes, Q_edges)
# Move to method
# Previous meaning of u and v is no longer important.
# Apply (I2).
# Get the edge in the cycle with the minimum weight.
# Also, save the incoming weights for each node.
minweight = INF
minedge = None
Q_incoming_weight = {}
for edge_key in Q_edges:
u, v, data = B.edge_index[edge_key]
# We cannot remove an included edges, even if it is
# the minimum edge in the circuit
w = data[attr]
Q_incoming_weight[v] = w
if data.get(partition) == nx.EdgePartition.INCLUDED:
continue
if w < minweight:
minweight = w
minedge = edge_key
self.circuits.append(Q_edges)
self.minedge_circuit.append(minedge)
if self.store:
self.graphs.append(G.copy())
# Always need the branching with circuits.
self.branchings.append(B.copy())
# Now we mutate it.
new_node = self.template.format(self.level)
# print(minweight, minedge, Q_incoming_weight)
G.add_node(new_node)
new_edges = []
for u, v, key, data in G.edges(data=True, keys=True):
if u in Q_incoming_weight:
if v in Q_incoming_weight:
# Circuit edge, do nothing for now.
# Eventually delete it.
continue
else:
# Outgoing edge. Make it from new node
dd = data.copy()
new_edges.append((new_node, v, key, dd))
else:
if v in Q_incoming_weight:
# Incoming edge. Change its weight
w = data[attr]
w += minweight - Q_incoming_weight[v]
dd = data.copy()
dd[attr] = w
new_edges.append((u, new_node, key, dd))
else:
# Outside edge. No modification necessary.
continue
G.remove_nodes_from(Q_nodes)
B.remove_nodes_from(Q_nodes)
D.difference_update(set(Q_nodes))
for u, v, key, data in new_edges:
G.add_edge(u, v, key, **data)
if self.candidate_attr in data:
del data[self.candidate_attr]
B.add_edge(u, v, key, **data)
uf.union(u, v)
nodes = iter(list(G.nodes()))
self.level += 1
# END STEP (I2)?
# (I3) Branch construction.
# print(self.level)
H = self.G_original.__class__()
def is_root(G, u, edgekeys):
"""
Returns True if `u` is a root node in G.
Node `u` will be a root node if its in-degree, restricted to the
specified edges, is equal to 0.
"""
if u not in G:
# print(G.nodes(), u)
raise Exception(f"{u!r} not in G")
for v in G.pred[u]:
for edgekey in G.pred[u][v]:
if edgekey in edgekeys:
return False, edgekey
else:
return True, None
# Start with the branching edges in the last level.
edges = set(self.branchings[self.level].edge_index)
while self.level > 0:
self.level -= 1
# The current level is i, and we start counting from 0.
# We need the node at level i+1 that results from merging a circuit
# at level i. randomname_0 is the first merged node and this
# happens at level 1. That is, randomname_0 is a node at level 1
# that results from merging a circuit at level 0.
merged_node = self.template.format(self.level)
# The circuit at level i that was merged as a node the graph
# at level i+1.
circuit = self.circuits[self.level]
# print
# print(merged_node, self.level, circuit)
# print("before", edges)
# Note, we ask if it is a root in the full graph, not the branching.
# The branching alone doesn't have all the edges.
isroot, edgekey = is_root(self.graphs[self.level + 1], merged_node, edges)
edges.update(circuit)
if isroot:
minedge = self.minedge_circuit[self.level]
if minedge is None:
raise Exception
# Remove the edge in the cycle with minimum weight.
edges.remove(minedge)
else:
# We have identified an edge at next higher level that
# transitions into the merged node at the level. That edge
# transitions to some corresponding node at the current level.
# We want to remove an edge from the cycle that transitions
# into the corresponding node.
# print("edgekey is: ", edgekey)
# print("circuit is: ", circuit)
# The branching at level i
G = self.graphs[self.level]
# print(G.edge_index)
target = G.edge_index[edgekey][1]
for edgekey in circuit:
u, v, data = G.edge_index[edgekey]
if v == target:
break
else:
raise Exception("Couldn't find edge incoming to merged node.")
edges.remove(edgekey)
self.edges = edges
H.add_nodes_from(self.G_original)
for edgekey in edges:
u, v, d = self.graphs[0].edge_index[edgekey]
dd = {self.attr: self.trans(d[self.attr])}
# Optionally, preserve the other edge attributes of the original
# graph
if preserve_attrs:
for key, value in d.items():
if key not in [self.attr, self.candidate_attr]:
dd[key] = value
# TODO: make this preserve the key.
H.add_edge(u, v, **dd)
return H
@nx._dispatch(
edge_attrs={"attr": "default", "partition": 0},
preserve_edge_attrs="preserve_attrs",
)
def maximum_branching(
G,
attr="weight",
default=1,
preserve_attrs=False,
partition=None,
):
#######################################
### Data Structure Helper Functions ###
#######################################
def edmonds_add_edge(G, edge_index, u, v, key, **d):
"""
Adds an edge to `G` while also updating the edge index.
This algorithm requires the use of an external dictionary to track
the edge keys since it is possible that the source or destination
node of an edge will be changed and the default key-handling
capabilities of the MultiDiGraph class do not account for this.
Parameters
----------
G : MultiDiGraph
The graph to insert an edge into.
edge_index : dict
A mapping from integers to the edges of the graph.
u : node
The source node of the new edge.
v : node
The destination node of the new edge.
key : int
The key to use from `edge_index`.
d : keyword arguments, optional
Other attributes to store on the new edge.
"""
if key in edge_index:
uu, vv, _ = edge_index[key]
if (u != uu) or (v != vv):
raise Exception(f"Key {key!r} is already in use.")
G.add_edge(u, v, key, **d)
edge_index[key] = (u, v, G.succ[u][v][key])
def edmonds_remove_node(G, edge_index, n):
"""
Remove a node from the graph, updating the edge index to match.
Parameters
----------
G : MultiDiGraph
The graph to remove an edge from.
edge_index : dict
A mapping from integers to the edges of the graph.
n : node
The node to remove from `G`.
"""
keys = set()
for keydict in G.pred[n].values():
keys.update(keydict)
for keydict in G.succ[n].values():
keys.update(keydict)
for key in keys:
del edge_index[key]
G.remove_node(n)
#######################
### Algorithm Setup ###
#######################
# Pick an attribute name that the original graph is unlikly to have
candidate_attr = "edmonds' secret candidate attribute"
new_node_base_name = "edmonds new node base name "
G_original = G
G = nx.MultiDiGraph()
# A dict to reliably track mutations to the edges using the key of the edge.
G_edge_index = {}
# Each edge is given an arbitrary numerical key
for key, (u, v, data) in enumerate(G_original.edges(data=True)):
d = {attr: data.get(attr, default)}
if data.get(partition) is not None:
d[partition] = data.get(partition)
if preserve_attrs:
for d_k, d_v in data.items():
if d_k != attr:
d[d_k] = d_v
edmonds_add_edge(G, G_edge_index, u, v, key, **d)
level = 0 # Stores the number of contracted nodes
# These are the buckets from the paper.
#
# In the paper, G^i are modified versions of the original graph.
# D^i and E^i are the nodes and edges of the maximal edges that are
# consistent with G^i. In this implementation, D^i and E^i are stored
# together as the graph B^i. We will have strictly more B^i then the
# paper will have.
#
# Note that the data in graphs and branchings are tuples with the graph as
# the first element and the edge index as the second.
B = nx.MultiDiGraph()
B_edge_index = {}
graphs = [] # G^i list
branchings = [] # B^i list
selected_nodes = set() # D^i bucket
uf = nx.utils.UnionFind()
# A list of lists of edge indices. Each list is a circuit for graph G^i.
# Note the edge list is not required to be a circuit in G^0.
circuits = []
# Stores the index of the minimum edge in the circuit found in G^i and B^i.
# The ordering of the edges seems to preserver the weight ordering from
# G^0. So even if the circuit does not form a circuit in G^0, it is still
# true that the minimum edges in circuit G^0 (despite their weights being
# different)
minedge_circuit = []
###########################
### Algorithm Structure ###
###########################
# Each step listed in the algorithm is an inner function. Thus, the overall
# loop structure is:
#
# while True:
# step_I1()
# if cycle detected:
# step_I2()
# elif every node of G is in D and E is a branching:
# break
##################################
### Algorithm Helper Functions ###
##################################
def edmonds_find_desired_edge(v):
"""
Find the edge directed towards v with maximal weight.
If an edge partition exists in this graph, return the included
edge if it exists and never return any excluded edge.
Note: There can only be one included edge for each vertex otherwise
the edge partition is empty.
Parameters
----------
v : node
The node to search for the maximal weight incoming edge.
"""
edge = None
max_weight = -INF
for u, _, key, data in G.in_edges(v, data=True, keys=True):
# Skip excluded edges
if data.get(partition) == nx.EdgePartition.EXCLUDED:
continue
new_weight = data[attr]
# Return the included edge
if data.get(partition) == nx.EdgePartition.INCLUDED:
max_weight = new_weight
edge = (u, v, key, new_weight, data)
break
# Find the best open edge
if new_weight > max_weight:
max_weight = new_weight
edge = (u, v, key, new_weight, data)
return edge, max_weight
def edmonds_step_I2(v, desired_edge, level):
"""
Perform step I2 from Edmonds' paper
First, check if the last step I1 created a cycle. If it did not, do nothing.
If it did, store the cycle for later reference and contract it.
Parameters
----------
v : node
The current node to consider
desired_edge : edge
The minimum desired edge to remove from the cycle.
level : int
The current level, i.e. the number of cycles that have already been removed.
"""
u = desired_edge[0]
Q_nodes = nx.shortest_path(B, v, u)
Q_edges = [
list(B[Q_nodes[i]][vv].keys())[0] for i, vv in enumerate(Q_nodes[1:])
]
Q_edges.append(desired_edge[2]) # Add the new edge key to complete the circuit
# Get the edge in the circuit with the minimum weight.
# Also, save the incoming weights for each node.
minweight = INF
minedge = None
Q_incoming_weight = {}
for edge_key in Q_edges:
u, v, data = B_edge_index[edge_key]
w = data[attr]
# We cannot remove an included edge, even if it is the
# minimum edge in the circuit
Q_incoming_weight[v] = w
if data.get(partition) == nx.EdgePartition.INCLUDED:
continue
if w < minweight:
minweight = w
minedge = edge_key
circuits.append(Q_edges)
minedge_circuit.append(minedge)
graphs.append((G.copy(), G_edge_index.copy()))
branchings.append((B.copy(), B_edge_index.copy()))
# Mutate the graph to contract the circuit
new_node = new_node_base_name + str(level)
G.add_node(new_node)
new_edges = []
for u, v, key, data in G.edges(data=True, keys=True):
if u in Q_incoming_weight:
if v in Q_incoming_weight:
# Circuit edge. For the moment do nothing,
# eventually it will be removed.
continue
else:
# Outgoing edge from a node in the circuit.
# Make it come from the new node instead
dd = data.copy()
new_edges.append((new_node, v, key, dd))
else:
if v in Q_incoming_weight:
# Incoming edge to the circuit.
# Update it's weight
w = data[attr]
w += minweight - Q_incoming_weight[v]
dd = data.copy()
dd[attr] = w
new_edges.append((u, new_node, key, dd))
else:
# Outside edge. No modification needed
continue
for node in Q_nodes:
edmonds_remove_node(G, G_edge_index, node)
edmonds_remove_node(B, B_edge_index, node)
selected_nodes.difference_update(set(Q_nodes))
for u, v, key, data in new_edges:
edmonds_add_edge(G, G_edge_index, u, v, key, **data)
if candidate_attr in data:
del data[candidate_attr]
edmonds_add_edge(B, B_edge_index, u, v, key, **data)
uf.union(u, v)
def is_root(G, u, edgekeys):
"""
Returns True if `u` is a root node in G.
Node `u` is a root node if its in-degree over the specified edges is zero.
Parameters
----------
G : Graph
The current graph.
u : node
The node in `G` to check if it is a root.
edgekeys : iterable of edges
The edges for which to check if `u` is a root of.
"""
if u not in G:
raise Exception(f"{u!r} not in G")
for v in G.pred[u]:
for edgekey in G.pred[u][v]:
if edgekey in edgekeys:
return False, edgekey
else:
return True, None
nodes = iter(list(G.nodes))
while True:
try:
v = next(nodes)
except StopIteration:
# If there are no more new nodes to consider, then we should
# meet stopping condition (b) from the paper:
# (b) every node of G^i is in D^i and E^i is a branching
assert len(G) == len(B)
if len(B):
assert is_branching(B)
graphs.append((G.copy(), G_edge_index.copy()))
branchings.append((B.copy(), B_edge_index.copy()))
circuits.append([])
minedge_circuit.append(None)
break
else:
#####################
### BEGIN STEP I1 ###
#####################
# This is a very simple step, so I don't think it needs a method of it's own
if v in selected_nodes:
continue
selected_nodes.add(v)
B.add_node(v)
desired_edge, desired_edge_weight = edmonds_find_desired_edge(v)
# There might be no desired edge if all edges are excluded or
# v is the last node to be added to B, the ultimate root of the branching
if desired_edge is not None and desired_edge_weight > 0:
u = desired_edge[0]
# Flag adding the edge will create a circuit before merging the two
# connected components of u and v in B
circuit = uf[u] == uf[v]
dd = {attr: desired_edge_weight}
if desired_edge[4].get(partition) is not None:
dd[partition] = desired_edge[4].get(partition)
edmonds_add_edge(B, B_edge_index, u, v, desired_edge[2], **dd)
G[u][v][desired_edge[2]][candidate_attr] = True
uf.union(u, v)
###################
### END STEP I1 ###
###################
#####################
### BEGIN STEP I2 ###
#####################
if circuit:
edmonds_step_I2(v, desired_edge, level)
nodes = iter(list(G.nodes()))
level += 1
###################
### END STEP I2 ###
###################
#####################
### BEGIN STEP I3 ###
#####################
# Create a new graph of the same class as the input graph
H = G_original.__class__()
# Start with the branching edges in the last level.
edges = set(branchings[level][1])
while level > 0:
level -= 1
# The current level is i, and we start counting from 0.
#
# We need the node at level i+1 that results from merging a circuit
# at level i. basename_0 is the first merged node and this happens
# at level 1. That is basename_0 is a node at level 1 that results
# from merging a circuit at level 0.
merged_node = new_node_base_name + str(level)
circuit = circuits[level]
isroot, edgekey = is_root(graphs[level + 1][0], merged_node, edges)
edges.update(circuit)
if isroot:
minedge = minedge_circuit[level]
if minedge is None:
raise Exception
# Remove the edge in the cycle with minimum weight
edges.remove(minedge)
else:
# We have identified an edge at the next higher level that
# transitions into the merged node at this level. That edge
# transitions to some corresponding node at the current level.
#
# We want to remove an edge from the cycle that transitions
# into the corresponding node, otherwise the result would not
# be a branching.
G, G_edge_index = graphs[level]
target = G_edge_index[edgekey][1]
for edgekey in circuit:
u, v, data = G_edge_index[edgekey]
if v == target:
break
else:
raise Exception("Couldn't find edge incoming to merged node.")
edges.remove(edgekey)
H.add_nodes_from(G_original)
for edgekey in edges:
u, v, d = graphs[0][1][edgekey]
dd = {attr: d[attr]}
if preserve_attrs:
for key, value in d.items():
if key not in [attr, candidate_attr]:
dd[key] = value
H.add_edge(u, v, **dd)
###################
### END STEP I3 ###
###################
return H
@nx._dispatch(
edge_attrs={"attr": "default", "partition": None},
preserve_edge_attrs="preserve_attrs",
)
def minimum_branching(
G, attr="weight", default=1, preserve_attrs=False, partition=None
):
for _, _, d in G.edges(data=True):
d[attr] = -d[attr]
B = maximum_branching(G, attr, default, preserve_attrs, partition)
for _, _, d in G.edges(data=True):
d[attr] = -d[attr]
for _, _, d in B.edges(data=True):
d[attr] = -d[attr]
return B
@nx._dispatch(
edge_attrs={"attr": "default", "partition": None},
preserve_edge_attrs="preserve_attrs",
)
def minimal_branching(
G, /, *, attr="weight", default=1, preserve_attrs=False, partition=None
):
"""
Returns a minimal branching from `G`.
A minimal branching is a branching similar to a minimal arborescence but
without the requirement that the result is actually a spanning arborescence.
This allows minimal branchinges to be computed over graphs which may not
have arborescence (such as multiple components).
Parameters
----------
G : (multi)digraph-like
The graph to be searched.
attr : str
The edge attribute used in determining optimality.
default : float
The value of the edge attribute used if an edge does not have
the attribute `attr`.
preserve_attrs : bool
If True, preserve the other attributes of the original graph (that are not
passed to `attr`)
partition : str
The key for the edge attribute containing the partition
data on the graph. Edges can be included, excluded or open using the
`EdgePartition` enum.
Returns
-------
B : (multi)digraph-like
A minimal branching.
"""
max_weight = -INF
min_weight = INF
for _, _, w in G.edges(data=attr):
if w > max_weight:
max_weight = w
if w < min_weight:
min_weight = w
for _, _, d in G.edges(data=True):
# Transform the weights so that the minimum weight is larger than
# the difference between the max and min weights. This is important
# in order to prevent the edge weights from becoming negative during
# computation
d[attr] = max_weight + 1 + (max_weight - min_weight) - d[attr]
B = maximum_branching(G, attr, default, preserve_attrs, partition)
# Reverse the weight transformations
for _, _, d in G.edges(data=True):
d[attr] = max_weight + 1 + (max_weight - min_weight) - d[attr]
for _, _, d in B.edges(data=True):
d[attr] = max_weight + 1 + (max_weight - min_weight) - d[attr]
return B
@nx._dispatch(
edge_attrs={"attr": "default", "partition": None},
preserve_edge_attrs="preserve_attrs",
)
def maximum_spanning_arborescence(
G, attr="weight", default=1, preserve_attrs=False, partition=None
):
# In order to use the same algorithm is the maximum branching, we need to adjust
# the weights of the graph. The branching algorithm can choose to not include an
# edge if it doesn't help find a branching, mainly triggered by edges with negative
# weights.
#
# To prevent this from happening while trying to find a spanning arborescence, we
# just have to tweak the edge weights so that they are all positive and cannot
# become negative during the branching algorithm, find the maximum branching and
# then return them to their original values.
min_weight = INF
max_weight = -INF
for _, _, w in G.edges(data=attr):
if w < min_weight:
min_weight = w
if w > max_weight:
max_weight = w
for _, _, d in G.edges(data=True):
d[attr] = d[attr] - min_weight + 1 - (min_weight - max_weight)
B = maximum_branching(G, attr, default, preserve_attrs, partition)
for _, _, d in G.edges(data=True):
d[attr] = d[attr] + min_weight - 1 + (min_weight - max_weight)
for _, _, d in B.edges(data=True):
d[attr] = d[attr] + min_weight - 1 + (min_weight - max_weight)
if not is_arborescence(B):
raise nx.exception.NetworkXException("No maximum spanning arborescence in G.")
return B
@nx._dispatch(
edge_attrs={"attr": "default", "partition": None},
preserve_edge_attrs="preserve_attrs",
)
def minimum_spanning_arborescence(
G, attr="weight", default=1, preserve_attrs=False, partition=None
):
B = minimal_branching(
G,
attr=attr,
default=default,
preserve_attrs=preserve_attrs,
partition=partition,
)
if not is_arborescence(B):
raise nx.exception.NetworkXException("No minimum spanning arborescence in G.")
return B
docstring_branching = """
Returns a {kind} {style} from G.
Parameters
----------
G : (multi)digraph-like
The graph to be searched.
attr : str
The edge attribute used to in determining optimality.
default : float
The value of the edge attribute used if an edge does not have
the attribute `attr`.
preserve_attrs : bool
If True, preserve the other attributes of the original graph (that are not
passed to `attr`)
partition : str
The key for the edge attribute containing the partition
data on the graph. Edges can be included, excluded or open using the
`EdgePartition` enum.
Returns
-------
B : (multi)digraph-like
A {kind} {style}.
"""
docstring_arborescence = (
docstring_branching
+ """
Raises
------
NetworkXException
If the graph does not contain a {kind} {style}.
"""
)
maximum_branching.__doc__ = docstring_branching.format(
kind="maximum", style="branching"
)
minimum_branching.__doc__ = (
docstring_branching.format(kind="minimum", style="branching")
+ """
See Also
--------
minimal_branching
"""
)
maximum_spanning_arborescence.__doc__ = docstring_arborescence.format(
kind="maximum", style="spanning arborescence"
)
minimum_spanning_arborescence.__doc__ = docstring_arborescence.format(
kind="minimum", style="spanning arborescence"
)
class ArborescenceIterator:
"""
Iterate over all spanning arborescences of a graph in either increasing or
decreasing cost.
Notes
-----
This iterator uses the partition scheme from [1]_ (included edges,
excluded edges and open edges). It generates minimum spanning
arborescences using a modified Edmonds' Algorithm which respects the
partition of edges. For arborescences with the same weight, ties are
broken arbitrarily.
References
----------
.. [1] G.K. Janssens, K. Sörensen, An algorithm to generate all spanning
trees in order of increasing cost, Pesquisa Operacional, 2005-08,
Vol. 25 (2), p. 219-229,
https://www.scielo.br/j/pope/a/XHswBwRwJyrfL88dmMwYNWp/?lang=en
"""
@dataclass(order=True)
class Partition:
"""
This dataclass represents a partition and stores a dict with the edge
data and the weight of the minimum spanning arborescence of the
partition dict.
"""
mst_weight: float
partition_dict: dict = field(compare=False)
def __copy__(self):
return ArborescenceIterator.Partition(
self.mst_weight, self.partition_dict.copy()
)
def __init__(self, G, weight="weight", minimum=True, init_partition=None):
"""
Initialize the iterator
Parameters
----------
G : nx.DiGraph
The directed graph which we need to iterate trees over
weight : String, default = "weight"
The edge attribute used to store the weight of the edge
minimum : bool, default = True
Return the trees in increasing order while true and decreasing order
while false.
init_partition : tuple, default = None
In the case that certain edges have to be included or excluded from
the arborescences, `init_partition` should be in the form
`(included_edges, excluded_edges)` where each edges is a
`(u, v)`-tuple inside an iterable such as a list or set.
"""
self.G = G.copy()
self.weight = weight
self.minimum = minimum
self.method = (
minimum_spanning_arborescence if minimum else maximum_spanning_arborescence
)
# Randomly create a key for an edge attribute to hold the partition data
self.partition_key = (
"ArborescenceIterators super secret partition attribute name"
)
if init_partition is not None:
partition_dict = {}
for e in init_partition[0]:
partition_dict[e] = nx.EdgePartition.INCLUDED
for e in init_partition[1]:
partition_dict[e] = nx.EdgePartition.EXCLUDED
self.init_partition = ArborescenceIterator.Partition(0, partition_dict)
else:
self.init_partition = None
def __iter__(self):
"""
Returns
-------
ArborescenceIterator
The iterator object for this graph
"""
self.partition_queue = PriorityQueue()
self._clear_partition(self.G)
# Write the initial partition if it exists.
if self.init_partition is not None:
self._write_partition(self.init_partition)
mst_weight = self.method(
self.G,
self.weight,
partition=self.partition_key,
preserve_attrs=True,
).size(weight=self.weight)
self.partition_queue.put(
self.Partition(
mst_weight if self.minimum else -mst_weight,
{}
if self.init_partition is None
else self.init_partition.partition_dict,
)
)
return self
def __next__(self):
"""
Returns
-------
(multi)Graph
The spanning tree of next greatest weight, which ties broken
arbitrarily.
"""
if self.partition_queue.empty():
del self.G, self.partition_queue
raise StopIteration
partition = self.partition_queue.get()
self._write_partition(partition)
next_arborescence = self.method(
self.G,
self.weight,
partition=self.partition_key,
preserve_attrs=True,
)
self._partition(partition, next_arborescence)
self._clear_partition(next_arborescence)
return next_arborescence
def _partition(self, partition, partition_arborescence):
"""
Create new partitions based of the minimum spanning tree of the
current minimum partition.
Parameters
----------
partition : Partition
The Partition instance used to generate the current minimum spanning
tree.
partition_arborescence : nx.Graph
The minimum spanning arborescence of the input partition.
"""
# create two new partitions with the data from the input partition dict
p1 = self.Partition(0, partition.partition_dict.copy())
p2 = self.Partition(0, partition.partition_dict.copy())
for e in partition_arborescence.edges:
# determine if the edge was open or included
if e not in partition.partition_dict:
# This is an open edge
p1.partition_dict[e] = nx.EdgePartition.EXCLUDED
p2.partition_dict[e] = nx.EdgePartition.INCLUDED
self._write_partition(p1)
try:
p1_mst = self.method(
self.G,
self.weight,
partition=self.partition_key,
preserve_attrs=True,
)
p1_mst_weight = p1_mst.size(weight=self.weight)
p1.mst_weight = p1_mst_weight if self.minimum else -p1_mst_weight
self.partition_queue.put(p1.__copy__())
except nx.NetworkXException:
pass
p1.partition_dict = p2.partition_dict.copy()
def _write_partition(self, partition):
"""
Writes the desired partition into the graph to calculate the minimum
spanning tree. Also, if one incoming edge is included, mark all others
as excluded so that if that vertex is merged during Edmonds' algorithm
we cannot still pick another of that vertex's included edges.
Parameters
----------
partition : Partition
A Partition dataclass describing a partition on the edges of the
graph.
"""
for u, v, d in self.G.edges(data=True):
if (u, v) in partition.partition_dict:
d[self.partition_key] = partition.partition_dict[(u, v)]
else:
d[self.partition_key] = nx.EdgePartition.OPEN
for n in self.G:
included_count = 0
excluded_count = 0
for u, v, d in self.G.in_edges(nbunch=n, data=True):
if d.get(self.partition_key) == nx.EdgePartition.INCLUDED:
included_count += 1
elif d.get(self.partition_key) == nx.EdgePartition.EXCLUDED:
excluded_count += 1
# Check that if there is an included edges, all other incoming ones
# are excluded. If not fix it!
if included_count == 1 and excluded_count != self.G.in_degree(n) - 1:
for u, v, d in self.G.in_edges(nbunch=n, data=True):
if d.get(self.partition_key) != nx.EdgePartition.INCLUDED:
d[self.partition_key] = nx.EdgePartition.EXCLUDED
def _clear_partition(self, G):
"""
Removes partition data from the graph
"""
for u, v, d in G.edges(data=True):
if self.partition_key in d:
del d[self.partition_key]
|