File size: 26,502 Bytes
e11e4fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
import numpy as np
from typing import Dict, List, NamedTuple, cast, Tuple, Optional
import attr

from mlagents.torch_utils import torch, nn, default_device

from mlagents_envs.logging_util import get_logger
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer
from mlagents.trainers.policy.torch_policy import TorchPolicy
from mlagents.trainers.settings import NetworkSettings
from mlagents.trainers.torch_entities.networks import ValueNetwork, SharedActorCritic
from mlagents.trainers.torch_entities.agent_action import AgentAction
from mlagents.trainers.torch_entities.action_log_probs import ActionLogProbs
from mlagents.trainers.torch_entities.utils import ModelUtils
from mlagents.trainers.buffer import AgentBuffer, BufferKey, RewardSignalUtil
from mlagents_envs.timers import timed
from mlagents_envs.base_env import ActionSpec, ObservationSpec
from mlagents.trainers.exception import UnityTrainerException
from mlagents.trainers.settings import TrainerSettings, OffPolicyHyperparamSettings
from contextlib import ExitStack
from mlagents.trainers.trajectory import ObsUtil

EPSILON = 1e-6  # Small value to avoid divide by zero

logger = get_logger(__name__)


@attr.s(auto_attribs=True)
class SACSettings(OffPolicyHyperparamSettings):
    batch_size: int = 128
    buffer_size: int = 50000
    buffer_init_steps: int = 0
    tau: float = 0.005
    steps_per_update: float = 1
    save_replay_buffer: bool = False
    init_entcoef: float = 1.0
    reward_signal_steps_per_update: float = attr.ib()

    @reward_signal_steps_per_update.default
    def _reward_signal_steps_per_update_default(self):
        return self.steps_per_update


class TorchSACOptimizer(TorchOptimizer):
    class PolicyValueNetwork(nn.Module):
        def __init__(
            self,
            stream_names: List[str],
            observation_specs: List[ObservationSpec],
            network_settings: NetworkSettings,
            action_spec: ActionSpec,
        ):
            super().__init__()
            num_value_outs = max(sum(action_spec.discrete_branches), 1)
            num_action_ins = int(action_spec.continuous_size)

            self.q1_network = ValueNetwork(
                stream_names,
                observation_specs,
                network_settings,
                num_action_ins,
                num_value_outs,
            )
            self.q2_network = ValueNetwork(
                stream_names,
                observation_specs,
                network_settings,
                num_action_ins,
                num_value_outs,
            )

        def forward(
            self,
            inputs: List[torch.Tensor],
            actions: Optional[torch.Tensor] = None,
            memories: Optional[torch.Tensor] = None,
            sequence_length: int = 1,
            q1_grad: bool = True,
            q2_grad: bool = True,
        ) -> Tuple[Dict[str, torch.Tensor], Dict[str, torch.Tensor]]:
            """
            Performs a forward pass on the value network, which consists of a Q1 and Q2
            network. Optionally does not evaluate gradients for either the Q1, Q2, or both.
            :param inputs: List of observation tensors.
            :param actions: For a continuous Q function (has actions), tensor of actions.
                Otherwise, None.
            :param memories: Initial memories if using memory. Otherwise, None.
            :param sequence_length: Sequence length if using memory.
            :param q1_grad: Whether or not to compute gradients for the Q1 network.
            :param q2_grad: Whether or not to compute gradients for the Q2 network.
            :return: Tuple of two dictionaries, which both map {reward_signal: Q} for Q1 and Q2,
                respectively.
            """
            # ExitStack allows us to enter the torch.no_grad() context conditionally
            with ExitStack() as stack:
                if not q1_grad:
                    stack.enter_context(torch.no_grad())
                q1_out, _ = self.q1_network(
                    inputs,
                    actions=actions,
                    memories=memories,
                    sequence_length=sequence_length,
                )
            with ExitStack() as stack:
                if not q2_grad:
                    stack.enter_context(torch.no_grad())
                q2_out, _ = self.q2_network(
                    inputs,
                    actions=actions,
                    memories=memories,
                    sequence_length=sequence_length,
                )
            return q1_out, q2_out

    class TargetEntropy(NamedTuple):

        discrete: List[float] = []  # One per branch
        continuous: float = 0.0

    class LogEntCoef(nn.Module):
        def __init__(self, discrete, continuous):
            super().__init__()
            self.discrete = discrete
            self.continuous = continuous

    def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings):
        super().__init__(policy, trainer_settings)
        reward_signal_configs = trainer_settings.reward_signals
        reward_signal_names = [key.value for key, _ in reward_signal_configs.items()]
        if isinstance(policy.actor, SharedActorCritic):
            raise UnityTrainerException("SAC does not support SharedActorCritic")
        self._critic = ValueNetwork(
            reward_signal_names,
            policy.behavior_spec.observation_specs,
            policy.network_settings,
        )
        hyperparameters: SACSettings = cast(
            SACSettings, trainer_settings.hyperparameters
        )

        self.tau = hyperparameters.tau
        self.init_entcoef = hyperparameters.init_entcoef

        self.policy = policy
        policy_network_settings = policy.network_settings

        self.tau = hyperparameters.tau
        self.burn_in_ratio = 0.0

        # Non-exposed SAC parameters
        self.discrete_target_entropy_scale = 0.2  # Roughly equal to e-greedy 0.05
        self.continuous_target_entropy_scale = 1.0

        self.stream_names = list(self.reward_signals.keys())
        # Use to reduce "survivor bonus" when using Curiosity or GAIL.
        self.gammas = [_val.gamma for _val in trainer_settings.reward_signals.values()]
        self.use_dones_in_backup = {
            name: int(not self.reward_signals[name].ignore_done)
            for name in self.stream_names
        }
        self._action_spec = self.policy.behavior_spec.action_spec

        self.q_network = TorchSACOptimizer.PolicyValueNetwork(
            self.stream_names,
            self.policy.behavior_spec.observation_specs,
            policy_network_settings,
            self._action_spec,
        )

        self.target_network = ValueNetwork(
            self.stream_names,
            self.policy.behavior_spec.observation_specs,
            policy_network_settings,
        )
        ModelUtils.soft_update(self._critic, self.target_network, 1.0)

        # We create one entropy coefficient per action, whether discrete or continuous.
        _disc_log_ent_coef = torch.nn.Parameter(
            torch.log(
                torch.as_tensor(
                    [self.init_entcoef] * len(self._action_spec.discrete_branches)
                )
            ),
            requires_grad=True,
        )
        _cont_log_ent_coef = torch.nn.Parameter(
            torch.log(torch.as_tensor([self.init_entcoef])), requires_grad=True
        )
        self._log_ent_coef = TorchSACOptimizer.LogEntCoef(
            discrete=_disc_log_ent_coef, continuous=_cont_log_ent_coef
        )
        _cont_target = (
            -1
            * self.continuous_target_entropy_scale
            * np.prod(self._action_spec.continuous_size).astype(np.float32)
        )
        _disc_target = [
            self.discrete_target_entropy_scale * np.log(i).astype(np.float32)
            for i in self._action_spec.discrete_branches
        ]
        self.target_entropy = TorchSACOptimizer.TargetEntropy(
            continuous=_cont_target, discrete=_disc_target
        )
        policy_params = list(self.policy.actor.parameters())
        value_params = list(self.q_network.parameters()) + list(
            self._critic.parameters()
        )

        logger.debug("value_vars")
        for param in value_params:
            logger.debug(param.shape)
        logger.debug("policy_vars")
        for param in policy_params:
            logger.debug(param.shape)

        self.decay_learning_rate = ModelUtils.DecayedValue(
            hyperparameters.learning_rate_schedule,
            hyperparameters.learning_rate,
            1e-10,
            self.trainer_settings.max_steps,
        )
        self.policy_optimizer = torch.optim.Adam(
            policy_params, lr=hyperparameters.learning_rate
        )
        self.value_optimizer = torch.optim.Adam(
            value_params, lr=hyperparameters.learning_rate
        )
        self.entropy_optimizer = torch.optim.Adam(
            self._log_ent_coef.parameters(), lr=hyperparameters.learning_rate
        )
        self._move_to_device(default_device())

    @property
    def critic(self):
        return self._critic

    def _move_to_device(self, device: torch.device) -> None:
        self._log_ent_coef.to(device)
        self.target_network.to(device)
        self._critic.to(device)
        self.q_network.to(device)

    def sac_q_loss(
        self,
        q1_out: Dict[str, torch.Tensor],
        q2_out: Dict[str, torch.Tensor],
        target_values: Dict[str, torch.Tensor],
        dones: torch.Tensor,
        rewards: Dict[str, torch.Tensor],
        loss_masks: torch.Tensor,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        q1_losses = []
        q2_losses = []
        # Multiple q losses per stream
        for i, name in enumerate(q1_out.keys()):
            q1_stream = q1_out[name].squeeze()
            q2_stream = q2_out[name].squeeze()
            with torch.no_grad():
                q_backup = rewards[name] + (
                    (1.0 - self.use_dones_in_backup[name] * dones)
                    * self.gammas[i]
                    * target_values[name]
                )
            _q1_loss = 0.5 * ModelUtils.masked_mean(
                torch.nn.functional.mse_loss(q_backup, q1_stream), loss_masks
            )
            _q2_loss = 0.5 * ModelUtils.masked_mean(
                torch.nn.functional.mse_loss(q_backup, q2_stream), loss_masks
            )

            q1_losses.append(_q1_loss)
            q2_losses.append(_q2_loss)
        q1_loss = torch.mean(torch.stack(q1_losses))
        q2_loss = torch.mean(torch.stack(q2_losses))
        return q1_loss, q2_loss

    def sac_value_loss(
        self,
        log_probs: ActionLogProbs,
        values: Dict[str, torch.Tensor],
        q1p_out: Dict[str, torch.Tensor],
        q2p_out: Dict[str, torch.Tensor],
        loss_masks: torch.Tensor,
    ) -> torch.Tensor:
        min_policy_qs = {}
        with torch.no_grad():
            _cont_ent_coef = self._log_ent_coef.continuous.exp()
            _disc_ent_coef = self._log_ent_coef.discrete.exp()
            for name in values.keys():
                if self._action_spec.discrete_size <= 0:
                    min_policy_qs[name] = torch.min(q1p_out[name], q2p_out[name])
                else:
                    disc_action_probs = log_probs.all_discrete_tensor.exp()
                    _branched_q1p = ModelUtils.break_into_branches(
                        q1p_out[name] * disc_action_probs,
                        self._action_spec.discrete_branches,
                    )
                    _branched_q2p = ModelUtils.break_into_branches(
                        q2p_out[name] * disc_action_probs,
                        self._action_spec.discrete_branches,
                    )
                    _q1p_mean = torch.mean(
                        torch.stack(
                            [
                                torch.sum(_br, dim=1, keepdim=True)
                                for _br in _branched_q1p
                            ]
                        ),
                        dim=0,
                    )
                    _q2p_mean = torch.mean(
                        torch.stack(
                            [
                                torch.sum(_br, dim=1, keepdim=True)
                                for _br in _branched_q2p
                            ]
                        ),
                        dim=0,
                    )

                    min_policy_qs[name] = torch.min(_q1p_mean, _q2p_mean)

        value_losses = []
        if self._action_spec.discrete_size <= 0:
            for name in values.keys():
                with torch.no_grad():
                    v_backup = min_policy_qs[name] - torch.sum(
                        _cont_ent_coef * log_probs.continuous_tensor, dim=1
                    )
                value_loss = 0.5 * ModelUtils.masked_mean(
                    torch.nn.functional.mse_loss(values[name], v_backup), loss_masks
                )
                value_losses.append(value_loss)
        else:
            disc_log_probs = log_probs.all_discrete_tensor
            branched_per_action_ent = ModelUtils.break_into_branches(
                disc_log_probs * disc_log_probs.exp(),
                self._action_spec.discrete_branches,
            )
            # We have to do entropy bonus per action branch
            branched_ent_bonus = torch.stack(
                [
                    torch.sum(_disc_ent_coef[i] * _lp, dim=1, keepdim=True)
                    for i, _lp in enumerate(branched_per_action_ent)
                ]
            )
            for name in values.keys():
                with torch.no_grad():
                    v_backup = min_policy_qs[name] - torch.mean(
                        branched_ent_bonus, axis=0
                    )
                    # Add continuous entropy bonus to minimum Q
                    if self._action_spec.continuous_size > 0:
                        v_backup += torch.sum(
                            _cont_ent_coef * log_probs.continuous_tensor,
                            dim=1,
                            keepdim=True,
                        )
                value_loss = 0.5 * ModelUtils.masked_mean(
                    torch.nn.functional.mse_loss(values[name], v_backup.squeeze()),
                    loss_masks,
                )
                value_losses.append(value_loss)
        value_loss = torch.mean(torch.stack(value_losses))
        if torch.isinf(value_loss).any() or torch.isnan(value_loss).any():
            raise UnityTrainerException("Inf found")
        return value_loss

    def sac_policy_loss(
        self,
        log_probs: ActionLogProbs,
        q1p_outs: Dict[str, torch.Tensor],
        loss_masks: torch.Tensor,
    ) -> torch.Tensor:
        _cont_ent_coef, _disc_ent_coef = (
            self._log_ent_coef.continuous,
            self._log_ent_coef.discrete,
        )
        _cont_ent_coef = _cont_ent_coef.exp()
        _disc_ent_coef = _disc_ent_coef.exp()

        mean_q1 = torch.mean(torch.stack(list(q1p_outs.values())), axis=0)
        batch_policy_loss = 0
        if self._action_spec.discrete_size > 0:
            disc_log_probs = log_probs.all_discrete_tensor
            disc_action_probs = disc_log_probs.exp()
            branched_per_action_ent = ModelUtils.break_into_branches(
                disc_log_probs * disc_action_probs, self._action_spec.discrete_branches
            )
            branched_q_term = ModelUtils.break_into_branches(
                mean_q1 * disc_action_probs, self._action_spec.discrete_branches
            )
            branched_policy_loss = torch.stack(
                [
                    torch.sum(_disc_ent_coef[i] * _lp - _qt, dim=1, keepdim=False)
                    for i, (_lp, _qt) in enumerate(
                        zip(branched_per_action_ent, branched_q_term)
                    )
                ],
                dim=1,
            )
            batch_policy_loss += torch.sum(branched_policy_loss, dim=1)
            all_mean_q1 = torch.sum(disc_action_probs * mean_q1, dim=1)
        else:
            all_mean_q1 = mean_q1
        if self._action_spec.continuous_size > 0:
            cont_log_probs = log_probs.continuous_tensor
            batch_policy_loss += (
                _cont_ent_coef * torch.sum(cont_log_probs, dim=1) - all_mean_q1
            )
        policy_loss = ModelUtils.masked_mean(batch_policy_loss, loss_masks)

        return policy_loss

    def sac_entropy_loss(
        self, log_probs: ActionLogProbs, loss_masks: torch.Tensor
    ) -> torch.Tensor:
        _cont_ent_coef, _disc_ent_coef = (
            self._log_ent_coef.continuous,
            self._log_ent_coef.discrete,
        )
        entropy_loss = 0
        if self._action_spec.discrete_size > 0:
            with torch.no_grad():
                # Break continuous into separate branch
                disc_log_probs = log_probs.all_discrete_tensor
                branched_per_action_ent = ModelUtils.break_into_branches(
                    disc_log_probs * disc_log_probs.exp(),
                    self._action_spec.discrete_branches,
                )
                target_current_diff_branched = torch.stack(
                    [
                        torch.sum(_lp, axis=1, keepdim=True) + _te
                        for _lp, _te in zip(
                            branched_per_action_ent, self.target_entropy.discrete
                        )
                    ],
                    axis=1,
                )
                target_current_diff = torch.squeeze(
                    target_current_diff_branched, axis=2
                )
            entropy_loss += -1 * ModelUtils.masked_mean(
                torch.mean(_disc_ent_coef * target_current_diff, axis=1), loss_masks
            )
        if self._action_spec.continuous_size > 0:
            with torch.no_grad():
                cont_log_probs = log_probs.continuous_tensor
                target_current_diff = (
                    torch.sum(cont_log_probs, dim=1) + self.target_entropy.continuous
                )
            # We update all the _cont_ent_coef as one block
            entropy_loss += -1 * ModelUtils.masked_mean(
                _cont_ent_coef * target_current_diff, loss_masks
            )

        return entropy_loss

    def _condense_q_streams(
        self, q_output: Dict[str, torch.Tensor], discrete_actions: torch.Tensor
    ) -> Dict[str, torch.Tensor]:
        condensed_q_output = {}
        onehot_actions = ModelUtils.actions_to_onehot(
            discrete_actions, self._action_spec.discrete_branches
        )
        for key, item in q_output.items():
            branched_q = ModelUtils.break_into_branches(
                item, self._action_spec.discrete_branches
            )
            only_action_qs = torch.stack(
                [
                    torch.sum(_act * _q, dim=1, keepdim=True)
                    for _act, _q in zip(onehot_actions, branched_q)
                ]
            )

            condensed_q_output[key] = torch.mean(only_action_qs, dim=0)
        return condensed_q_output

    @timed
    def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]:
        """
        Updates model using buffer.
        :param num_sequences: Number of trajectories in batch.
        :param batch: Experience mini-batch.
        :param update_target: Whether or not to update target value network
        :param reward_signal_batches: Minibatches to use for updating the reward signals,
            indexed by name. If none, don't update the reward signals.
        :return: Output from update process.
        """
        rewards = {}
        for name in self.reward_signals:
            rewards[name] = ModelUtils.list_to_tensor(
                batch[RewardSignalUtil.rewards_key(name)]
            )

        n_obs = len(self.policy.behavior_spec.observation_specs)
        current_obs = ObsUtil.from_buffer(batch, n_obs)
        # Convert to tensors
        current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs]

        next_obs = ObsUtil.from_buffer_next(batch, n_obs)
        # Convert to tensors
        next_obs = [ModelUtils.list_to_tensor(obs) for obs in next_obs]

        act_masks = ModelUtils.list_to_tensor(batch[BufferKey.ACTION_MASK])
        actions = AgentAction.from_buffer(batch)

        memories_list = [
            ModelUtils.list_to_tensor(batch[BufferKey.MEMORY][i])
            for i in range(0, len(batch[BufferKey.MEMORY]), self.policy.sequence_length)
        ]
        # LSTM shouldn't have sequence length <1, but stop it from going out of the index if true.
        value_memories_list = [
            ModelUtils.list_to_tensor(batch[BufferKey.CRITIC_MEMORY][i])
            for i in range(
                0, len(batch[BufferKey.CRITIC_MEMORY]), self.policy.sequence_length
            )
        ]

        if len(memories_list) > 0:
            memories = torch.stack(memories_list).unsqueeze(0)
            value_memories = torch.stack(value_memories_list).unsqueeze(0)
        else:
            memories = None
            value_memories = None

        # Q and V network memories are 0'ed out, since we don't have them during inference.
        q_memories = (
            torch.zeros_like(value_memories) if value_memories is not None else None
        )

        # Copy normalizers from policy
        self.q_network.q1_network.network_body.copy_normalization(
            self.policy.actor.network_body
        )
        self.q_network.q2_network.network_body.copy_normalization(
            self.policy.actor.network_body
        )
        self.target_network.network_body.copy_normalization(
            self.policy.actor.network_body
        )
        self._critic.network_body.copy_normalization(self.policy.actor.network_body)
        sampled_actions, run_out, _, = self.policy.actor.get_action_and_stats(
            current_obs,
            masks=act_masks,
            memories=memories,
            sequence_length=self.policy.sequence_length,
        )
        log_probs = run_out["log_probs"]
        value_estimates, _ = self._critic.critic_pass(
            current_obs, value_memories, sequence_length=self.policy.sequence_length
        )

        cont_sampled_actions = sampled_actions.continuous_tensor
        cont_actions = actions.continuous_tensor
        q1p_out, q2p_out = self.q_network(
            current_obs,
            cont_sampled_actions,
            memories=q_memories,
            sequence_length=self.policy.sequence_length,
            q2_grad=False,
        )
        q1_out, q2_out = self.q_network(
            current_obs,
            cont_actions,
            memories=q_memories,
            sequence_length=self.policy.sequence_length,
        )

        if self._action_spec.discrete_size > 0:
            disc_actions = actions.discrete_tensor
            q1_stream = self._condense_q_streams(q1_out, disc_actions)
            q2_stream = self._condense_q_streams(q2_out, disc_actions)
        else:
            q1_stream, q2_stream = q1_out, q2_out

        with torch.no_grad():
            # Since we didn't record the next value memories, evaluate one step in the critic to
            # get them.
            if value_memories is not None:
                # Get the first observation in each sequence
                just_first_obs = [
                    _obs[:: self.policy.sequence_length] for _obs in current_obs
                ]
                _, next_value_memories = self._critic.critic_pass(
                    just_first_obs, value_memories, sequence_length=1
                )
            else:
                next_value_memories = None
            target_values, _ = self.target_network(
                next_obs,
                memories=next_value_memories,
                sequence_length=self.policy.sequence_length,
            )
        masks = ModelUtils.list_to_tensor(batch[BufferKey.MASKS], dtype=torch.bool)
        dones = ModelUtils.list_to_tensor(batch[BufferKey.DONE])

        q1_loss, q2_loss = self.sac_q_loss(
            q1_stream, q2_stream, target_values, dones, rewards, masks
        )
        value_loss = self.sac_value_loss(
            log_probs, value_estimates, q1p_out, q2p_out, masks
        )
        policy_loss = self.sac_policy_loss(log_probs, q1p_out, masks)
        entropy_loss = self.sac_entropy_loss(log_probs, masks)

        total_value_loss = q1_loss + q2_loss + value_loss

        decay_lr = self.decay_learning_rate.get_value(self.policy.get_current_step())
        ModelUtils.update_learning_rate(self.policy_optimizer, decay_lr)
        self.policy_optimizer.zero_grad()
        policy_loss.backward()
        self.policy_optimizer.step()

        ModelUtils.update_learning_rate(self.value_optimizer, decay_lr)
        self.value_optimizer.zero_grad()
        total_value_loss.backward()
        self.value_optimizer.step()

        ModelUtils.update_learning_rate(self.entropy_optimizer, decay_lr)
        self.entropy_optimizer.zero_grad()
        entropy_loss.backward()
        self.entropy_optimizer.step()

        # Update target network
        ModelUtils.soft_update(self._critic, self.target_network, self.tau)
        update_stats = {
            "Losses/Policy Loss": policy_loss.item(),
            "Losses/Value Loss": value_loss.item(),
            "Losses/Q1 Loss": q1_loss.item(),
            "Losses/Q2 Loss": q2_loss.item(),
            "Policy/Discrete Entropy Coeff": torch.mean(
                torch.exp(self._log_ent_coef.discrete)
            ).item(),
            "Policy/Continuous Entropy Coeff": torch.mean(
                torch.exp(self._log_ent_coef.continuous)
            ).item(),
            "Policy/Learning Rate": decay_lr,
        }

        return update_stats

    def get_modules(self):
        modules = {
            "Optimizer:q_network": self.q_network,
            "Optimizer:value_network": self._critic,
            "Optimizer:target_network": self.target_network,
            "Optimizer:policy_optimizer": self.policy_optimizer,
            "Optimizer:value_optimizer": self.value_optimizer,
            "Optimizer:entropy_optimizer": self.entropy_optimizer,
        }
        for reward_provider in self.reward_signals.values():
            modules.update(reward_provider.get_modules())
        return modules