Spaces:
Sleeping
Sleeping
File size: 45,021 Bytes
b200bda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 |
"""
Low-level functions for arbitrary-precision floating-point arithmetic.
"""
__docformat__ = 'plaintext'
import math
from bisect import bisect
import sys
# Importing random is slow
#from random import getrandbits
getrandbits = None
from .backend import (MPZ, MPZ_TYPE, MPZ_ZERO, MPZ_ONE, MPZ_TWO, MPZ_FIVE,
BACKEND, STRICT, HASH_MODULUS, HASH_BITS, gmpy, sage, sage_utils)
from .libintmath import (giant_steps,
trailtable, bctable, lshift, rshift, bitcount, trailing,
sqrt_fixed, numeral, isqrt, isqrt_fast, sqrtrem,
bin_to_radix)
# We don't pickle tuples directly for the following reasons:
# 1: pickle uses str() for ints, which is inefficient when they are large
# 2: pickle doesn't work for gmpy mpzs
# Both problems are solved by using hex()
if BACKEND == 'sage':
def to_pickable(x):
sign, man, exp, bc = x
return sign, hex(man), exp, bc
else:
def to_pickable(x):
sign, man, exp, bc = x
return sign, hex(man)[2:], exp, bc
def from_pickable(x):
sign, man, exp, bc = x
return (sign, MPZ(man, 16), exp, bc)
class ComplexResult(ValueError):
pass
try:
intern
except NameError:
intern = lambda x: x
# All supported rounding modes
round_nearest = intern('n')
round_floor = intern('f')
round_ceiling = intern('c')
round_up = intern('u')
round_down = intern('d')
round_fast = round_down
def prec_to_dps(n):
"""Return number of accurate decimals that can be represented
with a precision of n bits."""
return max(1, int(round(int(n)/3.3219280948873626)-1))
def dps_to_prec(n):
"""Return the number of bits required to represent n decimals
accurately."""
return max(1, int(round((int(n)+1)*3.3219280948873626)))
def repr_dps(n):
"""Return the number of decimal digits required to represent
a number with n-bit precision so that it can be uniquely
reconstructed from the representation."""
dps = prec_to_dps(n)
if dps == 15:
return 17
return dps + 3
#----------------------------------------------------------------------------#
# Some commonly needed float values #
#----------------------------------------------------------------------------#
# Regular number format:
# (-1)**sign * mantissa * 2**exponent, plus bitcount of mantissa
fzero = (0, MPZ_ZERO, 0, 0)
fnzero = (1, MPZ_ZERO, 0, 0)
fone = (0, MPZ_ONE, 0, 1)
fnone = (1, MPZ_ONE, 0, 1)
ftwo = (0, MPZ_ONE, 1, 1)
ften = (0, MPZ_FIVE, 1, 3)
fhalf = (0, MPZ_ONE, -1, 1)
# Arbitrary encoding for special numbers: zero mantissa, nonzero exponent
fnan = (0, MPZ_ZERO, -123, -1)
finf = (0, MPZ_ZERO, -456, -2)
fninf = (1, MPZ_ZERO, -789, -3)
# Was 1e1000; this is broken in Python 2.4
math_float_inf = 1e300 * 1e300
#----------------------------------------------------------------------------#
# Rounding #
#----------------------------------------------------------------------------#
# This function can be used to round a mantissa generally. However,
# we will try to do most rounding inline for efficiency.
def round_int(x, n, rnd):
if rnd == round_nearest:
if x >= 0:
t = x >> (n-1)
if t & 1 and ((t & 2) or (x & h_mask[n<300][n])):
return (t>>1)+1
else:
return t>>1
else:
return -round_int(-x, n, rnd)
if rnd == round_floor:
return x >> n
if rnd == round_ceiling:
return -((-x) >> n)
if rnd == round_down:
if x >= 0:
return x >> n
return -((-x) >> n)
if rnd == round_up:
if x >= 0:
return -((-x) >> n)
return x >> n
# These masks are used to pick out segments of numbers to determine
# which direction to round when rounding to nearest.
class h_mask_big:
def __getitem__(self, n):
return (MPZ_ONE<<(n-1))-1
h_mask_small = [0]+[((MPZ_ONE<<(_-1))-1) for _ in range(1, 300)]
h_mask = [h_mask_big(), h_mask_small]
# The >> operator rounds to floor. shifts_down[rnd][sign]
# tells whether this is the right direction to use, or if the
# number should be negated before shifting
shifts_down = {round_floor:(1,0), round_ceiling:(0,1),
round_down:(1,1), round_up:(0,0)}
#----------------------------------------------------------------------------#
# Normalization of raw mpfs #
#----------------------------------------------------------------------------#
# This function is called almost every time an mpf is created.
# It has been optimized accordingly.
def _normalize(sign, man, exp, bc, prec, rnd):
"""
Create a raw mpf tuple with value (-1)**sign * man * 2**exp and
normalized mantissa. The mantissa is rounded in the specified
direction if its size exceeds the precision. Trailing zero bits
are also stripped from the mantissa to ensure that the
representation is canonical.
Conditions on the input:
* The input must represent a regular (finite) number
* The sign bit must be 0 or 1
* The mantissa must be positive
* The exponent must be an integer
* The bitcount must be exact
If these conditions are not met, use from_man_exp, mpf_pos, or any
of the conversion functions to create normalized raw mpf tuples.
"""
if not man:
return fzero
# Cut mantissa down to size if larger than target precision
n = bc - prec
if n > 0:
if rnd == round_nearest:
t = man >> (n-1)
if t & 1 and ((t & 2) or (man & h_mask[n<300][n])):
man = (t>>1)+1
else:
man = t>>1
elif shifts_down[rnd][sign]:
man >>= n
else:
man = -((-man)>>n)
exp += n
bc = prec
# Strip trailing bits
if not man & 1:
t = trailtable[int(man & 255)]
if not t:
while not man & 255:
man >>= 8
exp += 8
bc -= 8
t = trailtable[int(man & 255)]
man >>= t
exp += t
bc -= t
# Bit count can be wrong if the input mantissa was 1 less than
# a power of 2 and got rounded up, thereby adding an extra bit.
# With trailing bits removed, all powers of two have mantissa 1,
# so this is easy to check for.
if man == 1:
bc = 1
return sign, man, exp, bc
def _normalize1(sign, man, exp, bc, prec, rnd):
"""same as normalize, but with the added condition that
man is odd or zero
"""
if not man:
return fzero
if bc <= prec:
return sign, man, exp, bc
n = bc - prec
if rnd == round_nearest:
t = man >> (n-1)
if t & 1 and ((t & 2) or (man & h_mask[n<300][n])):
man = (t>>1)+1
else:
man = t>>1
elif shifts_down[rnd][sign]:
man >>= n
else:
man = -((-man)>>n)
exp += n
bc = prec
# Strip trailing bits
if not man & 1:
t = trailtable[int(man & 255)]
if not t:
while not man & 255:
man >>= 8
exp += 8
bc -= 8
t = trailtable[int(man & 255)]
man >>= t
exp += t
bc -= t
# Bit count can be wrong if the input mantissa was 1 less than
# a power of 2 and got rounded up, thereby adding an extra bit.
# With trailing bits removed, all powers of two have mantissa 1,
# so this is easy to check for.
if man == 1:
bc = 1
return sign, man, exp, bc
try:
_exp_types = (int, long)
except NameError:
_exp_types = (int,)
def strict_normalize(sign, man, exp, bc, prec, rnd):
"""Additional checks on the components of an mpf. Enable tests by setting
the environment variable MPMATH_STRICT to Y."""
assert type(man) == MPZ_TYPE
assert type(bc) in _exp_types
assert type(exp) in _exp_types
assert bc == bitcount(man)
return _normalize(sign, man, exp, bc, prec, rnd)
def strict_normalize1(sign, man, exp, bc, prec, rnd):
"""Additional checks on the components of an mpf. Enable tests by setting
the environment variable MPMATH_STRICT to Y."""
assert type(man) == MPZ_TYPE
assert type(bc) in _exp_types
assert type(exp) in _exp_types
assert bc == bitcount(man)
assert (not man) or (man & 1)
return _normalize1(sign, man, exp, bc, prec, rnd)
if BACKEND == 'gmpy' and '_mpmath_normalize' in dir(gmpy):
_normalize = gmpy._mpmath_normalize
_normalize1 = gmpy._mpmath_normalize
if BACKEND == 'sage':
_normalize = _normalize1 = sage_utils.normalize
if STRICT:
normalize = strict_normalize
normalize1 = strict_normalize1
else:
normalize = _normalize
normalize1 = _normalize1
#----------------------------------------------------------------------------#
# Conversion functions #
#----------------------------------------------------------------------------#
def from_man_exp(man, exp, prec=None, rnd=round_fast):
"""Create raw mpf from (man, exp) pair. The mantissa may be signed.
If no precision is specified, the mantissa is stored exactly."""
man = MPZ(man)
sign = 0
if man < 0:
sign = 1
man = -man
if man < 1024:
bc = bctable[int(man)]
else:
bc = bitcount(man)
if not prec:
if not man:
return fzero
if not man & 1:
if man & 2:
return (sign, man >> 1, exp + 1, bc - 1)
t = trailtable[int(man & 255)]
if not t:
while not man & 255:
man >>= 8
exp += 8
bc -= 8
t = trailtable[int(man & 255)]
man >>= t
exp += t
bc -= t
return (sign, man, exp, bc)
return normalize(sign, man, exp, bc, prec, rnd)
int_cache = dict((n, from_man_exp(n, 0)) for n in range(-10, 257))
if BACKEND == 'gmpy' and '_mpmath_create' in dir(gmpy):
from_man_exp = gmpy._mpmath_create
if BACKEND == 'sage':
from_man_exp = sage_utils.from_man_exp
def from_int(n, prec=0, rnd=round_fast):
"""Create a raw mpf from an integer. If no precision is specified,
the mantissa is stored exactly."""
if not prec:
if n in int_cache:
return int_cache[n]
return from_man_exp(n, 0, prec, rnd)
def to_man_exp(s):
"""Return (man, exp) of a raw mpf. Raise an error if inf/nan."""
sign, man, exp, bc = s
if (not man) and exp:
raise ValueError("mantissa and exponent are undefined for %s" % man)
return man, exp
def to_int(s, rnd=None):
"""Convert a raw mpf to the nearest int. Rounding is done down by
default (same as int(float) in Python), but can be changed. If the
input is inf/nan, an exception is raised."""
sign, man, exp, bc = s
if (not man) and exp:
raise ValueError("cannot convert inf or nan to int")
if exp >= 0:
if sign:
return (-man) << exp
return man << exp
# Make default rounding fast
if not rnd:
if sign:
return -(man >> (-exp))
else:
return man >> (-exp)
if sign:
return round_int(-man, -exp, rnd)
else:
return round_int(man, -exp, rnd)
def mpf_round_int(s, rnd):
sign, man, exp, bc = s
if (not man) and exp:
return s
if exp >= 0:
return s
mag = exp+bc
if mag < 1:
if rnd == round_ceiling:
if sign: return fzero
else: return fone
elif rnd == round_floor:
if sign: return fnone
else: return fzero
elif rnd == round_nearest:
if mag < 0 or man == MPZ_ONE: return fzero
elif sign: return fnone
else: return fone
else:
raise NotImplementedError
return mpf_pos(s, min(bc, mag), rnd)
def mpf_floor(s, prec=0, rnd=round_fast):
v = mpf_round_int(s, round_floor)
if prec:
v = mpf_pos(v, prec, rnd)
return v
def mpf_ceil(s, prec=0, rnd=round_fast):
v = mpf_round_int(s, round_ceiling)
if prec:
v = mpf_pos(v, prec, rnd)
return v
def mpf_nint(s, prec=0, rnd=round_fast):
v = mpf_round_int(s, round_nearest)
if prec:
v = mpf_pos(v, prec, rnd)
return v
def mpf_frac(s, prec=0, rnd=round_fast):
return mpf_sub(s, mpf_floor(s), prec, rnd)
def from_float(x, prec=53, rnd=round_fast):
"""Create a raw mpf from a Python float, rounding if necessary.
If prec >= 53, the result is guaranteed to represent exactly the
same number as the input. If prec is not specified, use prec=53."""
# frexp only raises an exception for nan on some platforms
if x != x:
return fnan
# in Python2.5 math.frexp gives an exception for float infinity
# in Python2.6 it returns (float infinity, 0)
try:
m, e = math.frexp(x)
except:
if x == math_float_inf: return finf
if x == -math_float_inf: return fninf
return fnan
if x == math_float_inf: return finf
if x == -math_float_inf: return fninf
return from_man_exp(int(m*(1<<53)), e-53, prec, rnd)
def from_npfloat(x, prec=113, rnd=round_fast):
"""Create a raw mpf from a numpy float, rounding if necessary.
If prec >= 113, the result is guaranteed to represent exactly the
same number as the input. If prec is not specified, use prec=113."""
y = float(x)
if x == y: # ldexp overflows for float16
return from_float(y, prec, rnd)
import numpy as np
if np.isfinite(x):
m, e = np.frexp(x)
return from_man_exp(int(np.ldexp(m, 113)), int(e-113), prec, rnd)
if np.isposinf(x): return finf
if np.isneginf(x): return fninf
return fnan
def from_Decimal(x, prec=None, rnd=round_fast):
"""Create a raw mpf from a Decimal, rounding if necessary.
If prec is not specified, use the equivalent bit precision
of the number of significant digits in x."""
if x.is_nan(): return fnan
if x.is_infinite(): return fninf if x.is_signed() else finf
if prec is None:
prec = int(len(x.as_tuple()[1])*3.3219280948873626)
return from_str(str(x), prec, rnd)
def to_float(s, strict=False, rnd=round_fast):
"""
Convert a raw mpf to a Python float. The result is exact if the
bitcount of s is <= 53 and no underflow/overflow occurs.
If the number is too large or too small to represent as a regular
float, it will be converted to inf or 0.0. Setting strict=True
forces an OverflowError to be raised instead.
Warning: with a directed rounding mode, the correct nearest representable
floating-point number in the specified direction might not be computed
in case of overflow or (gradual) underflow.
"""
sign, man, exp, bc = s
if not man:
if s == fzero: return 0.0
if s == finf: return math_float_inf
if s == fninf: return -math_float_inf
return math_float_inf/math_float_inf
if bc > 53:
sign, man, exp, bc = normalize1(sign, man, exp, bc, 53, rnd)
if sign:
man = -man
try:
return math.ldexp(man, exp)
except OverflowError:
if strict:
raise
# Overflow to infinity
if exp + bc > 0:
if sign:
return -math_float_inf
else:
return math_float_inf
# Underflow to zero
return 0.0
def from_rational(p, q, prec, rnd=round_fast):
"""Create a raw mpf from a rational number p/q, round if
necessary."""
return mpf_div(from_int(p), from_int(q), prec, rnd)
def to_rational(s):
"""Convert a raw mpf to a rational number. Return integers (p, q)
such that s = p/q exactly."""
sign, man, exp, bc = s
if sign:
man = -man
if bc == -1:
raise ValueError("cannot convert %s to a rational number" % man)
if exp >= 0:
return man * (1<<exp), 1
else:
return man, 1<<(-exp)
def to_fixed(s, prec):
"""Convert a raw mpf to a fixed-point big integer"""
sign, man, exp, bc = s
offset = exp + prec
if sign:
if offset >= 0: return (-man) << offset
else: return (-man) >> (-offset)
else:
if offset >= 0: return man << offset
else: return man >> (-offset)
##############################################################################
##############################################################################
#----------------------------------------------------------------------------#
# Arithmetic operations, etc. #
#----------------------------------------------------------------------------#
def mpf_rand(prec):
"""Return a raw mpf chosen randomly from [0, 1), with prec bits
in the mantissa."""
global getrandbits
if not getrandbits:
import random
getrandbits = random.getrandbits
return from_man_exp(getrandbits(prec), -prec, prec, round_floor)
def mpf_eq(s, t):
"""Test equality of two raw mpfs. This is simply tuple comparison
unless either number is nan, in which case the result is False."""
if not s[1] or not t[1]:
if s == fnan or t == fnan:
return False
return s == t
def mpf_hash(s):
# Duplicate the new hash algorithm introduces in Python 3.2.
if sys.version_info >= (3, 2):
ssign, sman, sexp, sbc = s
# Handle special numbers
if not sman:
if s == fnan: return sys.hash_info.nan
if s == finf: return sys.hash_info.inf
if s == fninf: return -sys.hash_info.inf
h = sman % HASH_MODULUS
if sexp >= 0:
sexp = sexp % HASH_BITS
else:
sexp = HASH_BITS - 1 - ((-1 - sexp) % HASH_BITS)
h = (h << sexp) % HASH_MODULUS
if ssign: h = -h
if h == -1: h = -2
return int(h)
else:
try:
# Try to be compatible with hash values for floats and ints
return hash(to_float(s, strict=1))
except OverflowError:
# We must unfortunately sacrifice compatibility with ints here.
# We could do hash(man << exp) when the exponent is positive, but
# this would cause unreasonable inefficiency for large numbers.
return hash(s)
def mpf_cmp(s, t):
"""Compare the raw mpfs s and t. Return -1 if s < t, 0 if s == t,
and 1 if s > t. (Same convention as Python's cmp() function.)"""
# In principle, a comparison amounts to determining the sign of s-t.
# A full subtraction is relatively slow, however, so we first try to
# look at the components.
ssign, sman, sexp, sbc = s
tsign, tman, texp, tbc = t
# Handle zeros and special numbers
if not sman or not tman:
if s == fzero: return -mpf_sign(t)
if t == fzero: return mpf_sign(s)
if s == t: return 0
# Follow same convention as Python's cmp for float nan
if t == fnan: return 1
if s == finf: return 1
if t == fninf: return 1
return -1
# Different sides of zero
if ssign != tsign:
if not ssign: return 1
return -1
# This reduces to direct integer comparison
if sexp == texp:
if sman == tman:
return 0
if sman > tman:
if ssign: return -1
else: return 1
else:
if ssign: return 1
else: return -1
# Check position of the highest set bit in each number. If
# different, there is certainly an inequality.
a = sbc + sexp
b = tbc + texp
if ssign:
if a < b: return 1
if a > b: return -1
else:
if a < b: return -1
if a > b: return 1
# Both numbers have the same highest bit. Subtract to find
# how the lower bits compare.
delta = mpf_sub(s, t, 5, round_floor)
if delta[0]:
return -1
return 1
def mpf_lt(s, t):
if s == fnan or t == fnan:
return False
return mpf_cmp(s, t) < 0
def mpf_le(s, t):
if s == fnan or t == fnan:
return False
return mpf_cmp(s, t) <= 0
def mpf_gt(s, t):
if s == fnan or t == fnan:
return False
return mpf_cmp(s, t) > 0
def mpf_ge(s, t):
if s == fnan or t == fnan:
return False
return mpf_cmp(s, t) >= 0
def mpf_min_max(seq):
min = max = seq[0]
for x in seq[1:]:
if mpf_lt(x, min): min = x
if mpf_gt(x, max): max = x
return min, max
def mpf_pos(s, prec=0, rnd=round_fast):
"""Calculate 0+s for a raw mpf (i.e., just round s to the specified
precision)."""
if prec:
sign, man, exp, bc = s
if (not man) and exp:
return s
return normalize1(sign, man, exp, bc, prec, rnd)
return s
def mpf_neg(s, prec=None, rnd=round_fast):
"""Negate a raw mpf (return -s), rounding the result to the
specified precision. The prec argument can be omitted to do the
operation exactly."""
sign, man, exp, bc = s
if not man:
if exp:
if s == finf: return fninf
if s == fninf: return finf
return s
if not prec:
return (1-sign, man, exp, bc)
return normalize1(1-sign, man, exp, bc, prec, rnd)
def mpf_abs(s, prec=None, rnd=round_fast):
"""Return abs(s) of the raw mpf s, rounded to the specified
precision. The prec argument can be omitted to generate an
exact result."""
sign, man, exp, bc = s
if (not man) and exp:
if s == fninf:
return finf
return s
if not prec:
if sign:
return (0, man, exp, bc)
return s
return normalize1(0, man, exp, bc, prec, rnd)
def mpf_sign(s):
"""Return -1, 0, or 1 (as a Python int, not a raw mpf) depending on
whether s is negative, zero, or positive. (Nan is taken to give 0.)"""
sign, man, exp, bc = s
if not man:
if s == finf: return 1
if s == fninf: return -1
return 0
return (-1) ** sign
def mpf_add(s, t, prec=0, rnd=round_fast, _sub=0):
"""
Add the two raw mpf values s and t.
With prec=0, no rounding is performed. Note that this can
produce a very large mantissa (potentially too large to fit
in memory) if exponents are far apart.
"""
ssign, sman, sexp, sbc = s
tsign, tman, texp, tbc = t
tsign ^= _sub
# Standard case: two nonzero, regular numbers
if sman and tman:
offset = sexp - texp
if offset:
if offset > 0:
# Outside precision range; only need to perturb
if offset > 100 and prec:
delta = sbc + sexp - tbc - texp
if delta > prec + 4:
offset = prec + 4
sman <<= offset
if tsign == ssign: sman += 1
else: sman -= 1
return normalize1(ssign, sman, sexp-offset,
bitcount(sman), prec, rnd)
# Add
if ssign == tsign:
man = tman + (sman << offset)
# Subtract
else:
if ssign: man = tman - (sman << offset)
else: man = (sman << offset) - tman
if man >= 0:
ssign = 0
else:
man = -man
ssign = 1
bc = bitcount(man)
return normalize1(ssign, man, texp, bc, prec or bc, rnd)
elif offset < 0:
# Outside precision range; only need to perturb
if offset < -100 and prec:
delta = tbc + texp - sbc - sexp
if delta > prec + 4:
offset = prec + 4
tman <<= offset
if ssign == tsign: tman += 1
else: tman -= 1
return normalize1(tsign, tman, texp-offset,
bitcount(tman), prec, rnd)
# Add
if ssign == tsign:
man = sman + (tman << -offset)
# Subtract
else:
if tsign: man = sman - (tman << -offset)
else: man = (tman << -offset) - sman
if man >= 0:
ssign = 0
else:
man = -man
ssign = 1
bc = bitcount(man)
return normalize1(ssign, man, sexp, bc, prec or bc, rnd)
# Equal exponents; no shifting necessary
if ssign == tsign:
man = tman + sman
else:
if ssign: man = tman - sman
else: man = sman - tman
if man >= 0:
ssign = 0
else:
man = -man
ssign = 1
bc = bitcount(man)
return normalize(ssign, man, texp, bc, prec or bc, rnd)
# Handle zeros and special numbers
if _sub:
t = mpf_neg(t)
if not sman:
if sexp:
if s == t or tman or not texp:
return s
return fnan
if tman:
return normalize1(tsign, tman, texp, tbc, prec or tbc, rnd)
return t
if texp:
return t
if sman:
return normalize1(ssign, sman, sexp, sbc, prec or sbc, rnd)
return s
def mpf_sub(s, t, prec=0, rnd=round_fast):
"""Return the difference of two raw mpfs, s-t. This function is
simply a wrapper of mpf_add that changes the sign of t."""
return mpf_add(s, t, prec, rnd, 1)
def mpf_sum(xs, prec=0, rnd=round_fast, absolute=False):
"""
Sum a list of mpf values efficiently and accurately
(typically no temporary roundoff occurs). If prec=0,
the final result will not be rounded either.
There may be roundoff error or cancellation if extremely
large exponent differences occur.
With absolute=True, sums the absolute values.
"""
man = 0
exp = 0
max_extra_prec = prec*2 or 1000000 # XXX
special = None
for x in xs:
xsign, xman, xexp, xbc = x
if xman:
if xsign and not absolute:
xman = -xman
delta = xexp - exp
if xexp >= exp:
# x much larger than existing sum?
# first: quick test
if (delta > max_extra_prec) and \
((not man) or delta-bitcount(abs(man)) > max_extra_prec):
man = xman
exp = xexp
else:
man += (xman << delta)
else:
delta = -delta
# x much smaller than existing sum?
if delta-xbc > max_extra_prec:
if not man:
man, exp = xman, xexp
else:
man = (man << delta) + xman
exp = xexp
elif xexp:
if absolute:
x = mpf_abs(x)
special = mpf_add(special or fzero, x, 1)
# Will be inf or nan
if special:
return special
return from_man_exp(man, exp, prec, rnd)
def gmpy_mpf_mul(s, t, prec=0, rnd=round_fast):
"""Multiply two raw mpfs"""
ssign, sman, sexp, sbc = s
tsign, tman, texp, tbc = t
sign = ssign ^ tsign
man = sman*tman
if man:
bc = bitcount(man)
if prec:
return normalize1(sign, man, sexp+texp, bc, prec, rnd)
else:
return (sign, man, sexp+texp, bc)
s_special = (not sman) and sexp
t_special = (not tman) and texp
if not s_special and not t_special:
return fzero
if fnan in (s, t): return fnan
if (not tman) and texp: s, t = t, s
if t == fzero: return fnan
return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)]
def gmpy_mpf_mul_int(s, n, prec, rnd=round_fast):
"""Multiply by a Python integer."""
sign, man, exp, bc = s
if not man:
return mpf_mul(s, from_int(n), prec, rnd)
if not n:
return fzero
if n < 0:
sign ^= 1
n = -n
man *= n
return normalize(sign, man, exp, bitcount(man), prec, rnd)
def python_mpf_mul(s, t, prec=0, rnd=round_fast):
"""Multiply two raw mpfs"""
ssign, sman, sexp, sbc = s
tsign, tman, texp, tbc = t
sign = ssign ^ tsign
man = sman*tman
if man:
bc = sbc + tbc - 1
bc += int(man>>bc)
if prec:
return normalize1(sign, man, sexp+texp, bc, prec, rnd)
else:
return (sign, man, sexp+texp, bc)
s_special = (not sman) and sexp
t_special = (not tman) and texp
if not s_special and not t_special:
return fzero
if fnan in (s, t): return fnan
if (not tman) and texp: s, t = t, s
if t == fzero: return fnan
return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)]
def python_mpf_mul_int(s, n, prec, rnd=round_fast):
"""Multiply by a Python integer."""
sign, man, exp, bc = s
if not man:
return mpf_mul(s, from_int(n), prec, rnd)
if not n:
return fzero
if n < 0:
sign ^= 1
n = -n
man *= n
# Generally n will be small
if n < 1024:
bc += bctable[int(n)] - 1
else:
bc += bitcount(n) - 1
bc += int(man>>bc)
return normalize(sign, man, exp, bc, prec, rnd)
if BACKEND == 'gmpy':
mpf_mul = gmpy_mpf_mul
mpf_mul_int = gmpy_mpf_mul_int
else:
mpf_mul = python_mpf_mul
mpf_mul_int = python_mpf_mul_int
def mpf_shift(s, n):
"""Quickly multiply the raw mpf s by 2**n without rounding."""
sign, man, exp, bc = s
if not man:
return s
return sign, man, exp+n, bc
def mpf_frexp(x):
"""Convert x = y*2**n to (y, n) with abs(y) in [0.5, 1) if nonzero"""
sign, man, exp, bc = x
if not man:
if x == fzero:
return (fzero, 0)
else:
raise ValueError
return mpf_shift(x, -bc-exp), bc+exp
def mpf_div(s, t, prec, rnd=round_fast):
"""Floating-point division"""
ssign, sman, sexp, sbc = s
tsign, tman, texp, tbc = t
if not sman or not tman:
if s == fzero:
if t == fzero: raise ZeroDivisionError
if t == fnan: return fnan
return fzero
if t == fzero:
raise ZeroDivisionError
s_special = (not sman) and sexp
t_special = (not tman) and texp
if s_special and t_special:
return fnan
if s == fnan or t == fnan:
return fnan
if not t_special:
if t == fzero:
return fnan
return {1:finf, -1:fninf}[mpf_sign(s) * mpf_sign(t)]
return fzero
sign = ssign ^ tsign
if tman == 1:
return normalize1(sign, sman, sexp-texp, sbc, prec, rnd)
# Same strategy as for addition: if there is a remainder, perturb
# the result a few bits outside the precision range before rounding
extra = prec - sbc + tbc + 5
if extra < 5:
extra = 5
quot, rem = divmod(sman<<extra, tman)
if rem:
quot = (quot<<1) + 1
extra += 1
return normalize1(sign, quot, sexp-texp-extra, bitcount(quot), prec, rnd)
return normalize(sign, quot, sexp-texp-extra, bitcount(quot), prec, rnd)
def mpf_rdiv_int(n, t, prec, rnd=round_fast):
"""Floating-point division n/t with a Python integer as numerator"""
sign, man, exp, bc = t
if not n or not man:
return mpf_div(from_int(n), t, prec, rnd)
if n < 0:
sign ^= 1
n = -n
extra = prec + bc + 5
quot, rem = divmod(n<<extra, man)
if rem:
quot = (quot<<1) + 1
extra += 1
return normalize1(sign, quot, -exp-extra, bitcount(quot), prec, rnd)
return normalize(sign, quot, -exp-extra, bitcount(quot), prec, rnd)
def mpf_mod(s, t, prec, rnd=round_fast):
ssign, sman, sexp, sbc = s
tsign, tman, texp, tbc = t
if ((not sman) and sexp) or ((not tman) and texp):
return fnan
# Important special case: do nothing if t is larger
if ssign == tsign and texp > sexp+sbc:
return s
# Another important special case: this allows us to do e.g. x % 1.0
# to find the fractional part of x, and it will work when x is huge.
if tman == 1 and sexp > texp+tbc:
return fzero
base = min(sexp, texp)
sman = (-1)**ssign * sman
tman = (-1)**tsign * tman
man = (sman << (sexp-base)) % (tman << (texp-base))
if man >= 0:
sign = 0
else:
man = -man
sign = 1
return normalize(sign, man, base, bitcount(man), prec, rnd)
reciprocal_rnd = {
round_down : round_up,
round_up : round_down,
round_floor : round_ceiling,
round_ceiling : round_floor,
round_nearest : round_nearest
}
negative_rnd = {
round_down : round_down,
round_up : round_up,
round_floor : round_ceiling,
round_ceiling : round_floor,
round_nearest : round_nearest
}
def mpf_pow_int(s, n, prec, rnd=round_fast):
"""Compute s**n, where s is a raw mpf and n is a Python integer."""
sign, man, exp, bc = s
if (not man) and exp:
if s == finf:
if n > 0: return s
if n == 0: return fnan
return fzero
if s == fninf:
if n > 0: return [finf, fninf][n & 1]
if n == 0: return fnan
return fzero
return fnan
n = int(n)
if n == 0: return fone
if n == 1: return mpf_pos(s, prec, rnd)
if n == 2:
_, man, exp, bc = s
if not man:
return fzero
man = man*man
if man == 1:
return (0, MPZ_ONE, exp+exp, 1)
bc = bc + bc - 2
bc += bctable[int(man>>bc)]
return normalize1(0, man, exp+exp, bc, prec, rnd)
if n == -1: return mpf_div(fone, s, prec, rnd)
if n < 0:
inverse = mpf_pow_int(s, -n, prec+5, reciprocal_rnd[rnd])
return mpf_div(fone, inverse, prec, rnd)
result_sign = sign & n
# Use exact integer power when the exact mantissa is small
if man == 1:
return (result_sign, MPZ_ONE, exp*n, 1)
if bc*n < 1000:
man **= n
return normalize1(result_sign, man, exp*n, bitcount(man), prec, rnd)
# Use directed rounding all the way through to maintain rigorous
# bounds for interval arithmetic
rounds_down = (rnd == round_nearest) or \
shifts_down[rnd][result_sign]
# Now we perform binary exponentiation. Need to estimate precision
# to avoid rounding errors from temporary operations. Roughly log_2(n)
# operations are performed.
workprec = prec + 4*bitcount(n) + 4
_, pm, pe, pbc = fone
while 1:
if n & 1:
pm = pm*man
pe = pe+exp
pbc += bc - 2
pbc = pbc + bctable[int(pm >> pbc)]
if pbc > workprec:
if rounds_down:
pm = pm >> (pbc-workprec)
else:
pm = -((-pm) >> (pbc-workprec))
pe += pbc - workprec
pbc = workprec
n -= 1
if not n:
break
man = man*man
exp = exp+exp
bc = bc + bc - 2
bc = bc + bctable[int(man >> bc)]
if bc > workprec:
if rounds_down:
man = man >> (bc-workprec)
else:
man = -((-man) >> (bc-workprec))
exp += bc - workprec
bc = workprec
n = n // 2
return normalize(result_sign, pm, pe, pbc, prec, rnd)
def mpf_perturb(x, eps_sign, prec, rnd):
"""
For nonzero x, calculate x + eps with directed rounding, where
eps < prec relatively and eps has the given sign (0 for
positive, 1 for negative).
With rounding to nearest, this is taken to simply normalize
x to the given precision.
"""
if rnd == round_nearest:
return mpf_pos(x, prec, rnd)
sign, man, exp, bc = x
eps = (eps_sign, MPZ_ONE, exp+bc-prec-1, 1)
if sign:
away = (rnd in (round_down, round_ceiling)) ^ eps_sign
else:
away = (rnd in (round_up, round_ceiling)) ^ eps_sign
if away:
return mpf_add(x, eps, prec, rnd)
else:
return mpf_pos(x, prec, rnd)
#----------------------------------------------------------------------------#
# Radix conversion #
#----------------------------------------------------------------------------#
def to_digits_exp(s, dps):
"""Helper function for representing the floating-point number s as
a decimal with dps digits. Returns (sign, string, exponent) where
sign is '' or '-', string is the digit string, and exponent is
the decimal exponent as an int.
If inexact, the decimal representation is rounded toward zero."""
# Extract sign first so it doesn't mess up the string digit count
if s[0]:
sign = '-'
s = mpf_neg(s)
else:
sign = ''
_sign, man, exp, bc = s
if not man:
return '', '0', 0
bitprec = int(dps * math.log(10,2)) + 10
# Cut down to size
# TODO: account for precision when doing this
exp_from_1 = exp + bc
if abs(exp_from_1) > 3500:
from .libelefun import mpf_ln2, mpf_ln10
# Set b = int(exp * log(2)/log(10))
# If exp is huge, we must use high-precision arithmetic to
# find the nearest power of ten
expprec = bitcount(abs(exp)) + 5
tmp = from_int(exp)
tmp = mpf_mul(tmp, mpf_ln2(expprec))
tmp = mpf_div(tmp, mpf_ln10(expprec), expprec)
b = to_int(tmp)
s = mpf_div(s, mpf_pow_int(ften, b, bitprec), bitprec)
_sign, man, exp, bc = s
exponent = b
else:
exponent = 0
# First, calculate mantissa digits by converting to a binary
# fixed-point number and then converting that number to
# a decimal fixed-point number.
fixprec = max(bitprec - exp - bc, 0)
fixdps = int(fixprec / math.log(10,2) + 0.5)
sf = to_fixed(s, fixprec)
sd = bin_to_radix(sf, fixprec, 10, fixdps)
digits = numeral(sd, base=10, size=dps)
exponent += len(digits) - fixdps - 1
return sign, digits, exponent
def to_str(s, dps, strip_zeros=True, min_fixed=None, max_fixed=None,
show_zero_exponent=False):
"""
Convert a raw mpf to a decimal floating-point literal with at
most `dps` decimal digits in the mantissa (not counting extra zeros
that may be inserted for visual purposes).
The number will be printed in fixed-point format if the position
of the leading digit is strictly between min_fixed
(default = min(-dps/3,-5)) and max_fixed (default = dps).
To force fixed-point format always, set min_fixed = -inf,
max_fixed = +inf. To force floating-point format, set
min_fixed >= max_fixed.
The literal is formatted so that it can be parsed back to a number
by to_str, float() or Decimal().
"""
# Special numbers
if not s[1]:
if s == fzero:
if dps: t = '0.0'
else: t = '.0'
if show_zero_exponent:
t += 'e+0'
return t
if s == finf: return '+inf'
if s == fninf: return '-inf'
if s == fnan: return 'nan'
raise ValueError
if min_fixed is None: min_fixed = min(-(dps//3), -5)
if max_fixed is None: max_fixed = dps
# to_digits_exp rounds to floor.
# This sometimes kills some instances of "...00001"
sign, digits, exponent = to_digits_exp(s, dps+3)
# No digits: show only .0; round exponent to nearest
if not dps:
if digits[0] in '56789':
exponent += 1
digits = ".0"
else:
# Rounding up kills some instances of "...99999"
if len(digits) > dps and digits[dps] in '56789':
digits = digits[:dps]
i = dps - 1
while i >= 0 and digits[i] == '9':
i -= 1
if i >= 0:
digits = digits[:i] + str(int(digits[i]) + 1) + '0' * (dps - i - 1)
else:
digits = '1' + '0' * (dps - 1)
exponent += 1
else:
digits = digits[:dps]
# Prettify numbers close to unit magnitude
if min_fixed < exponent < max_fixed:
if exponent < 0:
digits = ("0"*int(-exponent)) + digits
split = 1
else:
split = exponent + 1
if split > dps:
digits += "0"*(split-dps)
exponent = 0
else:
split = 1
digits = (digits[:split] + "." + digits[split:])
if strip_zeros:
# Clean up trailing zeros
digits = digits.rstrip('0')
if digits[-1] == ".":
digits += "0"
if exponent == 0 and dps and not show_zero_exponent: return sign + digits
if exponent >= 0: return sign + digits + "e+" + str(exponent)
if exponent < 0: return sign + digits + "e" + str(exponent)
def str_to_man_exp(x, base=10):
"""Helper function for from_str."""
x = x.lower().rstrip('l')
# Verify that the input is a valid float literal
float(x)
# Split into mantissa, exponent
parts = x.split('e')
if len(parts) == 1:
exp = 0
else: # == 2
x = parts[0]
exp = int(parts[1])
# Look for radix point in mantissa
parts = x.split('.')
if len(parts) == 2:
a, b = parts[0], parts[1].rstrip('0')
exp -= len(b)
x = a + b
x = MPZ(int(x, base))
return x, exp
special_str = {'inf':finf, '+inf':finf, '-inf':fninf, 'nan':fnan}
def from_str(x, prec, rnd=round_fast):
"""Create a raw mpf from a decimal literal, rounding in the
specified direction if the input number cannot be represented
exactly as a binary floating-point number with the given number of
bits. The literal syntax accepted is the same as for Python
floats.
TODO: the rounding does not work properly for large exponents.
"""
x = x.lower().strip()
if x in special_str:
return special_str[x]
if '/' in x:
p, q = x.split('/')
p, q = p.rstrip('l'), q.rstrip('l')
return from_rational(int(p), int(q), prec, rnd)
man, exp = str_to_man_exp(x, base=10)
# XXX: appropriate cutoffs & track direction
# note no factors of 5
if abs(exp) > 400:
s = from_int(man, prec+10)
s = mpf_mul(s, mpf_pow_int(ften, exp, prec+10), prec, rnd)
else:
if exp >= 0:
s = from_int(man * 10**exp, prec, rnd)
else:
s = from_rational(man, 10**-exp, prec, rnd)
return s
# Binary string conversion. These are currently mainly used for debugging
# and could use some improvement in the future
def from_bstr(x):
man, exp = str_to_man_exp(x, base=2)
man = MPZ(man)
sign = 0
if man < 0:
man = -man
sign = 1
bc = bitcount(man)
return normalize(sign, man, exp, bc, bc, round_floor)
def to_bstr(x):
sign, man, exp, bc = x
return ['','-'][sign] + numeral(man, size=bitcount(man), base=2) + ("e%i" % exp)
#----------------------------------------------------------------------------#
# Square roots #
#----------------------------------------------------------------------------#
def mpf_sqrt(s, prec, rnd=round_fast):
"""
Compute the square root of a nonnegative mpf value. The
result is correctly rounded.
"""
sign, man, exp, bc = s
if sign:
raise ComplexResult("square root of a negative number")
if not man:
return s
if exp & 1:
exp -= 1
man <<= 1
bc += 1
elif man == 1:
return normalize1(sign, man, exp//2, bc, prec, rnd)
shift = max(4, 2*prec-bc+4)
shift += shift & 1
if rnd in 'fd':
man = isqrt(man<<shift)
else:
man, rem = sqrtrem(man<<shift)
# Perturb up
if rem:
man = (man<<1)+1
shift += 2
return from_man_exp(man, (exp-shift)//2, prec, rnd)
def mpf_hypot(x, y, prec, rnd=round_fast):
"""Compute the Euclidean norm sqrt(x**2 + y**2) of two raw mpfs
x and y."""
if y == fzero: return mpf_abs(x, prec, rnd)
if x == fzero: return mpf_abs(y, prec, rnd)
hypot2 = mpf_add(mpf_mul(x,x), mpf_mul(y,y), prec+4)
return mpf_sqrt(hypot2, prec, rnd)
if BACKEND == 'sage':
try:
import sage.libs.mpmath.ext_libmp as ext_lib
mpf_add = ext_lib.mpf_add
mpf_sub = ext_lib.mpf_sub
mpf_mul = ext_lib.mpf_mul
mpf_div = ext_lib.mpf_div
mpf_sqrt = ext_lib.mpf_sqrt
except ImportError:
pass
|