File size: 22,857 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
"""

Utility classes and functions for the polynomial modules.



This module provides: error and warning objects; a polynomial base class;

and some routines used in both the `polynomial` and `chebyshev` modules.



Warning objects

---------------



.. autosummary::

   :toctree: generated/



   RankWarning  raised in least-squares fit for rank-deficient matrix.



Functions

---------



.. autosummary::

   :toctree: generated/



   as_series    convert list of array_likes into 1-D arrays of common type.

   trimseq      remove trailing zeros.

   trimcoef     remove small trailing coefficients.

   getdomain    return the domain appropriate for a given set of abscissae.

   mapdomain    maps points between domains.

   mapparms     parameters of the linear map between domains.



"""
import operator
import functools
import warnings

import numpy as np

__all__ = [
    'RankWarning', 'as_series', 'trimseq',
    'trimcoef', 'getdomain', 'mapdomain', 'mapparms']

#
# Warnings and Exceptions
#

class RankWarning(UserWarning):
    """Issued by chebfit when the design matrix is rank deficient."""
    pass

#
# Helper functions to convert inputs to 1-D arrays
#
def trimseq(seq):
    """Remove small Poly series coefficients.



    Parameters

    ----------

    seq : sequence

        Sequence of Poly series coefficients. This routine fails for

        empty sequences.



    Returns

    -------

    series : sequence

        Subsequence with trailing zeros removed. If the resulting sequence

        would be empty, return the first element. The returned sequence may

        or may not be a view.



    Notes

    -----

    Do not lose the type info if the sequence contains unknown objects.



    """
    if len(seq) == 0:
        return seq
    else:
        for i in range(len(seq) - 1, -1, -1):
            if seq[i] != 0:
                break
        return seq[:i+1]


def as_series(alist, trim=True):
    """

    Return argument as a list of 1-d arrays.



    The returned list contains array(s) of dtype double, complex double, or

    object.  A 1-d argument of shape ``(N,)`` is parsed into ``N`` arrays of

    size one; a 2-d argument of shape ``(M,N)`` is parsed into ``M`` arrays

    of size ``N`` (i.e., is "parsed by row"); and a higher dimensional array

    raises a Value Error if it is not first reshaped into either a 1-d or 2-d

    array.



    Parameters

    ----------

    alist : array_like

        A 1- or 2-d array_like

    trim : boolean, optional

        When True, trailing zeros are removed from the inputs.

        When False, the inputs are passed through intact.



    Returns

    -------

    [a1, a2,...] : list of 1-D arrays

        A copy of the input data as a list of 1-d arrays.



    Raises

    ------

    ValueError

        Raised when `as_series` cannot convert its input to 1-d arrays, or at

        least one of the resulting arrays is empty.



    Examples

    --------

    >>> from numpy.polynomial import polyutils as pu

    >>> a = np.arange(4)

    >>> pu.as_series(a)

    [array([0.]), array([1.]), array([2.]), array([3.])]

    >>> b = np.arange(6).reshape((2,3))

    >>> pu.as_series(b)

    [array([0., 1., 2.]), array([3., 4., 5.])]



    >>> pu.as_series((1, np.arange(3), np.arange(2, dtype=np.float16)))

    [array([1.]), array([0., 1., 2.]), array([0., 1.])]



    >>> pu.as_series([2, [1.1, 0.]])

    [array([2.]), array([1.1])]



    >>> pu.as_series([2, [1.1, 0.]], trim=False)

    [array([2.]), array([1.1, 0. ])]



    """
    arrays = [np.array(a, ndmin=1, copy=False) for a in alist]
    if min([a.size for a in arrays]) == 0:
        raise ValueError("Coefficient array is empty")
    if any(a.ndim != 1 for a in arrays):
        raise ValueError("Coefficient array is not 1-d")
    if trim:
        arrays = [trimseq(a) for a in arrays]

    if any(a.dtype == np.dtype(object) for a in arrays):
        ret = []
        for a in arrays:
            if a.dtype != np.dtype(object):
                tmp = np.empty(len(a), dtype=np.dtype(object))
                tmp[:] = a[:]
                ret.append(tmp)
            else:
                ret.append(a.copy())
    else:
        try:
            dtype = np.common_type(*arrays)
        except Exception as e:
            raise ValueError("Coefficient arrays have no common type") from e
        ret = [np.array(a, copy=True, dtype=dtype) for a in arrays]
    return ret


def trimcoef(c, tol=0):
    """

    Remove "small" "trailing" coefficients from a polynomial.



    "Small" means "small in absolute value" and is controlled by the

    parameter `tol`; "trailing" means highest order coefficient(s), e.g., in

    ``[0, 1, 1, 0, 0]`` (which represents ``0 + x + x**2 + 0*x**3 + 0*x**4``)

    both the 3-rd and 4-th order coefficients would be "trimmed."



    Parameters

    ----------

    c : array_like

        1-d array of coefficients, ordered from lowest order to highest.

    tol : number, optional

        Trailing (i.e., highest order) elements with absolute value less

        than or equal to `tol` (default value is zero) are removed.



    Returns

    -------

    trimmed : ndarray

        1-d array with trailing zeros removed.  If the resulting series

        would be empty, a series containing a single zero is returned.



    Raises

    ------

    ValueError

        If `tol` < 0



    See Also

    --------

    trimseq



    Examples

    --------

    >>> from numpy.polynomial import polyutils as pu

    >>> pu.trimcoef((0,0,3,0,5,0,0))

    array([0.,  0.,  3.,  0.,  5.])

    >>> pu.trimcoef((0,0,1e-3,0,1e-5,0,0),1e-3) # item == tol is trimmed

    array([0.])

    >>> i = complex(0,1) # works for complex

    >>> pu.trimcoef((3e-4,1e-3*(1-i),5e-4,2e-5*(1+i)), 1e-3)

    array([0.0003+0.j   , 0.001 -0.001j])



    """
    if tol < 0:
        raise ValueError("tol must be non-negative")

    [c] = as_series([c])
    [ind] = np.nonzero(np.abs(c) > tol)
    if len(ind) == 0:
        return c[:1]*0
    else:
        return c[:ind[-1] + 1].copy()

def getdomain(x):
    """

    Return a domain suitable for given abscissae.



    Find a domain suitable for a polynomial or Chebyshev series

    defined at the values supplied.



    Parameters

    ----------

    x : array_like

        1-d array of abscissae whose domain will be determined.



    Returns

    -------

    domain : ndarray

        1-d array containing two values.  If the inputs are complex, then

        the two returned points are the lower left and upper right corners

        of the smallest rectangle (aligned with the axes) in the complex

        plane containing the points `x`. If the inputs are real, then the

        two points are the ends of the smallest interval containing the

        points `x`.



    See Also

    --------

    mapparms, mapdomain



    Examples

    --------

    >>> from numpy.polynomial import polyutils as pu

    >>> points = np.arange(4)**2 - 5; points

    array([-5, -4, -1,  4])

    >>> pu.getdomain(points)

    array([-5.,  4.])

    >>> c = np.exp(complex(0,1)*np.pi*np.arange(12)/6) # unit circle

    >>> pu.getdomain(c)

    array([-1.-1.j,  1.+1.j])



    """
    [x] = as_series([x], trim=False)
    if x.dtype.char in np.typecodes['Complex']:
        rmin, rmax = x.real.min(), x.real.max()
        imin, imax = x.imag.min(), x.imag.max()
        return np.array((complex(rmin, imin), complex(rmax, imax)))
    else:
        return np.array((x.min(), x.max()))

def mapparms(old, new):
    """

    Linear map parameters between domains.



    Return the parameters of the linear map ``offset + scale*x`` that maps

    `old` to `new` such that ``old[i] -> new[i]``, ``i = 0, 1``.



    Parameters

    ----------

    old, new : array_like

        Domains. Each domain must (successfully) convert to a 1-d array

        containing precisely two values.



    Returns

    -------

    offset, scale : scalars

        The map ``L(x) = offset + scale*x`` maps the first domain to the

        second.



    See Also

    --------

    getdomain, mapdomain



    Notes

    -----

    Also works for complex numbers, and thus can be used to calculate the

    parameters required to map any line in the complex plane to any other

    line therein.



    Examples

    --------

    >>> from numpy.polynomial import polyutils as pu

    >>> pu.mapparms((-1,1),(-1,1))

    (0.0, 1.0)

    >>> pu.mapparms((1,-1),(-1,1))

    (-0.0, -1.0)

    >>> i = complex(0,1)

    >>> pu.mapparms((-i,-1),(1,i))

    ((1+1j), (1-0j))



    """
    oldlen = old[1] - old[0]
    newlen = new[1] - new[0]
    off = (old[1]*new[0] - old[0]*new[1])/oldlen
    scl = newlen/oldlen
    return off, scl

def mapdomain(x, old, new):
    """

    Apply linear map to input points.



    The linear map ``offset + scale*x`` that maps the domain `old` to

    the domain `new` is applied to the points `x`.



    Parameters

    ----------

    x : array_like

        Points to be mapped. If `x` is a subtype of ndarray the subtype

        will be preserved.

    old, new : array_like

        The two domains that determine the map.  Each must (successfully)

        convert to 1-d arrays containing precisely two values.



    Returns

    -------

    x_out : ndarray

        Array of points of the same shape as `x`, after application of the

        linear map between the two domains.



    See Also

    --------

    getdomain, mapparms



    Notes

    -----

    Effectively, this implements:



    .. math ::

        x\\_out = new[0] + m(x - old[0])



    where



    .. math ::

        m = \\frac{new[1]-new[0]}{old[1]-old[0]}



    Examples

    --------

    >>> from numpy.polynomial import polyutils as pu

    >>> old_domain = (-1,1)

    >>> new_domain = (0,2*np.pi)

    >>> x = np.linspace(-1,1,6); x

    array([-1. , -0.6, -0.2,  0.2,  0.6,  1. ])

    >>> x_out = pu.mapdomain(x, old_domain, new_domain); x_out

    array([ 0.        ,  1.25663706,  2.51327412,  3.76991118,  5.02654825, # may vary

            6.28318531])

    >>> x - pu.mapdomain(x_out, new_domain, old_domain)

    array([0., 0., 0., 0., 0., 0.])



    Also works for complex numbers (and thus can be used to map any line in

    the complex plane to any other line therein).



    >>> i = complex(0,1)

    >>> old = (-1 - i, 1 + i)

    >>> new = (-1 + i, 1 - i)

    >>> z = np.linspace(old[0], old[1], 6); z

    array([-1. -1.j , -0.6-0.6j, -0.2-0.2j,  0.2+0.2j,  0.6+0.6j,  1. +1.j ])

    >>> new_z = pu.mapdomain(z, old, new); new_z

    array([-1.0+1.j , -0.6+0.6j, -0.2+0.2j,  0.2-0.2j,  0.6-0.6j,  1.0-1.j ]) # may vary



    """
    x = np.asanyarray(x)
    off, scl = mapparms(old, new)
    return off + scl*x


def _nth_slice(i, ndim):
    sl = [np.newaxis] * ndim
    sl[i] = slice(None)
    return tuple(sl)


def _vander_nd(vander_fs, points, degrees):
    r"""

    A generalization of the Vandermonde matrix for N dimensions



    The result is built by combining the results of 1d Vandermonde matrices,



    .. math::

        W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{V_k(x_k)[i_0, \ldots, i_M, j_k]}



    where



    .. math::

        N &= \texttt{len(points)} = \texttt{len(degrees)} = \texttt{len(vander\_fs)} \\

        M &= \texttt{points[k].ndim} \\

        V_k &= \texttt{vander\_fs[k]} \\

        x_k &= \texttt{points[k]} \\

        0 \le j_k &\le \texttt{degrees[k]}



    Expanding the one-dimensional :math:`V_k` functions gives:



    .. math::

        W[i_0, \ldots, i_M, j_0, \ldots, j_N] = \prod_{k=0}^N{B_{k, j_k}(x_k[i_0, \ldots, i_M])}



    where :math:`B_{k,m}` is the m'th basis of the polynomial construction used along

    dimension :math:`k`. For a regular polynomial, :math:`B_{k, m}(x) = P_m(x) = x^m`.



    Parameters

    ----------

    vander_fs : Sequence[function(array_like, int) -> ndarray]

        The 1d vander function to use for each axis, such as ``polyvander``

    points : Sequence[array_like]

        Arrays of point coordinates, all of the same shape. The dtypes

        will be converted to either float64 or complex128 depending on

        whether any of the elements are complex. Scalars are converted to

        1-D arrays.

        This must be the same length as `vander_fs`.

    degrees : Sequence[int]

        The maximum degree (inclusive) to use for each axis.

        This must be the same length as `vander_fs`.



    Returns

    -------

    vander_nd : ndarray

        An array of shape ``points[0].shape + tuple(d + 1 for d in degrees)``.

    """
    n_dims = len(vander_fs)
    if n_dims != len(points):
        raise ValueError(
            f"Expected {n_dims} dimensions of sample points, got {len(points)}")
    if n_dims != len(degrees):
        raise ValueError(
            f"Expected {n_dims} dimensions of degrees, got {len(degrees)}")
    if n_dims == 0:
        raise ValueError("Unable to guess a dtype or shape when no points are given")

    # convert to the same shape and type
    points = tuple(np.array(tuple(points), copy=False) + 0.0)

    # produce the vandermonde matrix for each dimension, placing the last
    # axis of each in an independent trailing axis of the output
    vander_arrays = (
        vander_fs[i](points[i], degrees[i])[(...,) + _nth_slice(i, n_dims)]
        for i in range(n_dims)
    )

    # we checked this wasn't empty already, so no `initial` needed
    return functools.reduce(operator.mul, vander_arrays)


def _vander_nd_flat(vander_fs, points, degrees):
    """

    Like `_vander_nd`, but flattens the last ``len(degrees)`` axes into a single axis



    Used to implement the public ``<type>vander<n>d`` functions.

    """
    v = _vander_nd(vander_fs, points, degrees)
    return v.reshape(v.shape[:-len(degrees)] + (-1,))


def _fromroots(line_f, mul_f, roots):
    """

    Helper function used to implement the ``<type>fromroots`` functions.



    Parameters

    ----------

    line_f : function(float, float) -> ndarray

        The ``<type>line`` function, such as ``polyline``

    mul_f : function(array_like, array_like) -> ndarray

        The ``<type>mul`` function, such as ``polymul``

    roots

        See the ``<type>fromroots`` functions for more detail

    """
    if len(roots) == 0:
        return np.ones(1)
    else:
        [roots] = as_series([roots], trim=False)
        roots.sort()
        p = [line_f(-r, 1) for r in roots]
        n = len(p)
        while n > 1:
            m, r = divmod(n, 2)
            tmp = [mul_f(p[i], p[i+m]) for i in range(m)]
            if r:
                tmp[0] = mul_f(tmp[0], p[-1])
            p = tmp
            n = m
        return p[0]


def _valnd(val_f, c, *args):
    """

    Helper function used to implement the ``<type>val<n>d`` functions.



    Parameters

    ----------

    val_f : function(array_like, array_like, tensor: bool) -> array_like

        The ``<type>val`` function, such as ``polyval``

    c, args

        See the ``<type>val<n>d`` functions for more detail

    """
    args = [np.asanyarray(a) for a in args]
    shape0 = args[0].shape
    if not all((a.shape == shape0 for a in args[1:])):
        if len(args) == 3:
            raise ValueError('x, y, z are incompatible')
        elif len(args) == 2:
            raise ValueError('x, y are incompatible')
        else:
            raise ValueError('ordinates are incompatible')
    it = iter(args)
    x0 = next(it)

    # use tensor on only the first
    c = val_f(x0, c)
    for xi in it:
        c = val_f(xi, c, tensor=False)
    return c


def _gridnd(val_f, c, *args):
    """

    Helper function used to implement the ``<type>grid<n>d`` functions.



    Parameters

    ----------

    val_f : function(array_like, array_like, tensor: bool) -> array_like

        The ``<type>val`` function, such as ``polyval``

    c, args

        See the ``<type>grid<n>d`` functions for more detail

    """
    for xi in args:
        c = val_f(xi, c)
    return c


def _div(mul_f, c1, c2):
    """

    Helper function used to implement the ``<type>div`` functions.



    Implementation uses repeated subtraction of c2 multiplied by the nth basis.

    For some polynomial types, a more efficient approach may be possible.



    Parameters

    ----------

    mul_f : function(array_like, array_like) -> array_like

        The ``<type>mul`` function, such as ``polymul``

    c1, c2

        See the ``<type>div`` functions for more detail

    """
    # c1, c2 are trimmed copies
    [c1, c2] = as_series([c1, c2])
    if c2[-1] == 0:
        raise ZeroDivisionError()

    lc1 = len(c1)
    lc2 = len(c2)
    if lc1 < lc2:
        return c1[:1]*0, c1
    elif lc2 == 1:
        return c1/c2[-1], c1[:1]*0
    else:
        quo = np.empty(lc1 - lc2 + 1, dtype=c1.dtype)
        rem = c1
        for i in range(lc1 - lc2, - 1, -1):
            p = mul_f([0]*i + [1], c2)
            q = rem[-1]/p[-1]
            rem = rem[:-1] - q*p[:-1]
            quo[i] = q
        return quo, trimseq(rem)


def _add(c1, c2):
    """ Helper function used to implement the ``<type>add`` functions. """
    # c1, c2 are trimmed copies
    [c1, c2] = as_series([c1, c2])
    if len(c1) > len(c2):
        c1[:c2.size] += c2
        ret = c1
    else:
        c2[:c1.size] += c1
        ret = c2
    return trimseq(ret)


def _sub(c1, c2):
    """ Helper function used to implement the ``<type>sub`` functions. """
    # c1, c2 are trimmed copies
    [c1, c2] = as_series([c1, c2])
    if len(c1) > len(c2):
        c1[:c2.size] -= c2
        ret = c1
    else:
        c2 = -c2
        c2[:c1.size] += c1
        ret = c2
    return trimseq(ret)


def _fit(vander_f, x, y, deg, rcond=None, full=False, w=None):
    """

    Helper function used to implement the ``<type>fit`` functions.



    Parameters

    ----------

    vander_f : function(array_like, int) -> ndarray

        The 1d vander function, such as ``polyvander``

    c1, c2

        See the ``<type>fit`` functions for more detail

    """
    x = np.asarray(x) + 0.0
    y = np.asarray(y) + 0.0
    deg = np.asarray(deg)

    # check arguments.
    if deg.ndim > 1 or deg.dtype.kind not in 'iu' or deg.size == 0:
        raise TypeError("deg must be an int or non-empty 1-D array of int")
    if deg.min() < 0:
        raise ValueError("expected deg >= 0")
    if x.ndim != 1:
        raise TypeError("expected 1D vector for x")
    if x.size == 0:
        raise TypeError("expected non-empty vector for x")
    if y.ndim < 1 or y.ndim > 2:
        raise TypeError("expected 1D or 2D array for y")
    if len(x) != len(y):
        raise TypeError("expected x and y to have same length")

    if deg.ndim == 0:
        lmax = deg
        order = lmax + 1
        van = vander_f(x, lmax)
    else:
        deg = np.sort(deg)
        lmax = deg[-1]
        order = len(deg)
        van = vander_f(x, lmax)[:, deg]

    # set up the least squares matrices in transposed form
    lhs = van.T
    rhs = y.T
    if w is not None:
        w = np.asarray(w) + 0.0
        if w.ndim != 1:
            raise TypeError("expected 1D vector for w")
        if len(x) != len(w):
            raise TypeError("expected x and w to have same length")
        # apply weights. Don't use inplace operations as they
        # can cause problems with NA.
        lhs = lhs * w
        rhs = rhs * w

    # set rcond
    if rcond is None:
        rcond = len(x)*np.finfo(x.dtype).eps

    # Determine the norms of the design matrix columns.
    if issubclass(lhs.dtype.type, np.complexfloating):
        scl = np.sqrt((np.square(lhs.real) + np.square(lhs.imag)).sum(1))
    else:
        scl = np.sqrt(np.square(lhs).sum(1))
    scl[scl == 0] = 1

    # Solve the least squares problem.
    c, resids, rank, s = np.linalg.lstsq(lhs.T/scl, rhs.T, rcond)
    c = (c.T/scl).T

    # Expand c to include non-fitted coefficients which are set to zero
    if deg.ndim > 0:
        if c.ndim == 2:
            cc = np.zeros((lmax+1, c.shape[1]), dtype=c.dtype)
        else:
            cc = np.zeros(lmax+1, dtype=c.dtype)
        cc[deg] = c
        c = cc

    # warn on rank reduction
    if rank != order and not full:
        msg = "The fit may be poorly conditioned"
        warnings.warn(msg, RankWarning, stacklevel=2)

    if full:
        return c, [resids, rank, s, rcond]
    else:
        return c


def _pow(mul_f, c, pow, maxpower):
    """

    Helper function used to implement the ``<type>pow`` functions.



    Parameters

    ----------

    mul_f : function(array_like, array_like) -> ndarray

        The ``<type>mul`` function, such as ``polymul``

    c : array_like

        1-D array of array of series coefficients

    pow, maxpower

        See the ``<type>pow`` functions for more detail

    """
    # c is a trimmed copy
    [c] = as_series([c])
    power = int(pow)
    if power != pow or power < 0:
        raise ValueError("Power must be a non-negative integer.")
    elif maxpower is not None and power > maxpower:
        raise ValueError("Power is too large")
    elif power == 0:
        return np.array([1], dtype=c.dtype)
    elif power == 1:
        return c
    else:
        # This can be made more efficient by using powers of two
        # in the usual way.
        prd = c
        for i in range(2, power + 1):
            prd = mul_f(prd, c)
        return prd


def _deprecate_as_int(x, desc):
    """

    Like `operator.index`, but emits a deprecation warning when passed a float



    Parameters

    ----------

    x : int-like, or float with integral value

        Value to interpret as an integer

    desc : str

        description to include in any error message



    Raises

    ------

    TypeError : if x is a non-integral float or non-numeric

    DeprecationWarning : if x is an integral float

    """
    try:
        return operator.index(x)
    except TypeError as e:
        # Numpy 1.17.0, 2019-03-11
        try:
            ix = int(x)
        except TypeError:
            pass
        else:
            if ix == x:
                warnings.warn(
                    f"In future, this will raise TypeError, as {desc} will "
                    "need to be an integer not just an integral float.",
                    DeprecationWarning,
                    stacklevel=3
                )
                return ix

        raise TypeError(f"{desc} must be an integer") from e