Spaces:
Sleeping
Sleeping
File size: 10,461 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 |
"""
Check that the output from irrational functions is accurate for
high-precision input, from 5 to 200 digits. The reference values were
verified with Mathematica.
"""
import time
from mpmath import *
precs = [5, 15, 28, 35, 57, 80, 100, 150, 200]
# sqrt(3) + pi/2
a = \
"3.302847134363773912758768033145623809041389953497933538543279275605"\
"841220051904536395163599428307109666700184672047856353516867399774243594"\
"67433521615861420725323528325327484262075464241255915238845599752675"
# e + 1/euler**2
b = \
"5.719681166601007617111261398629939965860873957353320734275716220045750"\
"31474116300529519620938123730851145473473708966080207482581266469342214"\
"824842256999042984813905047895479210702109260221361437411947323431"
# sqrt(a)
sqrt_a = \
"1.817373691447021556327498239690365674922395036495564333152483422755"\
"144321726165582817927383239308173567921345318453306994746434073691275094"\
"484777905906961689902608644112196725896908619756404253109722911487"
# sqrt(a+b*i).real
sqrt_abi_real = \
"2.225720098415113027729407777066107959851146508557282707197601407276"\
"89160998185797504198062911768240808839104987021515555650875977724230130"\
"3584116233925658621288393930286871862273400475179312570274423840384"
# sqrt(a+b*i).imag
sqrt_abi_imag = \
"1.2849057639084690902371581529110949983261182430040898147672052833653668"\
"0629534491275114877090834296831373498336559849050755848611854282001250"\
"1924311019152914021365263161630765255610885489295778894976075186"
# log(a)
log_a = \
"1.194784864491089550288313512105715261520511949410072046160598707069"\
"4336653155025770546309137440687056366757650909754708302115204338077595203"\
"83005773986664564927027147084436553262269459110211221152925732612"
# log(a+b*i).real
log_abi_real = \
"1.8877985921697018111624077550443297276844736840853590212962006811663"\
"04949387789489704203167470111267581371396245317618589339274243008242708"\
"014251531496104028712866224020066439049377679709216784954509456421"
# log(a+b*i).imag
log_abi_imag = \
"1.0471204952840802663567714297078763189256357109769672185219334169734948"\
"4265809854092437285294686651806426649541504240470168212723133326542181"\
"8300136462287639956713914482701017346851009323172531601894918640"
# exp(a)
exp_a = \
"27.18994224087168661137253262213293847994194869430518354305430976149"\
"382792035050358791398632888885200049857986258414049540376323785711941636"\
"100358982497583832083513086941635049329804685212200507288797531143"
# exp(a+b*i).real
exp_abi_real = \
"22.98606617170543596386921087657586890620262522816912505151109385026"\
"40160179326569526152851983847133513990281518417211964710397233157168852"\
"4963130831190142571659948419307628119985383887599493378056639916701"
# exp(a+b*i).imag
exp_abi_imag = \
"-14.523557450291489727214750571590272774669907424478129280902375851196283"\
"3377162379031724734050088565710975758824441845278120105728824497308303"\
"6065619788140201636218705414429933685889542661364184694108251449"
# a**b
pow_a_b = \
"928.7025342285568142947391505837660251004990092821305668257284426997"\
"361966028275685583421197860603126498884545336686124793155581311527995550"\
"580229264427202446131740932666832138634013168125809402143796691154"
# (a**(a+b*i)).real
pow_a_abi_real = \
"44.09156071394489511956058111704382592976814280267142206420038656267"\
"67707916510652790502399193109819563864568986234654864462095231138500505"\
"8197456514795059492120303477512711977915544927440682508821426093455"
# (a**(a+b*i)).imag
pow_a_abi_imag = \
"27.069371511573224750478105146737852141664955461266218367212527612279886"\
"9322304536553254659049205414427707675802193810711302947536332040474573"\
"8166261217563960235014674118610092944307893857862518964990092301"
# ((a+b*i)**(a+b*i)).real
pow_abi_abi_real = \
"-0.15171310677859590091001057734676423076527145052787388589334350524"\
"8084195882019497779202452975350579073716811284169068082670778986235179"\
"0813026562962084477640470612184016755250592698408112493759742219150452"\
# ((a+b*i)**(a+b*i)).imag
pow_abi_abi_imag = \
"1.2697592504953448936553147870155987153192995316950583150964099070426"\
"4736837932577176947632535475040521749162383347758827307504526525647759"\
"97547638617201824468382194146854367480471892602963428122896045019902"
# sin(a)
sin_a = \
"-0.16055653857469062740274792907968048154164433772938156243509084009"\
"38437090841460493108570147191289893388608611542655654723437248152535114"\
"528368009465836614227575701220612124204622383149391870684288862269631"
# sin(1000*a)
sin_1000a = \
"-0.85897040577443833776358106803777589664322997794126153477060795801"\
"09151695416961724733492511852267067419573754315098042850381158563024337"\
"216458577140500488715469780315833217177634490142748614625281171216863"
# sin(a+b*i)
sin_abi_real = \
"-24.4696999681556977743346798696005278716053366404081910969773939630"\
"7149215135459794473448465734589287491880563183624997435193637389884206"\
"02151395451271809790360963144464736839412254746645151672423256977064"
sin_abi_imag = \
"-150.42505378241784671801405965872972765595073690984080160750785565810981"\
"8314482499135443827055399655645954830931316357243750839088113122816583"\
"7169201254329464271121058839499197583056427233866320456505060735"
# cos
cos_a = \
"-0.98702664499035378399332439243967038895709261414476495730788864004"\
"05406821549361039745258003422386169330787395654908532996287293003581554"\
"257037193284199198069707141161341820684198547572456183525659969145501"
cos_1000a = \
"-0.51202523570982001856195696460663971099692261342827540426136215533"\
"52686662667660613179619804463250686852463876088694806607652218586060613"\
"951310588158830695735537073667299449753951774916401887657320950496820"
# tan
tan_a = \
"0.162666873675188117341401059858835168007137819495998960250142156848"\
"639654718809412181543343168174807985559916643549174530459883826451064966"\
"7996119428949951351938178809444268785629011625179962457123195557310"
tan_abi_real = \
"6.822696615947538488826586186310162599974827139564433912601918442911"\
"1026830824380070400102213741875804368044342309515353631134074491271890"\
"467615882710035471686578162073677173148647065131872116479947620E-6"
tan_abi_imag = \
"0.9999795833048243692245661011298447587046967777739649018690797625964167"\
"1446419978852235960862841608081413169601038230073129482874832053357571"\
"62702259309150715669026865777947502665936317953101462202542168429"
def test_hp():
for dps in precs:
mp.dps = dps + 8
aa = mpf(a)
bb = mpf(b)
a1000 = 1000*mpf(a)
abi = mpc(aa, bb)
mp.dps = dps
assert (sqrt(3) + pi/2).ae(aa)
assert (e + 1/euler**2).ae(bb)
assert sqrt(aa).ae(mpf(sqrt_a))
assert sqrt(abi).ae(mpc(sqrt_abi_real, sqrt_abi_imag))
assert log(aa).ae(mpf(log_a))
assert log(abi).ae(mpc(log_abi_real, log_abi_imag))
assert exp(aa).ae(mpf(exp_a))
assert exp(abi).ae(mpc(exp_abi_real, exp_abi_imag))
assert (aa**bb).ae(mpf(pow_a_b))
assert (aa**abi).ae(mpc(pow_a_abi_real, pow_a_abi_imag))
assert (abi**abi).ae(mpc(pow_abi_abi_real, pow_abi_abi_imag))
assert sin(a).ae(mpf(sin_a))
assert sin(a1000).ae(mpf(sin_1000a))
assert sin(abi).ae(mpc(sin_abi_real, sin_abi_imag))
assert cos(a).ae(mpf(cos_a))
assert cos(a1000).ae(mpf(cos_1000a))
assert tan(a).ae(mpf(tan_a))
assert tan(abi).ae(mpc(tan_abi_real, tan_abi_imag))
# check that complex cancellation is avoided so that both
# real and imaginary parts have high relative accuracy.
# abs_eps should be 0, but has to be set to 1e-205 to pass the
# 200-digit case, probably due to slight inaccuracy in the
# precomputed input
assert (tan(abi).real).ae(mpf(tan_abi_real), abs_eps=1e-205)
assert (tan(abi).imag).ae(mpf(tan_abi_imag), abs_eps=1e-205)
mp.dps = 460
assert str(log(3))[-20:] == '02166121184001409826'
mp.dps = 15
# Since str(a) can differ in the last digit from rounded a, and I want
# to compare the last digits of big numbers with the results in Mathematica,
# I made this hack to get the last 20 digits of rounded a
def last_digits(a):
r = repr(a)
s = str(a)
#dps = mp.dps
#mp.dps += 3
m = 10
r = r.replace(s[:-m],'')
r = r.replace("mpf('",'').replace("')",'')
num0 = 0
for c in r:
if c == '0':
num0 += 1
else:
break
b = float(int(r))/10**(len(r) - m)
if b >= 10**m - 0.5: # pragma: no cover
raise NotImplementedError
n = int(round(b))
sn = str(n)
s = s[:-m] + '0'*num0 + sn
return s[-20:]
# values checked with Mathematica
def test_log_hp():
mp.dps = 2000
a = mpf(10)**15000/3
r = log(a)
res = last_digits(r)
# Mathematica N[Log[10^15000/3], 2000]
# ...7443804441768333470331
assert res == '43804441768333470331'
# see issue 145
r = log(mpf(3)/2)
# Mathematica N[Log[3/2], 2000]
# ...69653749808140753263288
res = last_digits(r)
assert res == '53749808140753263288'
mp.dps = 10000
r = log(2)
res = last_digits(r)
# Mathematica N[Log[2], 10000]
# ...695615913401856601359655561
assert res == '13401856601359655561'
r = log(mpf(10)**10/3)
res = last_digits(r)
# Mathematica N[Log[10^10/3], 10000]
# ...587087654020631943060007154
assert res == '54020631943060007154', res
r = log(mpf(10)**100/3)
res = last_digits(r)
# Mathematica N[Log[10^100/3], 10000]
# ,,,59246336539088351652334666
assert res == '36539088351652334666', res
mp.dps += 10
a = 1 - mpf(1)/10**10
mp.dps -= 10
r = log(a)
res = last_digits(r)
# ...3310334360482956137216724048322957404
# 372167240483229574038733026370
# Mathematica N[Log[1 - 10^-10]*10^10, 10000]
# ...60482956137216724048322957404
assert res == '37216724048322957404', res
mp.dps = 10000
mp.dps += 100
a = 1 + mpf(1)/10**100
mp.dps -= 100
r = log(a)
res = last_digits(+r)
# Mathematica N[Log[1 + 10^-100]*10^10, 10030]
# ...3994733877377412241546890854692521568292338268273 10^-91
assert res == '39947338773774122415', res
mp.dps = 15
def test_exp_hp():
mp.dps = 4000
r = exp(mpf(1)/10)
# IntegerPart[N[Exp[1/10] * 10^4000, 4000]]
# ...92167105162069688129
assert int(r * 10**mp.dps) % 10**20 == 92167105162069688129
|