Spaces:
Sleeping
Sleeping
#!/usr/bin/python | |
# -*- coding: utf-8 -*- | |
from mpmath import mp | |
from mpmath import libmp | |
xrange = libmp.backend.xrange | |
def run_hessenberg(A, verbose = 0): | |
if verbose > 1: | |
print("original matrix (hessenberg):\n", A) | |
n = A.rows | |
Q, H = mp.hessenberg(A) | |
if verbose > 1: | |
print("Q:\n",Q) | |
print("H:\n",H) | |
B = Q * H * Q.transpose_conj() | |
eps = mp.exp(0.8 * mp.log(mp.eps)) | |
err0 = 0 | |
for x in xrange(n): | |
for y in xrange(n): | |
err0 += abs(A[y,x] - B[y,x]) | |
err0 /= n * n | |
err1 = 0 | |
for x in xrange(n): | |
for y in xrange(x + 2, n): | |
err1 += abs(H[y,x]) | |
if verbose > 0: | |
print("difference (H):", err0, err1) | |
if verbose > 1: | |
print("B:\n", B) | |
assert err0 < eps | |
assert err1 == 0 | |
def run_schur(A, verbose = 0): | |
if verbose > 1: | |
print("original matrix (schur):\n", A) | |
n = A.rows | |
Q, R = mp.schur(A) | |
if verbose > 1: | |
print("Q:\n", Q) | |
print("R:\n", R) | |
B = Q * R * Q.transpose_conj() | |
C = Q * Q.transpose_conj() | |
eps = mp.exp(0.8 * mp.log(mp.eps)) | |
err0 = 0 | |
for x in xrange(n): | |
for y in xrange(n): | |
err0 += abs(A[y,x] - B[y,x]) | |
err0 /= n * n | |
err1 = 0 | |
for x in xrange(n): | |
for y in xrange(n): | |
if x == y: | |
C[y,x] -= 1 | |
err1 += abs(C[y,x]) | |
err1 /= n * n | |
err2 = 0 | |
for x in xrange(n): | |
for y in xrange(x + 1, n): | |
err2 += abs(R[y,x]) | |
if verbose > 0: | |
print("difference (S):", err0, err1, err2) | |
if verbose > 1: | |
print("B:\n", B) | |
assert err0 < eps | |
assert err1 < eps | |
assert err2 == 0 | |
def run_eig(A, verbose = 0): | |
if verbose > 1: | |
print("original matrix (eig):\n", A) | |
n = A.rows | |
E, EL, ER = mp.eig(A, left = True, right = True) | |
if verbose > 1: | |
print("E:\n", E) | |
print("EL:\n", EL) | |
print("ER:\n", ER) | |
eps = mp.exp(0.8 * mp.log(mp.eps)) | |
err0 = 0 | |
for i in xrange(n): | |
B = A * ER[:,i] - E[i] * ER[:,i] | |
err0 = max(err0, mp.mnorm(B)) | |
B = EL[i,:] * A - EL[i,:] * E[i] | |
err0 = max(err0, mp.mnorm(B)) | |
err0 /= n * n | |
if verbose > 0: | |
print("difference (E):", err0) | |
assert err0 < eps | |
##################### | |
def test_eig_dyn(): | |
v = 0 | |
for i in xrange(5): | |
n = 1 + int(mp.rand() * 5) | |
if mp.rand() > 0.5: | |
# real | |
A = 2 * mp.randmatrix(n, n) - 1 | |
if mp.rand() > 0.5: | |
A *= 10 | |
for x in xrange(n): | |
for y in xrange(n): | |
A[x,y] = int(A[x,y]) | |
else: | |
A = (2 * mp.randmatrix(n, n) - 1) + 1j * (2 * mp.randmatrix(n, n) - 1) | |
if mp.rand() > 0.5: | |
A *= 10 | |
for x in xrange(n): | |
for y in xrange(n): | |
A[x,y] = int(mp.re(A[x,y])) + 1j * int(mp.im(A[x,y])) | |
run_hessenberg(A, verbose = v) | |
run_schur(A, verbose = v) | |
run_eig(A, verbose = v) | |
def test_eig(): | |
v = 0 | |
AS = [] | |
A = mp.matrix([[2, 1, 0], # jordan block of size 3 | |
[0, 2, 1], | |
[0, 0, 2]]) | |
AS.append(A) | |
AS.append(A.transpose()) | |
A = mp.matrix([[2, 0, 0], # jordan block of size 2 | |
[0, 2, 1], | |
[0, 0, 2]]) | |
AS.append(A) | |
AS.append(A.transpose()) | |
A = mp.matrix([[2, 0, 1], # jordan block of size 2 | |
[0, 2, 0], | |
[0, 0, 2]]) | |
AS.append(A) | |
AS.append(A.transpose()) | |
A= mp.matrix([[0, 0, 1], # cyclic | |
[1, 0, 0], | |
[0, 1, 0]]) | |
AS.append(A) | |
AS.append(A.transpose()) | |
for A in AS: | |
run_hessenberg(A, verbose = v) | |
run_schur(A, verbose = v) | |
run_eig(A, verbose = v) | |