Spaces:
Sleeping
Sleeping
import operator | |
import sys | |
from .libmp import int_types, mpf_hash, bitcount, from_man_exp, HASH_MODULUS | |
new = object.__new__ | |
def create_reduced(p, q, _cache={}): | |
key = p, q | |
if key in _cache: | |
return _cache[key] | |
x, y = p, q | |
while y: | |
x, y = y, x % y | |
if x != 1: | |
p //= x | |
q //= x | |
v = new(mpq) | |
v._mpq_ = p, q | |
# Speedup integers, half-integers and other small fractions | |
if q <= 4 and abs(key[0]) < 100: | |
_cache[key] = v | |
return v | |
class mpq(object): | |
""" | |
Exact rational type, currently only intended for internal use. | |
""" | |
__slots__ = ["_mpq_"] | |
def __new__(cls, p, q=1): | |
if type(p) is tuple: | |
p, q = p | |
elif hasattr(p, '_mpq_'): | |
p, q = p._mpq_ | |
return create_reduced(p, q) | |
def __repr__(s): | |
return "mpq(%s,%s)" % s._mpq_ | |
def __str__(s): | |
return "(%s/%s)" % s._mpq_ | |
def __int__(s): | |
a, b = s._mpq_ | |
return a // b | |
def __nonzero__(s): | |
return bool(s._mpq_[0]) | |
__bool__ = __nonzero__ | |
def __hash__(s): | |
a, b = s._mpq_ | |
if sys.version_info >= (3, 2): | |
inverse = pow(b, HASH_MODULUS-2, HASH_MODULUS) | |
if not inverse: | |
h = sys.hash_info.inf | |
else: | |
h = (abs(a) * inverse) % HASH_MODULUS | |
if a < 0: h = -h | |
if h == -1: h = -2 | |
return h | |
else: | |
if b == 1: | |
return hash(a) | |
# Power of two: mpf compatible hash | |
if not (b & (b-1)): | |
return mpf_hash(from_man_exp(a, 1-bitcount(b))) | |
return hash((a,b)) | |
def __eq__(s, t): | |
ttype = type(t) | |
if ttype is mpq: | |
return s._mpq_ == t._mpq_ | |
if ttype in int_types: | |
a, b = s._mpq_ | |
if b != 1: | |
return False | |
return a == t | |
return NotImplemented | |
def __ne__(s, t): | |
ttype = type(t) | |
if ttype is mpq: | |
return s._mpq_ != t._mpq_ | |
if ttype in int_types: | |
a, b = s._mpq_ | |
if b != 1: | |
return True | |
return a != t | |
return NotImplemented | |
def _cmp(s, t, op): | |
ttype = type(t) | |
if ttype in int_types: | |
a, b = s._mpq_ | |
return op(a, t*b) | |
if ttype is mpq: | |
a, b = s._mpq_ | |
c, d = t._mpq_ | |
return op(a*d, b*c) | |
return NotImplementedError | |
def __lt__(s, t): return s._cmp(t, operator.lt) | |
def __le__(s, t): return s._cmp(t, operator.le) | |
def __gt__(s, t): return s._cmp(t, operator.gt) | |
def __ge__(s, t): return s._cmp(t, operator.ge) | |
def __abs__(s): | |
a, b = s._mpq_ | |
if a >= 0: | |
return s | |
v = new(mpq) | |
v._mpq_ = -a, b | |
return v | |
def __neg__(s): | |
a, b = s._mpq_ | |
v = new(mpq) | |
v._mpq_ = -a, b | |
return v | |
def __pos__(s): | |
return s | |
def __add__(s, t): | |
ttype = type(t) | |
if ttype is mpq: | |
a, b = s._mpq_ | |
c, d = t._mpq_ | |
return create_reduced(a*d+b*c, b*d) | |
if ttype in int_types: | |
a, b = s._mpq_ | |
v = new(mpq) | |
v._mpq_ = a+b*t, b | |
return v | |
return NotImplemented | |
__radd__ = __add__ | |
def __sub__(s, t): | |
ttype = type(t) | |
if ttype is mpq: | |
a, b = s._mpq_ | |
c, d = t._mpq_ | |
return create_reduced(a*d-b*c, b*d) | |
if ttype in int_types: | |
a, b = s._mpq_ | |
v = new(mpq) | |
v._mpq_ = a-b*t, b | |
return v | |
return NotImplemented | |
def __rsub__(s, t): | |
ttype = type(t) | |
if ttype is mpq: | |
a, b = s._mpq_ | |
c, d = t._mpq_ | |
return create_reduced(b*c-a*d, b*d) | |
if ttype in int_types: | |
a, b = s._mpq_ | |
v = new(mpq) | |
v._mpq_ = b*t-a, b | |
return v | |
return NotImplemented | |
def __mul__(s, t): | |
ttype = type(t) | |
if ttype is mpq: | |
a, b = s._mpq_ | |
c, d = t._mpq_ | |
return create_reduced(a*c, b*d) | |
if ttype in int_types: | |
a, b = s._mpq_ | |
return create_reduced(a*t, b) | |
return NotImplemented | |
__rmul__ = __mul__ | |
def __div__(s, t): | |
ttype = type(t) | |
if ttype is mpq: | |
a, b = s._mpq_ | |
c, d = t._mpq_ | |
return create_reduced(a*d, b*c) | |
if ttype in int_types: | |
a, b = s._mpq_ | |
return create_reduced(a, b*t) | |
return NotImplemented | |
def __rdiv__(s, t): | |
ttype = type(t) | |
if ttype is mpq: | |
a, b = s._mpq_ | |
c, d = t._mpq_ | |
return create_reduced(b*c, a*d) | |
if ttype in int_types: | |
a, b = s._mpq_ | |
return create_reduced(b*t, a) | |
return NotImplemented | |
def __pow__(s, t): | |
ttype = type(t) | |
if ttype in int_types: | |
a, b = s._mpq_ | |
if t: | |
if t < 0: | |
a, b, t = b, a, -t | |
v = new(mpq) | |
v._mpq_ = a**t, b**t | |
return v | |
raise ZeroDivisionError | |
return NotImplemented | |
mpq_1 = mpq((1,1)) | |
mpq_0 = mpq((0,1)) | |
mpq_1_2 = mpq((1,2)) | |
mpq_3_2 = mpq((3,2)) | |
mpq_1_4 = mpq((1,4)) | |
mpq_1_16 = mpq((1,16)) | |
mpq_3_16 = mpq((3,16)) | |
mpq_5_2 = mpq((5,2)) | |
mpq_3_4 = mpq((3,4)) | |
mpq_7_4 = mpq((7,4)) | |
mpq_5_4 = mpq((5,4)) | |
# Register with "numbers" ABC | |
# We do not subclass, hence we do not use the @abstractmethod checks. While | |
# this is less invasive it may turn out that we do not actually support | |
# parts of the expected interfaces. See | |
# http://docs.python.org/2/library/numbers.html for list of abstract | |
# methods. | |
try: | |
import numbers | |
numbers.Rational.register(mpq) | |
except ImportError: | |
pass | |