Spaces:
Sleeping
Sleeping
import itertools | |
import numpy as np | |
from typing import Any, Dict, List, Optional, Tuple, Union | |
import gym | |
from gym import error, spaces | |
from mlagents_envs.base_env import ActionTuple, BaseEnv | |
from mlagents_envs.base_env import DecisionSteps, TerminalSteps | |
from mlagents_envs import logging_util | |
class UnityGymException(error.Error): | |
""" | |
Any error related to the gym wrapper of ml-agents. | |
""" | |
pass | |
logger = logging_util.get_logger(__name__) | |
GymStepResult = Tuple[np.ndarray, float, bool, Dict] | |
class UnityToGymWrapper(gym.Env): | |
""" | |
Provides Gym wrapper for Unity Learning Environments. | |
""" | |
def __init__( | |
self, | |
unity_env: BaseEnv, | |
uint8_visual: bool = False, | |
flatten_branched: bool = False, | |
allow_multiple_obs: bool = False, | |
action_space_seed: Optional[int] = None, | |
): | |
""" | |
Environment initialization | |
:param unity_env: The Unity BaseEnv to be wrapped in the gym. Will be closed when the UnityToGymWrapper closes. | |
:param uint8_visual: Return visual observations as uint8 (0-255) matrices instead of float (0.0-1.0). | |
:param flatten_branched: If True, turn branched discrete action spaces into a Discrete space rather than | |
MultiDiscrete. | |
:param allow_multiple_obs: If True, return a list of np.ndarrays as observations with the first elements | |
containing the visual observations and the last element containing the array of vector observations. | |
If False, returns a single np.ndarray containing either only a single visual observation or the array of | |
vector observations. | |
:param action_space_seed: If non-None, will be used to set the random seed on created gym.Space instances. | |
""" | |
self._env = unity_env | |
# Take a single step so that the brain information will be sent over | |
if not self._env.behavior_specs: | |
self._env.step() | |
self.visual_obs = None | |
# Save the step result from the last time all Agents requested decisions. | |
self._previous_decision_step: Optional[DecisionSteps] = None | |
self._flattener = None | |
# Hidden flag used by Atari environments to determine if the game is over | |
self.game_over = False | |
self._allow_multiple_obs = allow_multiple_obs | |
# Check brain configuration | |
if len(self._env.behavior_specs) != 1: | |
raise UnityGymException( | |
"There can only be one behavior in a UnityEnvironment " | |
"if it is wrapped in a gym." | |
) | |
self.name = list(self._env.behavior_specs.keys())[0] | |
self.group_spec = self._env.behavior_specs[self.name] | |
if self._get_n_vis_obs() == 0 and self._get_vec_obs_size() == 0: | |
raise UnityGymException( | |
"There are no observations provided by the environment." | |
) | |
if not self._get_n_vis_obs() >= 1 and uint8_visual: | |
logger.warning( | |
"uint8_visual was set to true, but visual observations are not in use. " | |
"This setting will not have any effect." | |
) | |
else: | |
self.uint8_visual = uint8_visual | |
if ( | |
self._get_n_vis_obs() + self._get_vec_obs_size() >= 2 | |
and not self._allow_multiple_obs | |
): | |
logger.warning( | |
"The environment contains multiple observations. " | |
"You must define allow_multiple_obs=True to receive them all. " | |
"Otherwise, only the first visual observation (or vector observation if" | |
"there are no visual observations) will be provided in the observation." | |
) | |
# Check for number of agents in scene. | |
self._env.reset() | |
decision_steps, _ = self._env.get_steps(self.name) | |
self._check_agents(len(decision_steps)) | |
self._previous_decision_step = decision_steps | |
# Set action spaces | |
if self.group_spec.action_spec.is_discrete(): | |
self.action_size = self.group_spec.action_spec.discrete_size | |
branches = self.group_spec.action_spec.discrete_branches | |
if self.group_spec.action_spec.discrete_size == 1: | |
self._action_space = spaces.Discrete(branches[0]) | |
else: | |
if flatten_branched: | |
self._flattener = ActionFlattener(branches) | |
self._action_space = self._flattener.action_space | |
else: | |
self._action_space = spaces.MultiDiscrete(branches) | |
elif self.group_spec.action_spec.is_continuous(): | |
if flatten_branched: | |
logger.warning( | |
"The environment has a non-discrete action space. It will " | |
"not be flattened." | |
) | |
self.action_size = self.group_spec.action_spec.continuous_size | |
high = np.array([1] * self.group_spec.action_spec.continuous_size) | |
self._action_space = spaces.Box(-high, high, dtype=np.float32) | |
else: | |
raise UnityGymException( | |
"The gym wrapper does not provide explicit support for both discrete " | |
"and continuous actions." | |
) | |
if action_space_seed is not None: | |
self._action_space.seed(action_space_seed) | |
# Set observations space | |
list_spaces: List[gym.Space] = [] | |
shapes = self._get_vis_obs_shape() | |
for shape in shapes: | |
if uint8_visual: | |
list_spaces.append(spaces.Box(0, 255, dtype=np.uint8, shape=shape)) | |
else: | |
list_spaces.append(spaces.Box(0, 1, dtype=np.float32, shape=shape)) | |
if self._get_vec_obs_size() > 0: | |
# vector observation is last | |
high = np.array([np.inf] * self._get_vec_obs_size()) | |
list_spaces.append(spaces.Box(-high, high, dtype=np.float32)) | |
if self._allow_multiple_obs: | |
self._observation_space = spaces.Tuple(list_spaces) | |
else: | |
self._observation_space = list_spaces[0] # only return the first one | |
def reset(self) -> Union[List[np.ndarray], np.ndarray]: | |
"""Resets the state of the environment and returns an initial observation. | |
Returns: observation (object/list): the initial observation of the | |
space. | |
""" | |
self._env.reset() | |
decision_step, _ = self._env.get_steps(self.name) | |
n_agents = len(decision_step) | |
self._check_agents(n_agents) | |
self.game_over = False | |
res: GymStepResult = self._single_step(decision_step) | |
return res[0] | |
def step(self, action: List[Any]) -> GymStepResult: | |
"""Run one timestep of the environment's dynamics. When end of | |
episode is reached, you are responsible for calling `reset()` | |
to reset this environment's state. | |
Accepts an action and returns a tuple (observation, reward, done, info). | |
Args: | |
action (object/list): an action provided by the environment | |
Returns: | |
observation (object/list): agent's observation of the current environment | |
reward (float/list) : amount of reward returned after previous action | |
done (boolean/list): whether the episode has ended. | |
info (dict): contains auxiliary diagnostic information. | |
""" | |
if self.game_over: | |
raise UnityGymException( | |
"You are calling 'step()' even though this environment has already " | |
"returned done = True. You must always call 'reset()' once you " | |
"receive 'done = True'." | |
) | |
if self._flattener is not None: | |
# Translate action into list | |
action = self._flattener.lookup_action(action) | |
action = np.array(action).reshape((1, self.action_size)) | |
action_tuple = ActionTuple() | |
if self.group_spec.action_spec.is_continuous(): | |
action_tuple.add_continuous(action) | |
else: | |
action_tuple.add_discrete(action) | |
self._env.set_actions(self.name, action_tuple) | |
self._env.step() | |
decision_step, terminal_step = self._env.get_steps(self.name) | |
self._check_agents(max(len(decision_step), len(terminal_step))) | |
if len(terminal_step) != 0: | |
# The agent is done | |
self.game_over = True | |
return self._single_step(terminal_step) | |
else: | |
return self._single_step(decision_step) | |
def _single_step(self, info: Union[DecisionSteps, TerminalSteps]) -> GymStepResult: | |
if self._allow_multiple_obs: | |
visual_obs = self._get_vis_obs_list(info) | |
visual_obs_list = [] | |
for obs in visual_obs: | |
visual_obs_list.append(self._preprocess_single(obs[0])) | |
default_observation = visual_obs_list | |
if self._get_vec_obs_size() >= 1: | |
default_observation.append(self._get_vector_obs(info)[0, :]) | |
else: | |
if self._get_n_vis_obs() >= 1: | |
visual_obs = self._get_vis_obs_list(info) | |
default_observation = self._preprocess_single(visual_obs[0][0]) | |
else: | |
default_observation = self._get_vector_obs(info)[0, :] | |
if self._get_n_vis_obs() >= 1: | |
visual_obs = self._get_vis_obs_list(info) | |
self.visual_obs = self._preprocess_single(visual_obs[0][0]) | |
done = isinstance(info, TerminalSteps) | |
return (default_observation, info.reward[0], done, {"step": info}) | |
def _preprocess_single(self, single_visual_obs: np.ndarray) -> np.ndarray: | |
if self.uint8_visual: | |
return (255.0 * single_visual_obs).astype(np.uint8) | |
else: | |
return single_visual_obs | |
def _get_n_vis_obs(self) -> int: | |
result = 0 | |
for obs_spec in self.group_spec.observation_specs: | |
if len(obs_spec.shape) == 3: | |
result += 1 | |
return result | |
def _get_vis_obs_shape(self) -> List[Tuple]: | |
result: List[Tuple] = [] | |
for obs_spec in self.group_spec.observation_specs: | |
if len(obs_spec.shape) == 3: | |
result.append(obs_spec.shape) | |
return result | |
def _get_vis_obs_list( | |
self, step_result: Union[DecisionSteps, TerminalSteps] | |
) -> List[np.ndarray]: | |
result: List[np.ndarray] = [] | |
for obs in step_result.obs: | |
if len(obs.shape) == 4: | |
result.append(obs) | |
return result | |
def _get_vector_obs( | |
self, step_result: Union[DecisionSteps, TerminalSteps] | |
) -> np.ndarray: | |
result: List[np.ndarray] = [] | |
for obs in step_result.obs: | |
if len(obs.shape) == 2: | |
result.append(obs) | |
return np.concatenate(result, axis=1) | |
def _get_vec_obs_size(self) -> int: | |
result = 0 | |
for obs_spec in self.group_spec.observation_specs: | |
if len(obs_spec.shape) == 1: | |
result += obs_spec.shape[0] | |
return result | |
def render(self, mode="rgb_array"): | |
""" | |
Return the latest visual observations. | |
Note that it will not render a new frame of the environment. | |
""" | |
return self.visual_obs | |
def close(self) -> None: | |
"""Override _close in your subclass to perform any necessary cleanup. | |
Environments will automatically close() themselves when | |
garbage collected or when the program exits. | |
""" | |
self._env.close() | |
def seed(self, seed: Any = None) -> None: | |
"""Sets the seed for this env's random number generator(s). | |
Currently not implemented. | |
""" | |
logger.warning("Could not seed environment %s", self.name) | |
return | |
def _check_agents(n_agents: int) -> None: | |
if n_agents > 1: | |
raise UnityGymException( | |
f"There can only be one Agent in the environment but {n_agents} were detected." | |
) | |
def metadata(self): | |
return {"render.modes": ["rgb_array"]} | |
def reward_range(self) -> Tuple[float, float]: | |
return -float("inf"), float("inf") | |
def action_space(self) -> gym.Space: | |
return self._action_space | |
def observation_space(self): | |
return self._observation_space | |
class ActionFlattener: | |
""" | |
Flattens branched discrete action spaces into single-branch discrete action spaces. | |
""" | |
def __init__(self, branched_action_space): | |
""" | |
Initialize the flattener. | |
:param branched_action_space: A List containing the sizes of each branch of the action | |
space, e.g. [2,3,3] for three branches with size 2, 3, and 3 respectively. | |
""" | |
self._action_shape = branched_action_space | |
self.action_lookup = self._create_lookup(self._action_shape) | |
self.action_space = spaces.Discrete(len(self.action_lookup)) | |
def _create_lookup(self, branched_action_space): | |
""" | |
Creates a Dict that maps discrete actions (scalars) to branched actions (lists). | |
Each key in the Dict maps to one unique set of branched actions, and each value | |
contains the List of branched actions. | |
""" | |
possible_vals = [range(_num) for _num in branched_action_space] | |
all_actions = [list(_action) for _action in itertools.product(*possible_vals)] | |
# Dict should be faster than List for large action spaces | |
action_lookup = { | |
_scalar: _action for (_scalar, _action) in enumerate(all_actions) | |
} | |
return action_lookup | |
def lookup_action(self, action): | |
""" | |
Convert a scalar discrete action into a unique set of branched actions. | |
:param action: A scalar value representing one of the discrete actions. | |
:returns: The List containing the branched actions. | |
""" | |
return self.action_lookup[action] | |