Spaces:
Sleeping
Sleeping
File size: 20,620 Bytes
375a1cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 |
"""Core API for Environment, Wrapper, ActionWrapper, RewardWrapper and ObservationWrapper."""
import sys
from typing import (
TYPE_CHECKING,
Any,
Dict,
Generic,
List,
Optional,
SupportsFloat,
Tuple,
TypeVar,
Union,
)
import numpy as np
from gym import spaces
from gym.logger import warn
from gym.utils import seeding
if TYPE_CHECKING:
from gym.envs.registration import EnvSpec
if sys.version_info[0:2] == (3, 6):
warn(
"Gym minimally supports python 3.6 as the python foundation not longer supports the version, please update your version to 3.7+"
)
ObsType = TypeVar("ObsType")
ActType = TypeVar("ActType")
RenderFrame = TypeVar("RenderFrame")
class Env(Generic[ObsType, ActType]):
r"""The main OpenAI Gym class.
It encapsulates an environment with arbitrary behind-the-scenes dynamics.
An environment can be partially or fully observed.
The main API methods that users of this class need to know are:
- :meth:`step` - Takes a step in the environment using an action returning the next observation, reward,
if the environment terminated and observation information.
- :meth:`reset` - Resets the environment to an initial state, returning the initial observation and observation information.
- :meth:`render` - Renders the environment observation with modes depending on the output
- :meth:`close` - Closes the environment, important for rendering where pygame is imported
And set the following attributes:
- :attr:`action_space` - The Space object corresponding to valid actions
- :attr:`observation_space` - The Space object corresponding to valid observations
- :attr:`reward_range` - A tuple corresponding to the minimum and maximum possible rewards
- :attr:`spec` - An environment spec that contains the information used to initialise the environment from `gym.make`
- :attr:`metadata` - The metadata of the environment, i.e. render modes
- :attr:`np_random` - The random number generator for the environment
Note: a default reward range set to :math:`(-\infty,+\infty)` already exists. Set it if you want a narrower range.
"""
# Set this in SOME subclasses
metadata: Dict[str, Any] = {"render_modes": []}
# define render_mode if your environment supports rendering
render_mode: Optional[str] = None
reward_range = (-float("inf"), float("inf"))
spec: "EnvSpec" = None
# Set these in ALL subclasses
action_space: spaces.Space[ActType]
observation_space: spaces.Space[ObsType]
# Created
_np_random: Optional[np.random.Generator] = None
@property
def np_random(self) -> np.random.Generator:
"""Returns the environment's internal :attr:`_np_random` that if not set will initialise with a random seed."""
if self._np_random is None:
self._np_random, seed = seeding.np_random()
return self._np_random
@np_random.setter
def np_random(self, value: np.random.Generator):
self._np_random = value
def step(self, action: ActType) -> Tuple[ObsType, float, bool, bool, dict]:
"""Run one timestep of the environment's dynamics.
When end of episode is reached, you are responsible for calling :meth:`reset` to reset this environment's state.
Accepts an action and returns either a tuple `(observation, reward, terminated, truncated, info)`.
Args:
action (ActType): an action provided by the agent
Returns:
observation (object): this will be an element of the environment's :attr:`observation_space`.
This may, for instance, be a numpy array containing the positions and velocities of certain objects.
reward (float): The amount of reward returned as a result of taking the action.
terminated (bool): whether a `terminal state` (as defined under the MDP of the task) is reached.
In this case further step() calls could return undefined results.
truncated (bool): whether a truncation condition outside the scope of the MDP is satisfied.
Typically a timelimit, but could also be used to indicate agent physically going out of bounds.
Can be used to end the episode prematurely before a `terminal state` is reached.
info (dictionary): `info` contains auxiliary diagnostic information (helpful for debugging, learning, and logging).
This might, for instance, contain: metrics that describe the agent's performance state, variables that are
hidden from observations, or individual reward terms that are combined to produce the total reward.
It also can contain information that distinguishes truncation and termination, however this is deprecated in favour
of returning two booleans, and will be removed in a future version.
(deprecated)
done (bool): A boolean value for if the episode has ended, in which case further :meth:`step` calls will return undefined results.
A done signal may be emitted for different reasons: Maybe the task underlying the environment was solved successfully,
a certain timelimit was exceeded, or the physics simulation has entered an invalid state.
"""
raise NotImplementedError
def reset(
self,
*,
seed: Optional[int] = None,
options: Optional[dict] = None,
) -> Tuple[ObsType, dict]:
"""Resets the environment to an initial state and returns the initial observation.
This method can reset the environment's random number generator(s) if ``seed`` is an integer or
if the environment has not yet initialized a random number generator.
If the environment already has a random number generator and :meth:`reset` is called with ``seed=None``,
the RNG should not be reset. Moreover, :meth:`reset` should (in the typical use case) be called with an
integer seed right after initialization and then never again.
Args:
seed (optional int): The seed that is used to initialize the environment's PRNG.
If the environment does not already have a PRNG and ``seed=None`` (the default option) is passed,
a seed will be chosen from some source of entropy (e.g. timestamp or /dev/urandom).
However, if the environment already has a PRNG and ``seed=None`` is passed, the PRNG will *not* be reset.
If you pass an integer, the PRNG will be reset even if it already exists.
Usually, you want to pass an integer *right after the environment has been initialized and then never again*.
Please refer to the minimal example above to see this paradigm in action.
options (optional dict): Additional information to specify how the environment is reset (optional,
depending on the specific environment)
Returns:
observation (object): Observation of the initial state. This will be an element of :attr:`observation_space`
(typically a numpy array) and is analogous to the observation returned by :meth:`step`.
info (dictionary): This dictionary contains auxiliary information complementing ``observation``. It should be analogous to
the ``info`` returned by :meth:`step`.
"""
# Initialize the RNG if the seed is manually passed
if seed is not None:
self._np_random, seed = seeding.np_random(seed)
def render(self) -> Optional[Union[RenderFrame, List[RenderFrame]]]:
"""Compute the render frames as specified by render_mode attribute during initialization of the environment.
The set of supported modes varies per environment. (And some
third-party environments may not support rendering at all.)
By convention, if render_mode is:
- None (default): no render is computed.
- human: render return None.
The environment is continuously rendered in the current display or terminal. Usually for human consumption.
- rgb_array: return a single frame representing the current state of the environment.
A frame is a numpy.ndarray with shape (x, y, 3) representing RGB values for an x-by-y pixel image.
- rgb_array_list: return a list of frames representing the states of the environment since the last reset.
Each frame is a numpy.ndarray with shape (x, y, 3), as with `rgb_array`.
- ansi: Return a strings (str) or StringIO.StringIO containing a
terminal-style text representation for each time step.
The text can include newlines and ANSI escape sequences (e.g. for colors).
Note:
Make sure that your class's metadata 'render_modes' key includes
the list of supported modes. It's recommended to call super()
in implementations to use the functionality of this method.
"""
raise NotImplementedError
def close(self):
"""Override close in your subclass to perform any necessary cleanup.
Environments will automatically :meth:`close()` themselves when
garbage collected or when the program exits.
"""
pass
@property
def unwrapped(self) -> "Env":
"""Returns the base non-wrapped environment.
Returns:
Env: The base non-wrapped gym.Env instance
"""
return self
def __str__(self):
"""Returns a string of the environment with the spec id if specified."""
if self.spec is None:
return f"<{type(self).__name__} instance>"
else:
return f"<{type(self).__name__}<{self.spec.id}>>"
def __enter__(self):
"""Support with-statement for the environment."""
return self
def __exit__(self, *args):
"""Support with-statement for the environment."""
self.close()
# propagate exception
return False
class Wrapper(Env[ObsType, ActType]):
"""Wraps an environment to allow a modular transformation of the :meth:`step` and :meth:`reset` methods.
This class is the base class for all wrappers. The subclass could override
some methods to change the behavior of the original environment without touching the
original code.
Note:
Don't forget to call ``super().__init__(env)`` if the subclass overrides :meth:`__init__`.
"""
def __init__(self, env: Env):
"""Wraps an environment to allow a modular transformation of the :meth:`step` and :meth:`reset` methods.
Args:
env: The environment to wrap
"""
self.env = env
self._action_space: Optional[spaces.Space] = None
self._observation_space: Optional[spaces.Space] = None
self._reward_range: Optional[Tuple[SupportsFloat, SupportsFloat]] = None
self._metadata: Optional[dict] = None
def __getattr__(self, name):
"""Returns an attribute with ``name``, unless ``name`` starts with an underscore."""
if name.startswith("_"):
raise AttributeError(f"accessing private attribute '{name}' is prohibited")
return getattr(self.env, name)
@property
def spec(self):
"""Returns the environment specification."""
return self.env.spec
@classmethod
def class_name(cls):
"""Returns the class name of the wrapper."""
return cls.__name__
@property
def action_space(self) -> spaces.Space[ActType]:
"""Returns the action space of the environment."""
if self._action_space is None:
return self.env.action_space
return self._action_space
@action_space.setter
def action_space(self, space: spaces.Space):
self._action_space = space
@property
def observation_space(self) -> spaces.Space:
"""Returns the observation space of the environment."""
if self._observation_space is None:
return self.env.observation_space
return self._observation_space
@observation_space.setter
def observation_space(self, space: spaces.Space):
self._observation_space = space
@property
def reward_range(self) -> Tuple[SupportsFloat, SupportsFloat]:
"""Return the reward range of the environment."""
if self._reward_range is None:
return self.env.reward_range
return self._reward_range
@reward_range.setter
def reward_range(self, value: Tuple[SupportsFloat, SupportsFloat]):
self._reward_range = value
@property
def metadata(self) -> dict:
"""Returns the environment metadata."""
if self._metadata is None:
return self.env.metadata
return self._metadata
@metadata.setter
def metadata(self, value):
self._metadata = value
@property
def render_mode(self) -> Optional[str]:
"""Returns the environment render_mode."""
return self.env.render_mode
@property
def np_random(self) -> np.random.Generator:
"""Returns the environment np_random."""
return self.env.np_random
@np_random.setter
def np_random(self, value):
self.env.np_random = value
@property
def _np_random(self):
raise AttributeError(
"Can't access `_np_random` of a wrapper, use `.unwrapped._np_random` or `.np_random`."
)
def step(self, action: ActType) -> Tuple[ObsType, float, bool, bool, dict]:
"""Steps through the environment with action."""
return self.env.step(action)
def reset(self, **kwargs) -> Tuple[ObsType, dict]:
"""Resets the environment with kwargs."""
return self.env.reset(**kwargs)
def render(
self, *args, **kwargs
) -> Optional[Union[RenderFrame, List[RenderFrame]]]:
"""Renders the environment."""
return self.env.render(*args, **kwargs)
def close(self):
"""Closes the environment."""
return self.env.close()
def __str__(self):
"""Returns the wrapper name and the unwrapped environment string."""
return f"<{type(self).__name__}{self.env}>"
def __repr__(self):
"""Returns the string representation of the wrapper."""
return str(self)
@property
def unwrapped(self) -> Env:
"""Returns the base environment of the wrapper."""
return self.env.unwrapped
class ObservationWrapper(Wrapper):
"""Superclass of wrappers that can modify observations using :meth:`observation` for :meth:`reset` and :meth:`step`.
If you would like to apply a function to the observation that is returned by the base environment before
passing it to learning code, you can simply inherit from :class:`ObservationWrapper` and overwrite the method
:meth:`observation` to implement that transformation. The transformation defined in that method must be
defined on the base environment’s observation space. However, it may take values in a different space.
In that case, you need to specify the new observation space of the wrapper by setting :attr:`self.observation_space`
in the :meth:`__init__` method of your wrapper.
For example, you might have a 2D navigation task where the environment returns dictionaries as observations with
keys ``"agent_position"`` and ``"target_position"``. A common thing to do might be to throw away some degrees of
freedom and only consider the position of the target relative to the agent, i.e.
``observation["target_position"] - observation["agent_position"]``. For this, you could implement an
observation wrapper like this::
class RelativePosition(gym.ObservationWrapper):
def __init__(self, env):
super().__init__(env)
self.observation_space = Box(shape=(2,), low=-np.inf, high=np.inf)
def observation(self, obs):
return obs["target"] - obs["agent"]
Among others, Gym provides the observation wrapper :class:`TimeAwareObservation`, which adds information about the
index of the timestep to the observation.
"""
def reset(self, **kwargs):
"""Resets the environment, returning a modified observation using :meth:`self.observation`."""
obs, info = self.env.reset(**kwargs)
return self.observation(obs), info
def step(self, action):
"""Returns a modified observation using :meth:`self.observation` after calling :meth:`env.step`."""
observation, reward, terminated, truncated, info = self.env.step(action)
return self.observation(observation), reward, terminated, truncated, info
def observation(self, observation):
"""Returns a modified observation."""
raise NotImplementedError
class RewardWrapper(Wrapper):
"""Superclass of wrappers that can modify the returning reward from a step.
If you would like to apply a function to the reward that is returned by the base environment before
passing it to learning code, you can simply inherit from :class:`RewardWrapper` and overwrite the method
:meth:`reward` to implement that transformation.
This transformation might change the reward range; to specify the reward range of your wrapper,
you can simply define :attr:`self.reward_range` in :meth:`__init__`.
Let us look at an example: Sometimes (especially when we do not have control over the reward
because it is intrinsic), we want to clip the reward to a range to gain some numerical stability.
To do that, we could, for instance, implement the following wrapper::
class ClipReward(gym.RewardWrapper):
def __init__(self, env, min_reward, max_reward):
super().__init__(env)
self.min_reward = min_reward
self.max_reward = max_reward
self.reward_range = (min_reward, max_reward)
def reward(self, reward):
return np.clip(reward, self.min_reward, self.max_reward)
"""
def step(self, action):
"""Modifies the reward using :meth:`self.reward` after the environment :meth:`env.step`."""
observation, reward, terminated, truncated, info = self.env.step(action)
return observation, self.reward(reward), terminated, truncated, info
def reward(self, reward):
"""Returns a modified ``reward``."""
raise NotImplementedError
class ActionWrapper(Wrapper):
"""Superclass of wrappers that can modify the action before :meth:`env.step`.
If you would like to apply a function to the action before passing it to the base environment,
you can simply inherit from :class:`ActionWrapper` and overwrite the method :meth:`action` to implement
that transformation. The transformation defined in that method must take values in the base environment’s
action space. However, its domain might differ from the original action space.
In that case, you need to specify the new action space of the wrapper by setting :attr:`self.action_space` in
the :meth:`__init__` method of your wrapper.
Let’s say you have an environment with action space of type :class:`gym.spaces.Box`, but you would only like
to use a finite subset of actions. Then, you might want to implement the following wrapper::
class DiscreteActions(gym.ActionWrapper):
def __init__(self, env, disc_to_cont):
super().__init__(env)
self.disc_to_cont = disc_to_cont
self.action_space = Discrete(len(disc_to_cont))
def action(self, act):
return self.disc_to_cont[act]
if __name__ == "__main__":
env = gym.make("LunarLanderContinuous-v2")
wrapped_env = DiscreteActions(env, [np.array([1,0]), np.array([-1,0]),
np.array([0,1]), np.array([0,-1])])
print(wrapped_env.action_space) #Discrete(4)
Among others, Gym provides the action wrappers :class:`ClipAction` and :class:`RescaleAction`.
"""
def step(self, action):
"""Runs the environment :meth:`env.step` using the modified ``action`` from :meth:`self.action`."""
return self.env.step(self.action(action))
def action(self, action):
"""Returns a modified action before :meth:`env.step` is called."""
raise NotImplementedError
def reverse_action(self, action):
"""Returns a reversed ``action``."""
raise NotImplementedError
|