File size: 20,000 Bytes
e11e4fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
from collections import defaultdict
from collections.abc import MutableMapping
import enum
import itertools
from typing import BinaryIO, DefaultDict, List, Tuple, Union, Optional

import numpy as np
import h5py

from mlagents_envs.exception import UnityException

# Elements in the buffer can be np.ndarray, or in the case of teammate obs, actions, rewards,
# a List of np.ndarray. This is done so that we don't have duplicated np.ndarrays, only references.
BufferEntry = Union[np.ndarray, List[np.ndarray]]


class BufferException(UnityException):
    """
    Related to errors with the Buffer.
    """

    pass


class BufferKey(enum.Enum):
    ACTION_MASK = "action_mask"
    CONTINUOUS_ACTION = "continuous_action"
    NEXT_CONT_ACTION = "next_continuous_action"
    CONTINUOUS_LOG_PROBS = "continuous_log_probs"
    DISCRETE_ACTION = "discrete_action"
    NEXT_DISC_ACTION = "next_discrete_action"
    DISCRETE_LOG_PROBS = "discrete_log_probs"
    DONE = "done"
    ENVIRONMENT_REWARDS = "environment_rewards"
    MASKS = "masks"
    MEMORY = "memory"
    CRITIC_MEMORY = "critic_memory"
    BASELINE_MEMORY = "poca_baseline_memory"
    PREV_ACTION = "prev_action"

    ADVANTAGES = "advantages"
    DISCOUNTED_RETURNS = "discounted_returns"

    GROUP_DONES = "group_dones"
    GROUPMATE_REWARDS = "groupmate_reward"
    GROUP_REWARD = "group_reward"
    GROUP_CONTINUOUS_ACTION = "group_continuous_action"
    GROUP_DISCRETE_ACTION = "group_discrete_aaction"
    GROUP_NEXT_CONT_ACTION = "group_next_cont_action"
    GROUP_NEXT_DISC_ACTION = "group_next_disc_action"


class ObservationKeyPrefix(enum.Enum):
    OBSERVATION = "obs"
    NEXT_OBSERVATION = "next_obs"

    GROUP_OBSERVATION = "group_obs"
    NEXT_GROUP_OBSERVATION = "next_group_obs"


class RewardSignalKeyPrefix(enum.Enum):
    # Reward signals
    REWARDS = "rewards"
    VALUE_ESTIMATES = "value_estimates"
    RETURNS = "returns"
    ADVANTAGE = "advantage"
    BASELINES = "baselines"


AgentBufferKey = Union[
    BufferKey, Tuple[ObservationKeyPrefix, int], Tuple[RewardSignalKeyPrefix, str]
]


class RewardSignalUtil:
    @staticmethod
    def rewards_key(name: str) -> AgentBufferKey:
        return RewardSignalKeyPrefix.REWARDS, name

    @staticmethod
    def value_estimates_key(name: str) -> AgentBufferKey:
        return RewardSignalKeyPrefix.RETURNS, name

    @staticmethod
    def returns_key(name: str) -> AgentBufferKey:
        return RewardSignalKeyPrefix.RETURNS, name

    @staticmethod
    def advantage_key(name: str) -> AgentBufferKey:
        return RewardSignalKeyPrefix.ADVANTAGE, name

    @staticmethod
    def baseline_estimates_key(name: str) -> AgentBufferKey:
        return RewardSignalKeyPrefix.BASELINES, name


class AgentBufferField(list):
    """
    AgentBufferField is a list of numpy arrays, or List[np.ndarray] for group entries.
    When an agent collects a field, you can add it to its AgentBufferField with the append method.
    """

    def __init__(self, *args, **kwargs):
        self.padding_value = 0
        super().__init__(*args, **kwargs)

    def __str__(self) -> str:
        return f"AgentBufferField: {super().__str__()}"

    def __getitem__(self, index):
        return_data = super().__getitem__(index)
        if isinstance(return_data, list):
            return AgentBufferField(return_data)
        else:
            return return_data

    @property
    def contains_lists(self) -> bool:
        """
        Checks whether this AgentBufferField contains List[np.ndarray].
        """
        return len(self) > 0 and isinstance(self[0], list)

    def append(self, element: BufferEntry, padding_value: float = 0.0) -> None:
        """
        Adds an element to this list. Also lets you change the padding
        type, so that it can be set on append (e.g. action_masks should
        be padded with 1.)
        :param element: The element to append to the list.
        :param padding_value: The value used to pad when get_batch is called.
        """
        super().append(element)
        self.padding_value = padding_value

    def set(self, data: List[BufferEntry]) -> None:
        """
        Sets the list of BufferEntry to the input data
        :param data: The BufferEntry list to be set.
        """
        self[:] = data

    def get_batch(
        self,
        batch_size: int = None,
        training_length: Optional[int] = 1,
        sequential: bool = True,
    ) -> List[BufferEntry]:
        """
        Retrieve the last batch_size elements of length training_length
        from the list of np.array
        :param batch_size: The number of elements to retrieve. If None:
        All elements will be retrieved.
        :param training_length: The length of the sequence to be retrieved. If
        None: only takes one element.
        :param sequential: If true and training_length is not None: the elements
        will not repeat in the sequence. [a,b,c,d,e] with training_length = 2 and
        sequential=True gives [[0,a],[b,c],[d,e]]. If sequential=False gives
        [[a,b],[b,c],[c,d],[d,e]]
        """
        if training_length is None:
            training_length = 1
        if sequential:
            # The sequences will not have overlapping elements (this involves padding)
            leftover = len(self) % training_length
            # leftover is the number of elements in the first sequence (this sequence might need 0 padding)
            if batch_size is None:
                # retrieve the maximum number of elements
                batch_size = len(self) // training_length + 1 * (leftover != 0)
            # The maximum number of sequences taken from a list of length len(self) without overlapping
            # with padding is equal to batch_size
            if batch_size > (len(self) // training_length + 1 * (leftover != 0)):
                raise BufferException(
                    "The batch size and training length requested for get_batch where"
                    " too large given the current number of data points."
                )
            if batch_size * training_length > len(self):
                if self.contains_lists:
                    padding = []
                else:
                    # We want to duplicate the last value in the array, multiplied by the padding_value.
                    padding = np.array(self[-1], dtype=np.float32) * self.padding_value
                return self[:] + [padding] * (training_length - leftover)

            else:
                return self[len(self) - batch_size * training_length :]
        else:
            # The sequences will have overlapping elements
            if batch_size is None:
                # retrieve the maximum number of elements
                batch_size = len(self) - training_length + 1
            # The number of sequences of length training_length taken from a list of len(self) elements
            # with overlapping is equal to batch_size
            if (len(self) - training_length + 1) < batch_size:
                raise BufferException(
                    "The batch size and training length requested for get_batch where"
                    " too large given the current number of data points."
                )
            tmp_list: List[np.ndarray] = []
            for end in range(len(self) - batch_size + 1, len(self) + 1):
                tmp_list += self[end - training_length : end]
            return tmp_list

    def reset_field(self) -> None:
        """
        Resets the AgentBufferField
        """
        self[:] = []

    def padded_to_batch(
        self, pad_value: np.float = 0, dtype: np.dtype = np.float32
    ) -> Union[np.ndarray, List[np.ndarray]]:
        """
        Converts this AgentBufferField (which is a List[BufferEntry]) into a numpy array
        with first dimension equal to the length of this AgentBufferField. If this AgentBufferField
        contains a List[List[BufferEntry]] (i.e., in the case of group observations), return a List
        containing numpy arrays or tensors, of length equal to the maximum length of an entry. Missing
        For entries with less than that length, the array will be padded with pad_value.
        :param pad_value: Value to pad List AgentBufferFields, when there are less than the maximum
            number of agents present.
        :param dtype: Dtype of output numpy array.
        :return: Numpy array or List of numpy arrays representing this AgentBufferField, where the first
            dimension is equal to the length of the AgentBufferField.
        """
        if len(self) > 0 and not isinstance(self[0], list):
            return np.asanyarray(self, dtype=dtype)

        shape = None
        for _entry in self:
            # _entry could be an empty list if there are no group agents in this
            # step. Find the first non-empty list and use that shape.
            if _entry:
                shape = _entry[0].shape
                break
        # If there were no groupmate agents in the entire batch, return an empty List.
        if shape is None:
            return []

        # Convert to numpy array while padding with 0's
        new_list = list(
            map(
                lambda x: np.asanyarray(x, dtype=dtype),
                itertools.zip_longest(*self, fillvalue=np.full(shape, pad_value)),
            )
        )
        return new_list

    def to_ndarray(self):
        """
        Returns the AgentBufferField which is a list of numpy ndarrays (or List[np.ndarray]) as an ndarray.
        """
        return np.array(self)


class AgentBuffer(MutableMapping):
    """
    AgentBuffer contains a dictionary of AgentBufferFields. Each agent has his own AgentBuffer.
    The keys correspond to the name of the field. Example: state, action
    """

    # Whether or not to validate the types of keys at runtime
    # This should be off for training, but enabled for testing
    CHECK_KEY_TYPES_AT_RUNTIME = False

    def __init__(self):
        self.last_brain_info = None
        self.last_take_action_outputs = None
        self._fields: DefaultDict[AgentBufferKey, AgentBufferField] = defaultdict(
            AgentBufferField
        )

    def __str__(self):
        return ", ".join([f"'{k}' : {str(self[k])}" for k in self._fields.keys()])

    def reset_agent(self) -> None:
        """
        Resets the AgentBuffer
        """
        for f in self._fields.values():
            f.reset_field()
        self.last_brain_info = None
        self.last_take_action_outputs = None

    @staticmethod
    def _check_key(key):
        if isinstance(key, BufferKey):
            return
        if isinstance(key, tuple):
            key0, key1 = key
            if isinstance(key0, ObservationKeyPrefix):
                if isinstance(key1, int):
                    return
                raise KeyError(f"{key} has type ({type(key0)}, {type(key1)})")
            if isinstance(key0, RewardSignalKeyPrefix):
                if isinstance(key1, str):
                    return
                raise KeyError(f"{key} has type ({type(key0)}, {type(key1)})")
        raise KeyError(f"{key} is a {type(key)}")

    @staticmethod
    def _encode_key(key: AgentBufferKey) -> str:
        """
        Convert the key to a string representation so that it can be used for serialization.
        """
        if isinstance(key, BufferKey):
            return key.value
        prefix, suffix = key
        return f"{prefix.value}:{suffix}"

    @staticmethod
    def _decode_key(encoded_key: str) -> AgentBufferKey:
        """
        Convert the string representation back to a key after serialization.
        """
        # Simple case: convert the string directly to a BufferKey
        try:
            return BufferKey(encoded_key)
        except ValueError:
            pass

        # Not a simple key, so split into two parts
        prefix_str, _, suffix_str = encoded_key.partition(":")

        # See if it's an ObservationKeyPrefix first
        try:
            return ObservationKeyPrefix(prefix_str), int(suffix_str)
        except ValueError:
            pass

        # If not, it had better be a RewardSignalKeyPrefix
        try:
            return RewardSignalKeyPrefix(prefix_str), suffix_str
        except ValueError:
            raise ValueError(f"Unable to convert {encoded_key} to an AgentBufferKey")

    def __getitem__(self, key: AgentBufferKey) -> AgentBufferField:
        if self.CHECK_KEY_TYPES_AT_RUNTIME:
            self._check_key(key)
        return self._fields[key]

    def __setitem__(self, key: AgentBufferKey, value: AgentBufferField) -> None:
        if self.CHECK_KEY_TYPES_AT_RUNTIME:
            self._check_key(key)
        self._fields[key] = value

    def __delitem__(self, key: AgentBufferKey) -> None:
        if self.CHECK_KEY_TYPES_AT_RUNTIME:
            self._check_key(key)
        self._fields.__delitem__(key)

    def __iter__(self):
        return self._fields.__iter__()

    def __len__(self) -> int:
        return self._fields.__len__()

    def __contains__(self, key):
        if self.CHECK_KEY_TYPES_AT_RUNTIME:
            self._check_key(key)
        return self._fields.__contains__(key)

    def check_length(self, key_list: List[AgentBufferKey]) -> bool:
        """
        Some methods will require that some fields have the same length.
        check_length will return true if the fields in key_list
        have the same length.
        :param key_list: The fields which length will be compared
        """
        if self.CHECK_KEY_TYPES_AT_RUNTIME:
            for k in key_list:
                self._check_key(k)

        if len(key_list) < 2:
            return True
        length = None
        for key in key_list:
            if key not in self._fields:
                return False
            if (length is not None) and (length != len(self[key])):
                return False
            length = len(self[key])
        return True

    def shuffle(
        self, sequence_length: int, key_list: List[AgentBufferKey] = None
    ) -> None:
        """
        Shuffles the fields in key_list in a consistent way: The reordering will
        be the same across fields.
        :param key_list: The fields that must be shuffled.
        """
        if key_list is None:
            key_list = list(self._fields.keys())
        if not self.check_length(key_list):
            raise BufferException(
                "Unable to shuffle if the fields are not of same length"
            )
        s = np.arange(len(self[key_list[0]]) // sequence_length)
        np.random.shuffle(s)
        for key in key_list:
            buffer_field = self[key]
            tmp: List[np.ndarray] = []
            for i in s:
                tmp += buffer_field[i * sequence_length : (i + 1) * sequence_length]
            buffer_field.set(tmp)

    def make_mini_batch(self, start: int, end: int) -> "AgentBuffer":
        """
        Creates a mini-batch from buffer.
        :param start: Starting index of buffer.
        :param end: Ending index of buffer.
        :return: Dict of mini batch.
        """
        mini_batch = AgentBuffer()
        for key, field in self._fields.items():
            # slicing AgentBufferField returns a List[Any}
            mini_batch[key] = field[start:end]  # type: ignore
        return mini_batch

    def sample_mini_batch(
        self, batch_size: int, sequence_length: int = 1
    ) -> "AgentBuffer":
        """
        Creates a mini-batch from a random start and end.
        :param batch_size: number of elements to withdraw.
        :param sequence_length: Length of sequences to sample.
            Number of sequences to sample will be batch_size/sequence_length.
        """
        num_seq_to_sample = batch_size // sequence_length
        mini_batch = AgentBuffer()
        buff_len = self.num_experiences
        num_sequences_in_buffer = buff_len // sequence_length
        start_idxes = (
            np.random.randint(num_sequences_in_buffer, size=num_seq_to_sample)
            * sequence_length
        )  # Sample random sequence starts
        for key in self:
            buffer_field = self[key]
            mb_list = (buffer_field[i : i + sequence_length] for i in start_idxes)
            # See comparison of ways to make a list from a list of lists here:
            # https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-list-of-lists
            mini_batch[key].set(list(itertools.chain.from_iterable(mb_list)))
        return mini_batch

    def save_to_file(self, file_object: BinaryIO) -> None:
        """
        Saves the AgentBuffer to a file-like object.
        """
        with h5py.File(file_object, "w") as write_file:
            for key, data in self.items():
                write_file.create_dataset(
                    self._encode_key(key), data=data, dtype="f", compression="gzip"
                )

    def load_from_file(self, file_object: BinaryIO) -> None:
        """
        Loads the AgentBuffer from a file-like object.
        """
        with h5py.File(file_object, "r") as read_file:
            for key in list(read_file.keys()):
                decoded_key = self._decode_key(key)
                self[decoded_key] = AgentBufferField()
                # extend() will convert the numpy array's first dimension into list
                self[decoded_key].extend(read_file[key][()])

    def truncate(self, max_length: int, sequence_length: int = 1) -> None:
        """
        Truncates the buffer to a certain length.

        This can be slow for large buffers. We compensate by cutting further than we need to, so that
        we're not truncating at each update. Note that we must truncate an integer number of sequence_lengths
        param: max_length: The length at which to truncate the buffer.
        """
        current_length = self.num_experiences
        # make max_length an integer number of sequence_lengths
        max_length -= max_length % sequence_length
        if current_length > max_length:
            for _key in self.keys():
                self[_key][:] = self[_key][current_length - max_length :]

    def resequence_and_append(
        self,
        target_buffer: "AgentBuffer",
        key_list: List[AgentBufferKey] = None,
        batch_size: int = None,
        training_length: int = None,
    ) -> None:
        """
        Takes in a batch size and training length (sequence length), and appends this AgentBuffer to target_buffer
        properly padded for LSTM use. Optionally, use key_list to restrict which fields are inserted into the new
        buffer.
        :param target_buffer: The buffer which to append the samples to.
        :param key_list: The fields that must be added. If None: all fields will be appended.
        :param batch_size: The number of elements that must be appended. If None: All of them will be.
        :param training_length: The length of the samples that must be appended. If None: only takes one element.
        """
        if key_list is None:
            key_list = list(self.keys())
        if not self.check_length(key_list):
            raise BufferException(
                f"The length of the fields {key_list} were not of same length"
            )
        for field_key in key_list:
            target_buffer[field_key].extend(
                self[field_key].get_batch(
                    batch_size=batch_size, training_length=training_length
                )
            )

    @property
    def num_experiences(self) -> int:
        """
        The number of agent experiences in the AgentBuffer, i.e. the length of the buffer.

        An experience consists of one element across all of the fields of this AgentBuffer.
        Note that these all have to be the same length, otherwise shuffle and append_to_update_buffer
        will fail.
        """
        if self.values():
            return len(next(iter(self.values())))
        else:
            return 0