File size: 27,917 Bytes
b200bda
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
from mpmath import *
from mpmath.libmp import round_up, from_float, mpf_zeta_int

def test_zeta_int_bug():
    assert mpf_zeta_int(0, 10) == from_float(-0.5)

def test_bernoulli():
    assert bernfrac(0) == (1,1)
    assert bernfrac(1) == (-1,2)
    assert bernfrac(2) == (1,6)
    assert bernfrac(3) == (0,1)
    assert bernfrac(4) == (-1,30)
    assert bernfrac(5) == (0,1)
    assert bernfrac(6) == (1,42)
    assert bernfrac(8) == (-1,30)
    assert bernfrac(10) == (5,66)
    assert bernfrac(12) == (-691,2730)
    assert bernfrac(18) == (43867,798)
    p, q = bernfrac(228)
    assert p % 10**10 == 164918161
    assert q == 625170
    p, q = bernfrac(1000)
    assert p % 10**10 == 7950421099
    assert q == 342999030
    mp.dps = 15
    assert bernoulli(0) == 1
    assert bernoulli(1) == -0.5
    assert bernoulli(2).ae(1./6)
    assert bernoulli(3) == 0
    assert bernoulli(4).ae(-1./30)
    assert bernoulli(5) == 0
    assert bernoulli(6).ae(1./42)
    assert str(bernoulli(10)) == '0.0757575757575758'
    assert str(bernoulli(234)) == '7.62772793964344e+267'
    assert str(bernoulli(10**5)) == '-5.82229431461335e+376755'
    assert str(bernoulli(10**8+2)) == '1.19570355039953e+676752584'

    mp.dps = 50
    assert str(bernoulli(10)) == '0.075757575757575757575757575757575757575757575757576'
    assert str(bernoulli(234)) == '7.6277279396434392486994969020496121553385863373331e+267'
    assert str(bernoulli(10**5)) == '-5.8222943146133508236497045360612887555320691004308e+376755'
    assert str(bernoulli(10**8+2)) == '1.1957035503995297272263047884604346914602088317782e+676752584'

    mp.dps = 1000
    assert bernoulli(10).ae(mpf(5)/66)

    mp.dps = 50000
    assert bernoulli(10).ae(mpf(5)/66)

    mp.dps = 15

def test_bernpoly_eulerpoly():
    mp.dps = 15
    assert bernpoly(0,-1).ae(1)
    assert bernpoly(0,0).ae(1)
    assert bernpoly(0,'1/2').ae(1)
    assert bernpoly(0,'3/4').ae(1)
    assert bernpoly(0,1).ae(1)
    assert bernpoly(0,2).ae(1)
    assert bernpoly(1,-1).ae('-3/2')
    assert bernpoly(1,0).ae('-1/2')
    assert bernpoly(1,'1/2').ae(0)
    assert bernpoly(1,'3/4').ae('1/4')
    assert bernpoly(1,1).ae('1/2')
    assert bernpoly(1,2).ae('3/2')
    assert bernpoly(2,-1).ae('13/6')
    assert bernpoly(2,0).ae('1/6')
    assert bernpoly(2,'1/2').ae('-1/12')
    assert bernpoly(2,'3/4').ae('-1/48')
    assert bernpoly(2,1).ae('1/6')
    assert bernpoly(2,2).ae('13/6')
    assert bernpoly(3,-1).ae(-3)
    assert bernpoly(3,0).ae(0)
    assert bernpoly(3,'1/2').ae(0)
    assert bernpoly(3,'3/4').ae('-3/64')
    assert bernpoly(3,1).ae(0)
    assert bernpoly(3,2).ae(3)
    assert bernpoly(4,-1).ae('119/30')
    assert bernpoly(4,0).ae('-1/30')
    assert bernpoly(4,'1/2').ae('7/240')
    assert bernpoly(4,'3/4').ae('7/3840')
    assert bernpoly(4,1).ae('-1/30')
    assert bernpoly(4,2).ae('119/30')
    assert bernpoly(5,-1).ae(-5)
    assert bernpoly(5,0).ae(0)
    assert bernpoly(5,'1/2').ae(0)
    assert bernpoly(5,'3/4').ae('25/1024')
    assert bernpoly(5,1).ae(0)
    assert bernpoly(5,2).ae(5)
    assert bernpoly(10,-1).ae('665/66')
    assert bernpoly(10,0).ae('5/66')
    assert bernpoly(10,'1/2').ae('-2555/33792')
    assert bernpoly(10,'3/4').ae('-2555/34603008')
    assert bernpoly(10,1).ae('5/66')
    assert bernpoly(10,2).ae('665/66')
    assert bernpoly(11,-1).ae(-11)
    assert bernpoly(11,0).ae(0)
    assert bernpoly(11,'1/2').ae(0)
    assert bernpoly(11,'3/4').ae('-555731/4194304')
    assert bernpoly(11,1).ae(0)
    assert bernpoly(11,2).ae(11)
    assert eulerpoly(0,-1).ae(1)
    assert eulerpoly(0,0).ae(1)
    assert eulerpoly(0,'1/2').ae(1)
    assert eulerpoly(0,'3/4').ae(1)
    assert eulerpoly(0,1).ae(1)
    assert eulerpoly(0,2).ae(1)
    assert eulerpoly(1,-1).ae('-3/2')
    assert eulerpoly(1,0).ae('-1/2')
    assert eulerpoly(1,'1/2').ae(0)
    assert eulerpoly(1,'3/4').ae('1/4')
    assert eulerpoly(1,1).ae('1/2')
    assert eulerpoly(1,2).ae('3/2')
    assert eulerpoly(2,-1).ae(2)
    assert eulerpoly(2,0).ae(0)
    assert eulerpoly(2,'1/2').ae('-1/4')
    assert eulerpoly(2,'3/4').ae('-3/16')
    assert eulerpoly(2,1).ae(0)
    assert eulerpoly(2,2).ae(2)
    assert eulerpoly(3,-1).ae('-9/4')
    assert eulerpoly(3,0).ae('1/4')
    assert eulerpoly(3,'1/2').ae(0)
    assert eulerpoly(3,'3/4').ae('-11/64')
    assert eulerpoly(3,1).ae('-1/4')
    assert eulerpoly(3,2).ae('9/4')
    assert eulerpoly(4,-1).ae(2)
    assert eulerpoly(4,0).ae(0)
    assert eulerpoly(4,'1/2').ae('5/16')
    assert eulerpoly(4,'3/4').ae('57/256')
    assert eulerpoly(4,1).ae(0)
    assert eulerpoly(4,2).ae(2)
    assert eulerpoly(5,-1).ae('-3/2')
    assert eulerpoly(5,0).ae('-1/2')
    assert eulerpoly(5,'1/2').ae(0)
    assert eulerpoly(5,'3/4').ae('361/1024')
    assert eulerpoly(5,1).ae('1/2')
    assert eulerpoly(5,2).ae('3/2')
    assert eulerpoly(10,-1).ae(2)
    assert eulerpoly(10,0).ae(0)
    assert eulerpoly(10,'1/2').ae('-50521/1024')
    assert eulerpoly(10,'3/4').ae('-36581523/1048576')
    assert eulerpoly(10,1).ae(0)
    assert eulerpoly(10,2).ae(2)
    assert eulerpoly(11,-1).ae('-699/4')
    assert eulerpoly(11,0).ae('691/4')
    assert eulerpoly(11,'1/2').ae(0)
    assert eulerpoly(11,'3/4').ae('-512343611/4194304')
    assert eulerpoly(11,1).ae('-691/4')
    assert eulerpoly(11,2).ae('699/4')
    # Potential accuracy issues
    assert bernpoly(10000,10000).ae('5.8196915936323387117e+39999')
    assert bernpoly(200,17.5).ae(3.8048418524583064909e244)
    assert eulerpoly(200,17.5).ae(-3.7309911582655785929e275)

def test_gamma():
    mp.dps = 15
    assert gamma(0.25).ae(3.6256099082219083119)
    assert gamma(0.0001).ae(9999.4228832316241908)
    assert gamma(300).ae('1.0201917073881354535e612')
    assert gamma(-0.5).ae(-3.5449077018110320546)
    assert gamma(-7.43).ae(0.00026524416464197007186)
    #assert gamma(Rational(1,2)) == gamma(0.5)
    #assert gamma(Rational(-7,3)).ae(gamma(mpf(-7)/3))
    assert gamma(1+1j).ae(0.49801566811835604271 - 0.15494982830181068512j)
    assert gamma(-1+0.01j).ae(-0.422733904013474115 + 99.985883082635367436j)
    assert gamma(20+30j).ae(-1453876687.5534810 + 1163777777.8031573j)
    # Should always give exact factorials when they can
    # be represented as mpfs under the current working precision
    fact = 1
    for i in range(1, 18):
        assert gamma(i) == fact
        fact *= i
    for dps in [170, 600]:
        fact = 1
        mp.dps = dps
        for i in range(1, 105):
            assert gamma(i) == fact
            fact *= i
    mp.dps = 100
    assert gamma(0.5).ae(sqrt(pi))
    mp.dps = 15
    assert factorial(0) == fac(0) == 1
    assert factorial(3) == 6
    assert isnan(gamma(nan))
    assert gamma(1100).ae('4.8579168073569433667e2866')
    assert rgamma(0) == 0
    assert rgamma(-1) == 0
    assert rgamma(2) == 1.0
    assert rgamma(3) == 0.5
    assert loggamma(2+8j).ae(-8.5205176753667636926 + 10.8569497125597429366j)
    assert loggamma('1e10000').ae('2.302485092994045684017991e10004')
    assert loggamma('1e10000j').ae(mpc('-1.570796326794896619231322e10000','2.302485092994045684017991e10004'))

def test_fac2():
    mp.dps = 15
    assert [fac2(n) for n in range(10)] == [1,1,2,3,8,15,48,105,384,945]
    assert fac2(-5).ae(1./3)
    assert fac2(-11).ae(-1./945)
    assert fac2(50).ae(5.20469842636666623e32)
    assert fac2(0.5+0.75j).ae(0.81546769394688069176-0.34901016085573266889j)
    assert fac2(inf) == inf
    assert isnan(fac2(-inf))

def test_gamma_quotients():
    mp.dps = 15
    h = 1e-8
    ep = 1e-4
    G = gamma
    assert gammaprod([-1],[-3,-4]) == 0
    assert gammaprod([-1,0],[-5]) == inf
    assert abs(gammaprod([-1],[-2]) - G(-1+h)/G(-2+h)) < 1e-4
    assert abs(gammaprod([-4,-3],[-2,0]) - G(-4+h)*G(-3+h)/G(-2+h)/G(0+h)) < 1e-4
    assert rf(3,0) == 1
    assert rf(2.5,1) == 2.5
    assert rf(-5,2) == 20
    assert rf(j,j).ae(gamma(2*j)/gamma(j))
    assert rf('-255.5815971722918','-0.5119253100282322').ae('-0.1952720278805729485')  # issue 421
    assert ff(-2,0) == 1
    assert ff(-2,1) == -2
    assert ff(4,3) == 24
    assert ff(3,4) == 0
    assert binomial(0,0) == 1
    assert binomial(1,0) == 1
    assert binomial(0,-1) == 0
    assert binomial(3,2) == 3
    assert binomial(5,2) == 10
    assert binomial(5,3) == 10
    assert binomial(5,5) == 1
    assert binomial(-1,0) == 1
    assert binomial(-2,-4) == 3
    assert binomial(4.5, 1.5) == 6.5625
    assert binomial(1100,1) == 1100
    assert binomial(1100,2) == 604450
    assert beta(1,1) == 1
    assert beta(0,0) == inf
    assert beta(3,0) == inf
    assert beta(-1,-1) == inf
    assert beta(1.5,1).ae(2/3.)
    assert beta(1.5,2.5).ae(pi/16)
    assert (10**15*beta(10,100)).ae(2.3455339739604649879)
    assert beta(inf,inf) == 0
    assert isnan(beta(-inf,inf))
    assert isnan(beta(-3,inf))
    assert isnan(beta(0,inf))
    assert beta(inf,0.5) == beta(0.5,inf) == 0
    assert beta(inf,-1.5) == inf
    assert beta(inf,-0.5) == -inf
    assert beta(1+2j,-1-j/2).ae(1.16396542451069943086+0.08511695947832914640j)
    assert beta(-0.5,0.5) == 0
    assert beta(-3,3).ae(-1/3.)
    assert beta('-255.5815971722918','-0.5119253100282322').ae('18.157330562703710339')  # issue 421

def test_zeta():
    mp.dps = 15
    assert zeta(2).ae(pi**2 / 6)
    assert zeta(2.0).ae(pi**2 / 6)
    assert zeta(mpc(2)).ae(pi**2 / 6)
    assert zeta(100).ae(1)
    assert zeta(0).ae(-0.5)
    assert zeta(0.5).ae(-1.46035450880958681)
    assert zeta(-1).ae(-mpf(1)/12)
    assert zeta(-2) == 0
    assert zeta(-3).ae(mpf(1)/120)
    assert zeta(-4) == 0
    assert zeta(-100) == 0
    assert isnan(zeta(nan))
    assert zeta(1e-30).ae(-0.5)
    assert zeta(-1e-30).ae(-0.5)
    # Zeros in the critical strip
    assert zeta(mpc(0.5, 14.1347251417346937904)).ae(0)
    assert zeta(mpc(0.5, 21.0220396387715549926)).ae(0)
    assert zeta(mpc(0.5, 25.0108575801456887632)).ae(0)
    assert zeta(mpc(1e-30,1e-40)).ae(-0.5)
    assert zeta(mpc(-1e-30,1e-40)).ae(-0.5)
    mp.dps = 50
    im = '236.5242296658162058024755079556629786895294952121891237'
    assert zeta(mpc(0.5, im)).ae(0, 1e-46)
    mp.dps = 15
    # Complex reflection formula
    assert (zeta(-60+3j) / 10**34).ae(8.6270183987866146+15.337398548226238j)
    # issue #358
    assert zeta(0,0.5) == 0
    assert zeta(0,0) == 0.5
    assert zeta(0,0.5,1).ae(-0.34657359027997265)
    # see issue #390
    assert zeta(-1.5,0.5j).ae(-0.13671400162512768475 + 0.11411333638426559139j)

def test_altzeta():
    mp.dps = 15
    assert altzeta(-2) == 0
    assert altzeta(-4) == 0
    assert altzeta(-100) == 0
    assert altzeta(0) == 0.5
    assert altzeta(-1) == 0.25
    assert altzeta(-3) == -0.125
    assert altzeta(-5) == 0.25
    assert altzeta(-21) == 1180529130.25
    assert altzeta(1).ae(log(2))
    assert altzeta(2).ae(pi**2/12)
    assert altzeta(10).ae(73*pi**10/6842880)
    assert altzeta(50) < 1
    assert altzeta(60, rounding='d') < 1
    assert altzeta(60, rounding='u') == 1
    assert altzeta(10000, rounding='d') < 1
    assert altzeta(10000, rounding='u') == 1
    assert altzeta(3+0j) == altzeta(3)
    s = 3+4j
    assert altzeta(s).ae((1-2**(1-s))*zeta(s))
    s = -3+4j
    assert altzeta(s).ae((1-2**(1-s))*zeta(s))
    assert altzeta(-100.5).ae(4.58595480083585913e+108)
    assert altzeta(1.3).ae(0.73821404216623045)
    assert altzeta(1e-30).ae(0.5)
    assert altzeta(-1e-30).ae(0.5)
    assert altzeta(mpc(1e-30,1e-40)).ae(0.5)
    assert altzeta(mpc(-1e-30,1e-40)).ae(0.5)

def test_zeta_huge():
    mp.dps = 15
    assert zeta(inf) == 1
    mp.dps = 50
    assert zeta(100).ae('1.0000000000000000000000000000007888609052210118073522')
    assert zeta(40*pi).ae('1.0000000000000000000000000000000000000148407238666182')
    mp.dps = 10000
    v = zeta(33000)
    mp.dps = 15
    assert str(v-1) == '1.02363019598118e-9934'
    assert zeta(pi*1000, rounding=round_up) > 1
    assert zeta(3000, rounding=round_up) > 1
    assert zeta(pi*1000) == 1
    assert zeta(3000) == 1

def test_zeta_negative():
    mp.dps = 150
    a = -pi*10**40
    mp.dps = 15
    assert str(zeta(a)) == '2.55880492708712e+1233536161668617575553892558646631323374078'
    mp.dps = 50
    assert str(zeta(a)) == '2.5588049270871154960875033337384432038436330847333e+1233536161668617575553892558646631323374078'
    mp.dps = 15

def test_polygamma():
    mp.dps = 15
    psi0 = lambda z: psi(0,z)
    psi1 = lambda z: psi(1,z)
    assert psi0(3) == psi(0,3) == digamma(3)
    #assert psi2(3) == psi(2,3) == tetragamma(3)
    #assert psi3(3) == psi(3,3) == pentagamma(3)
    assert psi0(pi).ae(0.97721330794200673)
    assert psi0(-pi).ae(7.8859523853854902)
    assert psi0(-pi+1).ae(7.5676424992016996)
    assert psi0(pi+j).ae(1.04224048313859376 + 0.35853686544063749j)
    assert psi0(-pi-j).ae(1.3404026194821986 - 2.8824392476809402j)
    assert findroot(psi0, 1).ae(1.4616321449683622)
    assert psi0(1e-10).ae(-10000000000.57722)
    assert psi0(1e-40).ae(-1.000000000000000e+40)
    assert psi0(1e-10+1e-10j).ae(-5000000000.577215 + 5000000000.000000j)
    assert psi0(1e-40+1e-40j).ae(-5.000000000000000e+39 + 5.000000000000000e+39j)
    assert psi0(inf) == inf
    assert psi1(inf) == 0
    assert psi(2,inf) == 0
    assert psi1(pi).ae(0.37424376965420049)
    assert psi1(-pi).ae(53.030438740085385)
    assert psi1(pi+j).ae(0.32935710377142464 - 0.12222163911221135j)
    assert psi1(-pi-j).ae(-0.30065008356019703 + 0.01149892486928227j)
    assert (10**6*psi(4,1+10*pi*j)).ae(-6.1491803479004446 - 0.3921316371664063j)
    assert psi0(1+10*pi*j).ae(3.4473994217222650 + 1.5548808324857071j)
    assert isnan(psi0(nan))
    assert isnan(psi0(-inf))
    assert psi0(-100.5).ae(4.615124601338064)
    assert psi0(3+0j).ae(psi0(3))
    assert psi0(-100+3j).ae(4.6106071768714086321+3.1117510556817394626j)
    assert isnan(psi(2,mpc(0,inf)))
    assert isnan(psi(2,mpc(0,nan)))
    assert isnan(psi(2,mpc(0,-inf)))
    assert isnan(psi(2,mpc(1,inf)))
    assert isnan(psi(2,mpc(1,nan)))
    assert isnan(psi(2,mpc(1,-inf)))
    assert isnan(psi(2,mpc(inf,inf)))
    assert isnan(psi(2,mpc(nan,nan)))
    assert isnan(psi(2,mpc(-inf,-inf)))
    mp.dps = 30
    # issue #534
    assert digamma(-0.75+1j).ae(mpc('0.46317279488182026118963809283042317', '2.4821070143037957102007677817351115'))
    mp.dps = 15

def test_polygamma_high_prec():
    mp.dps = 100
    assert str(psi(0,pi)) == "0.9772133079420067332920694864061823436408346099943256380095232865318105924777141317302075654362928734"
    assert str(psi(10,pi)) == "-12.98876181434889529310283769414222588307175962213707170773803550518307617769657562747174101900659238"

def test_polygamma_identities():
    mp.dps = 15
    psi0 = lambda z: psi(0,z)
    psi1 = lambda z: psi(1,z)
    psi2 = lambda z: psi(2,z)
    assert psi0(0.5).ae(-euler-2*log(2))
    assert psi0(1).ae(-euler)
    assert psi1(0.5).ae(0.5*pi**2)
    assert psi1(1).ae(pi**2/6)
    assert psi1(0.25).ae(pi**2 + 8*catalan)
    assert psi2(1).ae(-2*apery)
    mp.dps = 20
    u = -182*apery+4*sqrt(3)*pi**3
    mp.dps = 15
    assert psi(2,5/6.).ae(u)
    assert psi(3,0.5).ae(pi**4)

def test_foxtrot_identity():
    # A test of the complex digamma function.
    # See http://mathworld.wolfram.com/FoxTrotSeries.html and
    # http://mathworld.wolfram.com/DigammaFunction.html
    psi0 = lambda z: psi(0,z)
    mp.dps = 50
    a = (-1)**fraction(1,3)
    b = (-1)**fraction(2,3)
    x = -psi0(0.5*a) - psi0(-0.5*b) + psi0(0.5*(1+a)) + psi0(0.5*(1-b))
    y = 2*pi*sech(0.5*sqrt(3)*pi)
    assert x.ae(y)
    mp.dps = 15

def test_polygamma_high_order():
    mp.dps = 100
    assert str(psi(50, pi)) == "-1344100348958402765749252447726432491812.641985273160531055707095989227897753035823152397679626136483"
    assert str(psi(50, pi + 14*e)) == "-0.00000000000000000189793739550804321623512073101895801993019919886375952881053090844591920308111549337295143780341396"
    assert str(psi(50, pi + 14*e*j)) == ("(-0.0000000000000000522516941152169248975225472155683565752375889510631513244785"
        "9377385233700094871256507814151956624433 - 0.00000000000000001813157041407010184"
        "702414110218205348527862196327980417757665282244728963891298080199341480881811613j)")
    mp.dps = 15
    assert str(psi(50, pi)) == "-1.34410034895841e+39"
    assert str(psi(50, pi + 14*e)) == "-1.89793739550804e-18"
    assert str(psi(50, pi + 14*e*j)) == "(-5.2251694115217e-17 - 1.81315704140701e-17j)"

def test_harmonic():
    mp.dps = 15
    assert harmonic(0) == 0
    assert harmonic(1) == 1
    assert harmonic(2) == 1.5
    assert harmonic(3).ae(1. + 1./2 + 1./3)
    assert harmonic(10**10).ae(23.603066594891989701)
    assert harmonic(10**1000).ae(2303.162308658947)
    assert harmonic(0.5).ae(2-2*log(2))
    assert harmonic(inf) == inf
    assert harmonic(2+0j) == 1.5+0j
    assert harmonic(1+2j).ae(1.4918071802755104+0.92080728264223022j)

def test_gamma_huge_1():
    mp.dps = 500
    x = mpf(10**10) / 7
    mp.dps = 15
    assert str(gamma(x)) == "6.26075321389519e+12458010678"
    mp.dps = 50
    assert str(gamma(x)) == "6.2607532138951929201303779291707455874010420783933e+12458010678"
    mp.dps = 15

def test_gamma_huge_2():
    mp.dps = 500
    x = mpf(10**100) / 19
    mp.dps = 15
    assert str(gamma(x)) == (\
        "1.82341134776679e+5172997469323364168990133558175077136829182824042201886051511"
        "9656908623426021308685461258226190190661")
    mp.dps = 50
    assert str(gamma(x)) == (\
        "1.82341134776678875374414910350027596939980412984e+5172997469323364168990133558"
        "1750771368291828240422018860515119656908623426021308685461258226190190661")

def test_gamma_huge_3():
    mp.dps = 500
    x = 10**80 // 3 + 10**70*j / 7
    mp.dps = 15
    y = gamma(x)
    assert str(y.real) == (\
        "-6.82925203918106e+2636286142112569524501781477865238132302397236429627932441916"
        "056964386399485392600")
    assert str(y.imag) == (\
        "8.54647143678418e+26362861421125695245017814778652381323023972364296279324419160"
        "56964386399485392600")
    mp.dps = 50
    y = gamma(x)
    assert str(y.real) == (\
        "-6.8292520391810548460682736226799637356016538421817e+26362861421125695245017814"
        "77865238132302397236429627932441916056964386399485392600")
    assert str(y.imag) == (\
        "8.5464714367841748507479306948130687511711420234015e+263628614211256952450178147"
        "7865238132302397236429627932441916056964386399485392600")

def test_gamma_huge_4():
    x = 3200+11500j
    mp.dps = 15
    assert str(gamma(x)) == \
        "(8.95783268539713e+5164 - 1.94678798329735e+5164j)"
    mp.dps = 50
    assert str(gamma(x)) == (\
        "(8.9578326853971339570292952697675570822206567327092e+5164"
        " - 1.9467879832973509568895402139429643650329524144794e+51"
        "64j)")
    mp.dps = 15

def test_gamma_huge_5():
    mp.dps = 500
    x = 10**60 * j / 3
    mp.dps = 15
    y = gamma(x)
    assert str(y.real) == "-3.27753899634941e-227396058973640224580963937571892628368354580620654233316839"
    assert str(y.imag) == "-7.1519888950416e-227396058973640224580963937571892628368354580620654233316841"
    mp.dps = 50
    y = gamma(x)
    assert str(y.real) == (\
        "-3.2775389963494132168950056995974690946983219123935e-22739605897364022458096393"
        "7571892628368354580620654233316839")
    assert str(y.imag) == (\
        "-7.1519888950415979749736749222530209713136588885897e-22739605897364022458096393"
        "7571892628368354580620654233316841")
    mp.dps = 15

def test_gamma_huge_7():
    mp.dps = 100
    a = 3 + j/mpf(10)**1000
    mp.dps = 15
    y = gamma(a)
    assert str(y.real) == "2.0"
    # wrong
    #assert str(y.imag) == "2.16735365342606e-1000"
    assert str(y.imag) == "1.84556867019693e-1000"
    mp.dps = 50
    y = gamma(a)
    assert str(y.real) == "2.0"
    #assert str(y.imag) == "2.1673536534260596065418805612488708028522563689298e-1000"
    assert str(y.imag) ==  "1.8455686701969342787869758198351951379156813281202e-1000"

def test_stieltjes():
    mp.dps = 15
    assert stieltjes(0).ae(+euler)
    mp.dps = 25
    assert stieltjes(1).ae('-0.07281584548367672486058637587')
    assert stieltjes(2).ae('-0.009690363192872318484530386035')
    assert stieltjes(3).ae('0.002053834420303345866160046543')
    assert stieltjes(4).ae('0.002325370065467300057468170178')
    mp.dps = 15
    assert stieltjes(1).ae(-0.07281584548367672486058637587)
    assert stieltjes(2).ae(-0.009690363192872318484530386035)
    assert stieltjes(3).ae(0.002053834420303345866160046543)
    assert stieltjes(4).ae(0.0023253700654673000574681701775)

def test_barnesg():
    mp.dps = 15
    assert barnesg(0) == barnesg(-1) == 0
    assert [superfac(i) for i in range(8)] == [1, 1, 2, 12, 288, 34560, 24883200, 125411328000]
    assert str(superfac(1000)) == '3.24570818422368e+1177245'
    assert isnan(barnesg(nan))
    assert isnan(superfac(nan))
    assert isnan(hyperfac(nan))
    assert barnesg(inf) == inf
    assert superfac(inf) == inf
    assert hyperfac(inf) == inf
    assert isnan(superfac(-inf))
    assert barnesg(0.7).ae(0.8068722730141471)
    assert barnesg(2+3j).ae(-0.17810213864082169+0.04504542715447838j)
    assert [hyperfac(n) for n in range(7)] == [1, 1, 4, 108, 27648, 86400000, 4031078400000]
    assert [hyperfac(n) for n in range(0,-7,-1)] == [1,1,-1,-4,108,27648,-86400000]
    a = barnesg(-3+0j)
    assert a == 0 and isinstance(a, mpc)
    a = hyperfac(-3+0j)
    assert a == -4 and isinstance(a, mpc)

def test_polylog():
    mp.dps = 15
    zs = [mpmathify(z) for z in [0, 0.5, 0.99, 4, -0.5, -4, 1j, 3+4j]]
    for z in zs: assert polylog(1, z).ae(-log(1-z))
    for z in zs: assert polylog(0, z).ae(z/(1-z))
    for z in zs: assert polylog(-1, z).ae(z/(1-z)**2)
    for z in zs: assert polylog(-2, z).ae(z*(1+z)/(1-z)**3)
    for z in zs: assert polylog(-3, z).ae(z*(1+4*z+z**2)/(1-z)**4)
    assert polylog(3, 7).ae(5.3192579921456754382-5.9479244480803301023j)
    assert polylog(3, -7).ae(-4.5693548977219423182)
    assert polylog(2, 0.9).ae(1.2997147230049587252)
    assert polylog(2, -0.9).ae(-0.75216317921726162037)
    assert polylog(2, 0.9j).ae(-0.17177943786580149299+0.83598828572550503226j)
    assert polylog(2, 1.1).ae(1.9619991013055685931-0.2994257606855892575j)
    assert polylog(2, -1.1).ae(-0.89083809026228260587)
    assert polylog(2, 1.1*sqrt(j)).ae(0.58841571107611387722+1.09962542118827026011j)
    assert polylog(-2, 0.9).ae(1710)
    assert polylog(-2, -0.9).ae(-90/6859.)
    assert polylog(3, 0.9).ae(1.0496589501864398696)
    assert polylog(-3, 0.9).ae(48690)
    assert polylog(-3, -4).ae(-0.0064)
    assert polylog(0.5+j/3, 0.5+j/2).ae(0.31739144796565650535 + 0.99255390416556261437j)
    assert polylog(3+4j,1).ae(zeta(3+4j))
    assert polylog(3+4j,-1).ae(-altzeta(3+4j))
    # issue 390
    assert polylog(1.5, -48.910886523731889).ae(-6.272992229311817)
    assert polylog(1.5, 200).ae(-8.349608319033686529 - 8.159694826434266042j)
    assert polylog(-2+0j, -2).ae(mpf(1)/13.5)
    assert polylog(-2+0j, 1.25).ae(-180)

def test_bell_polyexp():
    mp.dps = 15
    # TODO: more tests for polyexp
    assert (polyexp(0,1e-10)*10**10).ae(1.00000000005)
    assert (polyexp(1,1e-10)*10**10).ae(1.0000000001)
    assert polyexp(5,3j).ae(-607.7044517476176454+519.962786482001476087j)
    assert polyexp(-1,3.5).ae(12.09537536175543444)
    # bell(0,x) = 1
    assert bell(0,0) == 1
    assert bell(0,1) == 1
    assert bell(0,2) == 1
    assert bell(0,inf) == 1
    assert bell(0,-inf) == 1
    assert isnan(bell(0,nan))
    # bell(1,x) = x
    assert bell(1,4) == 4
    assert bell(1,0) == 0
    assert bell(1,inf) == inf
    assert bell(1,-inf) == -inf
    assert isnan(bell(1,nan))
    # bell(2,x) = x*(1+x)
    assert bell(2,-1) == 0
    assert bell(2,0) == 0
    # large orders / arguments
    assert bell(10) == 115975
    assert bell(10,1) == 115975
    assert bell(10, -8) == 11054008
    assert bell(5,-50) == -253087550
    assert bell(50,-50).ae('3.4746902914629720259e74')
    mp.dps = 80
    assert bell(50,-50) == 347469029146297202586097646631767227177164818163463279814268368579055777450
    assert bell(40,50) == 5575520134721105844739265207408344706846955281965031698187656176321717550
    assert bell(74) == 5006908024247925379707076470957722220463116781409659160159536981161298714301202
    mp.dps = 15
    assert bell(10,20j) == 7504528595600+15649605360020j
    # continuity of the generalization
    assert bell(0.5,0).ae(sinc(pi*0.5))

def test_primezeta():
    mp.dps = 15
    assert primezeta(0.9).ae(1.8388316154446882243 + 3.1415926535897932385j)
    assert primezeta(4).ae(0.076993139764246844943)
    assert primezeta(1) == inf
    assert primezeta(inf) == 0
    assert isnan(primezeta(nan))

def test_rs_zeta():
    mp.dps = 15
    assert zeta(0.5+100000j).ae(1.0730320148577531321 + 5.7808485443635039843j)
    assert zeta(0.75+100000j).ae(1.837852337251873704 + 1.9988492668661145358j)
    assert zeta(0.5+1000000j, derivative=3).ae(1647.7744105852674733 - 1423.1270943036622097j)
    assert zeta(1+1000000j, derivative=3).ae(3.4085866124523582894 - 18.179184721525947301j)
    assert zeta(1+1000000j, derivative=1).ae(-0.10423479366985452134 - 0.74728992803359056244j)
    assert zeta(0.5-1000000j, derivative=1).ae(11.636804066002521459 + 17.127254072212996004j)
    # Additional sanity tests using fp arithmetic.
    # Some more high-precision tests are found in the docstrings
    def ae(x, y, tol=1e-6):
        return abs(x-y) < tol*abs(y)
    assert ae(fp.zeta(0.5-100000j), 1.0730320148577531321 - 5.7808485443635039843j)
    assert ae(fp.zeta(0.75-100000j), 1.837852337251873704 - 1.9988492668661145358j)
    assert ae(fp.zeta(0.5+1e6j), 0.076089069738227100006 + 2.8051021010192989554j)
    assert ae(fp.zeta(0.5+1e6j, derivative=1), 11.636804066002521459 - 17.127254072212996004j)
    assert ae(fp.zeta(1+1e6j), 0.94738726251047891048 + 0.59421999312091832833j)
    assert ae(fp.zeta(1+1e6j, derivative=1), -0.10423479366985452134 - 0.74728992803359056244j)
    assert ae(fp.zeta(0.5+100000j, derivative=1), 10.766962036817482375 - 30.92705282105996714j)
    assert ae(fp.zeta(0.5+100000j, derivative=2), -119.40515625740538429 + 217.14780631141830251j)
    assert ae(fp.zeta(0.5+100000j, derivative=3), 1129.7550282628460881 - 1685.4736895169690346j)
    assert ae(fp.zeta(0.5+100000j, derivative=4), -10407.160819314958615 + 13777.786698628045085j)
    assert ae(fp.zeta(0.75+100000j, derivative=1), -0.41742276699594321475 - 6.4453816275049955949j)
    assert ae(fp.zeta(0.75+100000j, derivative=2), -9.214314279161977266 + 35.07290795337967899j)
    assert ae(fp.zeta(0.75+100000j, derivative=3), 110.61331857820103469 - 236.87847130518129926j)
    assert ae(fp.zeta(0.75+100000j, derivative=4), -1054.334275898559401 + 1769.9177890161596383j)

def test_siegelz():
    mp.dps = 15
    assert siegelz(100000).ae(5.87959246868176504171)
    assert siegelz(100000, derivative=2).ae(-54.1172711010126452832)
    assert siegelz(100000, derivative=3).ae(-278.930831343966552538)
    assert siegelz(100000+j,derivative=1).ae(678.214511857070283307-379.742160779916375413j)



def test_zeta_near_1():
    # Test for a former bug in mpf_zeta and mpc_zeta
    mp.dps = 15
    s1 = fadd(1, '1e-10', exact=True)
    s2 = fadd(1, '-1e-10', exact=True)
    s3 = fadd(1, '1e-10j', exact=True)
    assert zeta(s1).ae(1.000000000057721566490881444e10)
    assert zeta(s2).ae(-9.99999999942278433510574872e9)
    z = zeta(s3)
    assert z.real.ae(0.57721566490153286060)
    assert z.imag.ae(-9.9999999999999999999927184e9)
    mp.dps = 30
    s1 = fadd(1, '1e-50', exact=True)
    s2 = fadd(1, '-1e-50', exact=True)
    s3 = fadd(1, '1e-50j', exact=True)
    assert zeta(s1).ae('1e50')
    assert zeta(s2).ae('-1e50')
    z = zeta(s3)
    assert z.real.ae('0.57721566490153286060651209008240243104215933593992')
    assert z.imag.ae('-1e50')