File size: 8,121 Bytes
e11e4fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import copy
import json
import hmac
import hashlib
import sys
from typing import Optional, Dict
import mlagents_envs
import mlagents.trainers
from mlagents import torch_utils
from mlagents.trainers.settings import RewardSignalType
from mlagents_envs.exception import UnityCommunicationException
from mlagents_envs.side_channel import (
    IncomingMessage,
    OutgoingMessage,
    DefaultTrainingAnalyticsSideChannel,
)
from mlagents_envs.communicator_objects.training_analytics_pb2 import (
    TrainingEnvironmentInitialized,
    TrainingBehaviorInitialized,
)
from google.protobuf.any_pb2 import Any

from mlagents.trainers.settings import TrainerSettings, RunOptions


class TrainingAnalyticsSideChannel(DefaultTrainingAnalyticsSideChannel):
    """
    Side channel that sends information about the training to the Unity environment so it can be logged.
    """

    __vendorKey: str = "unity.ml-agents"

    def __init__(self) -> None:
        # >>> uuid.uuid5(uuid.NAMESPACE_URL, "com.unity.ml-agents/TrainingAnalyticsSideChannel")
        # UUID('b664a4a9-d86f-5a5f-95cb-e8353a7e8356')
        # Use the same uuid as the parent side channel
        super().__init__()
        self.run_options: Optional[RunOptions] = None

    @classmethod
    def _hash(cls, data: str) -> str:
        res = hmac.new(
            cls.__vendorKey.encode("utf-8"), data.encode("utf-8"), hashlib.sha256
        ).hexdigest()
        return res

    def on_message_received(self, msg: IncomingMessage) -> None:
        raise UnityCommunicationException(
            "The TrainingAnalyticsSideChannel received a message from Unity, "
            "this should not have happened."
        )

    @classmethod
    def _sanitize_run_options(cls, config: RunOptions) -> Dict[str, Any]:
        res = copy.deepcopy(config.as_dict())

        # Filter potentially PII behavior names
        if "behaviors" in res and res["behaviors"]:
            res["behaviors"] = {cls._hash(k): v for (k, v) in res["behaviors"].items()}
            for (k, v) in res["behaviors"].items():
                if "init_path" in v and v["init_path"] is not None:
                    hashed_path = cls._hash(v["init_path"])
                    res["behaviors"][k]["init_path"] = hashed_path
                if "demo_path" in v and v["demo_path"] is not None:
                    hashed_path = cls._hash(v["demo_path"])
                    res["behaviors"][k]["demo_path"] = hashed_path

        # Filter potentially PII curriculum and behavior names from Checkpoint Settings
        if "environment_parameters" in res and res["environment_parameters"]:
            res["environment_parameters"] = {
                cls._hash(k): v for (k, v) in res["environment_parameters"].items()
            }
            for (curriculumName, curriculum) in res["environment_parameters"].items():
                updated_lessons = []
                for lesson in curriculum["curriculum"]:
                    new_lesson = copy.deepcopy(lesson)
                    if "name" in lesson:
                        new_lesson["name"] = cls._hash(lesson["name"])
                    if (
                        "completion_criteria" in lesson
                        and lesson["completion_criteria"] is not None
                    ):
                        new_lesson["completion_criteria"]["behavior"] = cls._hash(
                            new_lesson["completion_criteria"]["behavior"]
                        )
                    updated_lessons.append(new_lesson)
                res["environment_parameters"][curriculumName][
                    "curriculum"
                ] = updated_lessons

        # Filter potentially PII filenames from Checkpoint Settings
        if "checkpoint_settings" in res and res["checkpoint_settings"] is not None:
            if (
                "initialize_from" in res["checkpoint_settings"]
                and res["checkpoint_settings"]["initialize_from"] is not None
            ):
                res["checkpoint_settings"]["initialize_from"] = cls._hash(
                    res["checkpoint_settings"]["initialize_from"]
                )
            if (
                "results_dir" in res["checkpoint_settings"]
                and res["checkpoint_settings"]["results_dir"] is not None
            ):
                res["checkpoint_settings"]["results_dir"] = hash(
                    res["checkpoint_settings"]["results_dir"]
                )

        return res

    def environment_initialized(self, run_options: RunOptions) -> None:
        self.run_options = run_options
        # Tuple of (major, minor, patch)
        vi = sys.version_info
        env_params = run_options.environment_parameters
        sanitized_run_options = self._sanitize_run_options(run_options)

        msg = TrainingEnvironmentInitialized(
            python_version=f"{vi[0]}.{vi[1]}.{vi[2]}",
            mlagents_version=mlagents.trainers.__version__,
            mlagents_envs_version=mlagents_envs.__version__,
            torch_version=torch_utils.torch.__version__,
            torch_device_type=torch_utils.default_device().type,
            num_envs=run_options.env_settings.num_envs,
            num_environment_parameters=len(env_params) if env_params else 0,
            run_options=json.dumps(sanitized_run_options),
        )

        any_message = Any()
        any_message.Pack(msg)

        env_init_msg = OutgoingMessage()
        env_init_msg.set_raw_bytes(any_message.SerializeToString())
        super().queue_message_to_send(env_init_msg)

    @classmethod
    def _sanitize_trainer_settings(cls, config: TrainerSettings) -> Dict[str, Any]:
        config_dict = copy.deepcopy(config.as_dict())
        if "init_path" in config_dict and config_dict["init_path"] is not None:
            hashed_path = cls._hash(config_dict["init_path"])
            config_dict["init_path"] = hashed_path
        if "demo_path" in config_dict and config_dict["demo_path"] is not None:
            hashed_path = cls._hash(config_dict["demo_path"])
            config_dict["demo_path"] = hashed_path
        return config_dict

    def training_started(self, behavior_name: str, config: TrainerSettings) -> None:
        raw_config = self._sanitize_trainer_settings(config)
        msg = TrainingBehaviorInitialized(
            behavior_name=self._hash(behavior_name),
            trainer_type=config.trainer_type,
            extrinsic_reward_enabled=(
                RewardSignalType.EXTRINSIC in config.reward_signals
            ),
            gail_reward_enabled=(RewardSignalType.GAIL in config.reward_signals),
            curiosity_reward_enabled=(
                RewardSignalType.CURIOSITY in config.reward_signals
            ),
            rnd_reward_enabled=(RewardSignalType.RND in config.reward_signals),
            behavioral_cloning_enabled=config.behavioral_cloning is not None,
            recurrent_enabled=config.network_settings.memory is not None,
            visual_encoder=config.network_settings.vis_encode_type.value,
            num_network_layers=config.network_settings.num_layers,
            num_network_hidden_units=config.network_settings.hidden_units,
            trainer_threaded=config.threaded,
            self_play_enabled=config.self_play is not None,
            curriculum_enabled=self._behavior_uses_curriculum(behavior_name),
            config=json.dumps(raw_config),
        )

        any_message = Any()
        any_message.Pack(msg)

        training_start_msg = OutgoingMessage()
        training_start_msg.set_raw_bytes(any_message.SerializeToString())

        super().queue_message_to_send(training_start_msg)

    def _behavior_uses_curriculum(self, behavior_name: str) -> bool:
        if not self.run_options or not self.run_options.environment_parameters:
            return False

        for param_settings in self.run_options.environment_parameters.values():
            for lesson in param_settings.curriculum:
                cc = lesson.completion_criteria
                if cc and cc.behavior == behavior_name:
                    return True

        return False