Spaces:
Sleeping
Sleeping
from operator import gt, lt | |
from .libmp.backend import xrange | |
from .functions.functions import SpecialFunctions | |
from .functions.rszeta import RSCache | |
from .calculus.quadrature import QuadratureMethods | |
from .calculus.inverselaplace import LaplaceTransformInversionMethods | |
from .calculus.calculus import CalculusMethods | |
from .calculus.optimization import OptimizationMethods | |
from .calculus.odes import ODEMethods | |
from .matrices.matrices import MatrixMethods | |
from .matrices.calculus import MatrixCalculusMethods | |
from .matrices.linalg import LinearAlgebraMethods | |
from .matrices.eigen import Eigen | |
from .identification import IdentificationMethods | |
from .visualization import VisualizationMethods | |
from . import libmp | |
class Context(object): | |
pass | |
class StandardBaseContext(Context, | |
SpecialFunctions, | |
RSCache, | |
QuadratureMethods, | |
LaplaceTransformInversionMethods, | |
CalculusMethods, | |
MatrixMethods, | |
MatrixCalculusMethods, | |
LinearAlgebraMethods, | |
Eigen, | |
IdentificationMethods, | |
OptimizationMethods, | |
ODEMethods, | |
VisualizationMethods): | |
NoConvergence = libmp.NoConvergence | |
ComplexResult = libmp.ComplexResult | |
def __init__(ctx): | |
ctx._aliases = {} | |
# Call those that need preinitialization (e.g. for wrappers) | |
SpecialFunctions.__init__(ctx) | |
RSCache.__init__(ctx) | |
QuadratureMethods.__init__(ctx) | |
LaplaceTransformInversionMethods.__init__(ctx) | |
CalculusMethods.__init__(ctx) | |
MatrixMethods.__init__(ctx) | |
def _init_aliases(ctx): | |
for alias, value in ctx._aliases.items(): | |
try: | |
setattr(ctx, alias, getattr(ctx, value)) | |
except AttributeError: | |
pass | |
_fixed_precision = False | |
# XXX | |
verbose = False | |
def warn(ctx, msg): | |
print("Warning:", msg) | |
def bad_domain(ctx, msg): | |
raise ValueError(msg) | |
def _re(ctx, x): | |
if hasattr(x, "real"): | |
return x.real | |
return x | |
def _im(ctx, x): | |
if hasattr(x, "imag"): | |
return x.imag | |
return ctx.zero | |
def _as_points(ctx, x): | |
return x | |
def fneg(ctx, x, **kwargs): | |
return -ctx.convert(x) | |
def fadd(ctx, x, y, **kwargs): | |
return ctx.convert(x)+ctx.convert(y) | |
def fsub(ctx, x, y, **kwargs): | |
return ctx.convert(x)-ctx.convert(y) | |
def fmul(ctx, x, y, **kwargs): | |
return ctx.convert(x)*ctx.convert(y) | |
def fdiv(ctx, x, y, **kwargs): | |
return ctx.convert(x)/ctx.convert(y) | |
def fsum(ctx, args, absolute=False, squared=False): | |
if absolute: | |
if squared: | |
return sum((abs(x)**2 for x in args), ctx.zero) | |
return sum((abs(x) for x in args), ctx.zero) | |
if squared: | |
return sum((x**2 for x in args), ctx.zero) | |
return sum(args, ctx.zero) | |
def fdot(ctx, xs, ys=None, conjugate=False): | |
if ys is not None: | |
xs = zip(xs, ys) | |
if conjugate: | |
cf = ctx.conj | |
return sum((x*cf(y) for (x,y) in xs), ctx.zero) | |
else: | |
return sum((x*y for (x,y) in xs), ctx.zero) | |
def fprod(ctx, args): | |
prod = ctx.one | |
for arg in args: | |
prod *= arg | |
return prod | |
def nprint(ctx, x, n=6, **kwargs): | |
""" | |
Equivalent to ``print(nstr(x, n))``. | |
""" | |
print(ctx.nstr(x, n, **kwargs)) | |
def chop(ctx, x, tol=None): | |
""" | |
Chops off small real or imaginary parts, or converts | |
numbers close to zero to exact zeros. The input can be a | |
single number or an iterable:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = False | |
>>> chop(5+1e-10j, tol=1e-9) | |
mpf('5.0') | |
>>> nprint(chop([1.0, 1e-20, 3+1e-18j, -4, 2])) | |
[1.0, 0.0, 3.0, -4.0, 2.0] | |
The tolerance defaults to ``100*eps``. | |
""" | |
if tol is None: | |
tol = 100*ctx.eps | |
try: | |
x = ctx.convert(x) | |
absx = abs(x) | |
if abs(x) < tol: | |
return ctx.zero | |
if ctx._is_complex_type(x): | |
#part_tol = min(tol, absx*tol) | |
part_tol = max(tol, absx*tol) | |
if abs(x.imag) < part_tol: | |
return x.real | |
if abs(x.real) < part_tol: | |
return ctx.mpc(0, x.imag) | |
except TypeError: | |
if isinstance(x, ctx.matrix): | |
return x.apply(lambda a: ctx.chop(a, tol)) | |
if hasattr(x, "__iter__"): | |
return [ctx.chop(a, tol) for a in x] | |
return x | |
def almosteq(ctx, s, t, rel_eps=None, abs_eps=None): | |
r""" | |
Determine whether the difference between `s` and `t` is smaller | |
than a given epsilon, either relatively or absolutely. | |
Both a maximum relative difference and a maximum difference | |
('epsilons') may be specified. The absolute difference is | |
defined as `|s-t|` and the relative difference is defined | |
as `|s-t|/\max(|s|, |t|)`. | |
If only one epsilon is given, both are set to the same value. | |
If none is given, both epsilons are set to `2^{-p+m}` where | |
`p` is the current working precision and `m` is a small | |
integer. The default setting typically allows :func:`~mpmath.almosteq` | |
to be used to check for mathematical equality | |
in the presence of small rounding errors. | |
**Examples** | |
>>> from mpmath import * | |
>>> mp.dps = 15 | |
>>> almosteq(3.141592653589793, 3.141592653589790) | |
True | |
>>> almosteq(3.141592653589793, 3.141592653589700) | |
False | |
>>> almosteq(3.141592653589793, 3.141592653589700, 1e-10) | |
True | |
>>> almosteq(1e-20, 2e-20) | |
True | |
>>> almosteq(1e-20, 2e-20, rel_eps=0, abs_eps=0) | |
False | |
""" | |
t = ctx.convert(t) | |
if abs_eps is None and rel_eps is None: | |
rel_eps = abs_eps = ctx.ldexp(1, -ctx.prec+4) | |
if abs_eps is None: | |
abs_eps = rel_eps | |
elif rel_eps is None: | |
rel_eps = abs_eps | |
diff = abs(s-t) | |
if diff <= abs_eps: | |
return True | |
abss = abs(s) | |
abst = abs(t) | |
if abss < abst: | |
err = diff/abst | |
else: | |
err = diff/abss | |
return err <= rel_eps | |
def arange(ctx, *args): | |
r""" | |
This is a generalized version of Python's :func:`~mpmath.range` function | |
that accepts fractional endpoints and step sizes and | |
returns a list of ``mpf`` instances. Like :func:`~mpmath.range`, | |
:func:`~mpmath.arange` can be called with 1, 2 or 3 arguments: | |
``arange(b)`` | |
`[0, 1, 2, \ldots, x]` | |
``arange(a, b)`` | |
`[a, a+1, a+2, \ldots, x]` | |
``arange(a, b, h)`` | |
`[a, a+h, a+h, \ldots, x]` | |
where `b-1 \le x < b` (in the third case, `b-h \le x < b`). | |
Like Python's :func:`~mpmath.range`, the endpoint is not included. To | |
produce ranges where the endpoint is included, :func:`~mpmath.linspace` | |
is more convenient. | |
**Examples** | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = False | |
>>> arange(4) | |
[mpf('0.0'), mpf('1.0'), mpf('2.0'), mpf('3.0')] | |
>>> arange(1, 2, 0.25) | |
[mpf('1.0'), mpf('1.25'), mpf('1.5'), mpf('1.75')] | |
>>> arange(1, -1, -0.75) | |
[mpf('1.0'), mpf('0.25'), mpf('-0.5')] | |
""" | |
if not len(args) <= 3: | |
raise TypeError('arange expected at most 3 arguments, got %i' | |
% len(args)) | |
if not len(args) >= 1: | |
raise TypeError('arange expected at least 1 argument, got %i' | |
% len(args)) | |
# set default | |
a = 0 | |
dt = 1 | |
# interpret arguments | |
if len(args) == 1: | |
b = args[0] | |
elif len(args) >= 2: | |
a = args[0] | |
b = args[1] | |
if len(args) == 3: | |
dt = args[2] | |
a, b, dt = ctx.mpf(a), ctx.mpf(b), ctx.mpf(dt) | |
assert a + dt != a, 'dt is too small and would cause an infinite loop' | |
# adapt code for sign of dt | |
if a > b: | |
if dt > 0: | |
return [] | |
op = gt | |
else: | |
if dt < 0: | |
return [] | |
op = lt | |
# create list | |
result = [] | |
i = 0 | |
t = a | |
while 1: | |
t = a + dt*i | |
i += 1 | |
if op(t, b): | |
result.append(t) | |
else: | |
break | |
return result | |
def linspace(ctx, *args, **kwargs): | |
""" | |
``linspace(a, b, n)`` returns a list of `n` evenly spaced | |
samples from `a` to `b`. The syntax ``linspace(mpi(a,b), n)`` | |
is also valid. | |
This function is often more convenient than :func:`~mpmath.arange` | |
for partitioning an interval into subintervals, since | |
the endpoint is included:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = False | |
>>> linspace(1, 4, 4) | |
[mpf('1.0'), mpf('2.0'), mpf('3.0'), mpf('4.0')] | |
You may also provide the keyword argument ``endpoint=False``:: | |
>>> linspace(1, 4, 4, endpoint=False) | |
[mpf('1.0'), mpf('1.75'), mpf('2.5'), mpf('3.25')] | |
""" | |
if len(args) == 3: | |
a = ctx.mpf(args[0]) | |
b = ctx.mpf(args[1]) | |
n = int(args[2]) | |
elif len(args) == 2: | |
assert hasattr(args[0], '_mpi_') | |
a = args[0].a | |
b = args[0].b | |
n = int(args[1]) | |
else: | |
raise TypeError('linspace expected 2 or 3 arguments, got %i' \ | |
% len(args)) | |
if n < 1: | |
raise ValueError('n must be greater than 0') | |
if not 'endpoint' in kwargs or kwargs['endpoint']: | |
if n == 1: | |
return [ctx.mpf(a)] | |
step = (b - a) / ctx.mpf(n - 1) | |
y = [i*step + a for i in xrange(n)] | |
y[-1] = b | |
else: | |
step = (b - a) / ctx.mpf(n) | |
y = [i*step + a for i in xrange(n)] | |
return y | |
def cos_sin(ctx, z, **kwargs): | |
return ctx.cos(z, **kwargs), ctx.sin(z, **kwargs) | |
def cospi_sinpi(ctx, z, **kwargs): | |
return ctx.cospi(z, **kwargs), ctx.sinpi(z, **kwargs) | |
def _default_hyper_maxprec(ctx, p): | |
return int(1000 * p**0.25 + 4*p) | |
_gcd = staticmethod(libmp.gcd) | |
list_primes = staticmethod(libmp.list_primes) | |
isprime = staticmethod(libmp.isprime) | |
bernfrac = staticmethod(libmp.bernfrac) | |
moebius = staticmethod(libmp.moebius) | |
_ifac = staticmethod(libmp.ifac) | |
_eulernum = staticmethod(libmp.eulernum) | |
_stirling1 = staticmethod(libmp.stirling1) | |
_stirling2 = staticmethod(libmp.stirling2) | |
def sum_accurately(ctx, terms, check_step=1): | |
prec = ctx.prec | |
try: | |
extraprec = 10 | |
while 1: | |
ctx.prec = prec + extraprec + 5 | |
max_mag = ctx.ninf | |
s = ctx.zero | |
k = 0 | |
for term in terms(): | |
s += term | |
if (not k % check_step) and term: | |
term_mag = ctx.mag(term) | |
max_mag = max(max_mag, term_mag) | |
sum_mag = ctx.mag(s) | |
if sum_mag - term_mag > ctx.prec: | |
break | |
k += 1 | |
cancellation = max_mag - sum_mag | |
if cancellation != cancellation: | |
break | |
if cancellation < extraprec or ctx._fixed_precision: | |
break | |
extraprec += min(ctx.prec, cancellation) | |
return s | |
finally: | |
ctx.prec = prec | |
def mul_accurately(ctx, factors, check_step=1): | |
prec = ctx.prec | |
try: | |
extraprec = 10 | |
while 1: | |
ctx.prec = prec + extraprec + 5 | |
max_mag = ctx.ninf | |
one = ctx.one | |
s = one | |
k = 0 | |
for factor in factors(): | |
s *= factor | |
term = factor - one | |
if (not k % check_step): | |
term_mag = ctx.mag(term) | |
max_mag = max(max_mag, term_mag) | |
sum_mag = ctx.mag(s-one) | |
#if sum_mag - term_mag > ctx.prec: | |
# break | |
if -term_mag > ctx.prec: | |
break | |
k += 1 | |
cancellation = max_mag - sum_mag | |
if cancellation != cancellation: | |
break | |
if cancellation < extraprec or ctx._fixed_precision: | |
break | |
extraprec += min(ctx.prec, cancellation) | |
return s | |
finally: | |
ctx.prec = prec | |
def power(ctx, x, y): | |
r"""Converts `x` and `y` to mpmath numbers and evaluates | |
`x^y = \exp(y \log(x))`:: | |
>>> from mpmath import * | |
>>> mp.dps = 30; mp.pretty = True | |
>>> power(2, 0.5) | |
1.41421356237309504880168872421 | |
This shows the leading few digits of a large Mersenne prime | |
(performing the exact calculation ``2**43112609-1`` and | |
displaying the result in Python would be very slow):: | |
>>> power(2, 43112609)-1 | |
3.16470269330255923143453723949e+12978188 | |
""" | |
return ctx.convert(x) ** ctx.convert(y) | |
def _zeta_int(ctx, n): | |
return ctx.zeta(n) | |
def maxcalls(ctx, f, N): | |
""" | |
Return a wrapped copy of *f* that raises ``NoConvergence`` when *f* | |
has been called more than *N* times:: | |
>>> from mpmath import * | |
>>> mp.dps = 15 | |
>>> f = maxcalls(sin, 10) | |
>>> print(sum(f(n) for n in range(10))) | |
1.95520948210738 | |
>>> f(10) # doctest: +IGNORE_EXCEPTION_DETAIL | |
Traceback (most recent call last): | |
... | |
NoConvergence: maxcalls: function evaluated 10 times | |
""" | |
counter = [0] | |
def f_maxcalls_wrapped(*args, **kwargs): | |
counter[0] += 1 | |
if counter[0] > N: | |
raise ctx.NoConvergence("maxcalls: function evaluated %i times" % N) | |
return f(*args, **kwargs) | |
return f_maxcalls_wrapped | |
def memoize(ctx, f): | |
""" | |
Return a wrapped copy of *f* that caches computed values, i.e. | |
a memoized copy of *f*. Values are only reused if the cached precision | |
is equal to or higher than the working precision:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = True | |
>>> f = memoize(maxcalls(sin, 1)) | |
>>> f(2) | |
0.909297426825682 | |
>>> f(2) | |
0.909297426825682 | |
>>> mp.dps = 25 | |
>>> f(2) # doctest: +IGNORE_EXCEPTION_DETAIL | |
Traceback (most recent call last): | |
... | |
NoConvergence: maxcalls: function evaluated 1 times | |
""" | |
f_cache = {} | |
def f_cached(*args, **kwargs): | |
if kwargs: | |
key = args, tuple(kwargs.items()) | |
else: | |
key = args | |
prec = ctx.prec | |
if key in f_cache: | |
cprec, cvalue = f_cache[key] | |
if cprec >= prec: | |
return +cvalue | |
value = f(*args, **kwargs) | |
f_cache[key] = (prec, value) | |
return value | |
f_cached.__name__ = f.__name__ | |
f_cached.__doc__ = f.__doc__ | |
return f_cached | |