File size: 6,973 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
"""

A sub-package for efficiently dealing with polynomials.



Within the documentation for this sub-package, a "finite power series,"

i.e., a polynomial (also referred to simply as a "series") is represented

by a 1-D numpy array of the polynomial's coefficients, ordered from lowest

order term to highest.  For example, array([1,2,3]) represents

``P_0 + 2*P_1 + 3*P_2``, where P_n is the n-th order basis polynomial

applicable to the specific module in question, e.g., `polynomial` (which

"wraps" the "standard" basis) or `chebyshev`.  For optimal performance,

all operations on polynomials, including evaluation at an argument, are

implemented as operations on the coefficients.  Additional (module-specific)

information can be found in the docstring for the module of interest.



This package provides *convenience classes* for each of six different kinds

of polynomials:



         ========================    ================

         **Name**                    **Provides**

         ========================    ================

         `~polynomial.Polynomial`    Power series

         `~chebyshev.Chebyshev`      Chebyshev series

         `~legendre.Legendre`        Legendre series

         `~laguerre.Laguerre`        Laguerre series

         `~hermite.Hermite`          Hermite series

         `~hermite_e.HermiteE`       HermiteE series

         ========================    ================



These *convenience classes* provide a consistent interface for creating,

manipulating, and fitting data with polynomials of different bases.

The convenience classes are the preferred interface for the `~numpy.polynomial`

package, and are available from the ``numpy.polynomial`` namespace.

This eliminates the need to navigate to the corresponding submodules, e.g.

``np.polynomial.Polynomial`` or ``np.polynomial.Chebyshev`` instead of

``np.polynomial.polynomial.Polynomial`` or

``np.polynomial.chebyshev.Chebyshev``, respectively.

The classes provide a more consistent and concise interface than the

type-specific functions defined in the submodules for each type of polynomial.

For example, to fit a Chebyshev polynomial with degree ``1`` to data given

by arrays ``xdata`` and ``ydata``, the

`~chebyshev.Chebyshev.fit` class method::



    >>> from numpy.polynomial import Chebyshev

    >>> c = Chebyshev.fit(xdata, ydata, deg=1)



is preferred over the `chebyshev.chebfit` function from the

``np.polynomial.chebyshev`` module::



    >>> from numpy.polynomial.chebyshev import chebfit

    >>> c = chebfit(xdata, ydata, deg=1)



See :doc:`routines.polynomials.classes` for more details.



Convenience Classes

===================



The following lists the various constants and methods common to all of

the classes representing the various kinds of polynomials. In the following,

the term ``Poly`` represents any one of the convenience classes (e.g.

`~polynomial.Polynomial`, `~chebyshev.Chebyshev`, `~hermite.Hermite`, etc.)

while the lowercase ``p`` represents an **instance** of a polynomial class.



Constants

---------



- ``Poly.domain``     -- Default domain

- ``Poly.window``     -- Default window

- ``Poly.basis_name`` -- String used to represent the basis

- ``Poly.maxpower``   -- Maximum value ``n`` such that ``p**n`` is allowed

- ``Poly.nickname``   -- String used in printing



Creation

--------



Methods for creating polynomial instances.



- ``Poly.basis(degree)``    -- Basis polynomial of given degree

- ``Poly.identity()``       -- ``p`` where ``p(x) = x`` for all ``x``

- ``Poly.fit(x, y, deg)``   -- ``p`` of degree ``deg`` with coefficients

  determined by the least-squares fit to the data ``x``, ``y``

- ``Poly.fromroots(roots)`` -- ``p`` with specified roots

- ``p.copy()``              -- Create a copy of ``p``



Conversion

----------



Methods for converting a polynomial instance of one kind to another.



- ``p.cast(Poly)``    -- Convert ``p`` to instance of kind ``Poly``

- ``p.convert(Poly)`` -- Convert ``p`` to instance of kind ``Poly`` or map

  between ``domain`` and ``window``



Calculus

--------

- ``p.deriv()`` -- Take the derivative of ``p``

- ``p.integ()`` -- Integrate ``p``



Validation

----------

- ``Poly.has_samecoef(p1, p2)``   -- Check if coefficients match

- ``Poly.has_samedomain(p1, p2)`` -- Check if domains match

- ``Poly.has_sametype(p1, p2)``   -- Check if types match

- ``Poly.has_samewindow(p1, p2)`` -- Check if windows match



Misc

----

- ``p.linspace()`` -- Return ``x, p(x)`` at equally-spaced points in ``domain``

- ``p.mapparms()`` -- Return the parameters for the linear mapping between

  ``domain`` and ``window``.

- ``p.roots()``    -- Return the roots of `p`.

- ``p.trim()``     -- Remove trailing coefficients.

- ``p.cutdeg(degree)`` -- Truncate p to given degree

- ``p.truncate(size)`` -- Truncate p to given size



"""
from .polynomial import Polynomial
from .chebyshev import Chebyshev
from .legendre import Legendre
from .hermite import Hermite
from .hermite_e import HermiteE
from .laguerre import Laguerre

__all__ = [
    "set_default_printstyle",
    "polynomial", "Polynomial",
    "chebyshev", "Chebyshev",
    "legendre", "Legendre",
    "hermite", "Hermite",
    "hermite_e", "HermiteE",
    "laguerre", "Laguerre",
]


def set_default_printstyle(style):
    """

    Set the default format for the string representation of polynomials.



    Values for ``style`` must be valid inputs to ``__format__``, i.e. 'ascii'

    or 'unicode'.



    Parameters

    ----------

    style : str

        Format string for default printing style. Must be either 'ascii' or

        'unicode'.



    Notes

    -----

    The default format depends on the platform: 'unicode' is used on

    Unix-based systems and 'ascii' on Windows. This determination is based on

    default font support for the unicode superscript and subscript ranges.



    Examples

    --------

    >>> p = np.polynomial.Polynomial([1, 2, 3])

    >>> c = np.polynomial.Chebyshev([1, 2, 3])

    >>> np.polynomial.set_default_printstyle('unicode')

    >>> print(p)

    1.0 + 2.0·x¹ + 3.0·x²

    >>> print(c)

    1.0 + 2.0·T₁(x) + 3.0·T₂(x)

    >>> np.polynomial.set_default_printstyle('ascii')

    >>> print(p)

    1.0 + 2.0 x**1 + 3.0 x**2

    >>> print(c)

    1.0 + 2.0 T_1(x) + 3.0 T_2(x)

    >>> # Formatting supercedes all class/package-level defaults

    >>> print(f"{p:unicode}")

    1.0 + 2.0·x¹ + 3.0·x²

    """
    if style not in ('unicode', 'ascii'):
        raise ValueError(
            f"Unsupported format string '{style}'. Valid options are 'ascii' "
            f"and 'unicode'"
        )
    _use_unicode = True
    if style == 'ascii':
        _use_unicode = False
    from ._polybase import ABCPolyBase
    ABCPolyBase._use_unicode = _use_unicode


from numpy._pytesttester import PytestTester
test = PytestTester(__name__)
del PytestTester