Spaces:
Sleeping
Sleeping
#!/usr/bin/python | |
# -*- coding: utf-8 -*- | |
from mpmath import mp | |
from mpmath import libmp | |
xrange = libmp.backend.xrange | |
# Attention: | |
# These tests run with 15-20 decimal digits precision. For higher precision the | |
# working precision must be raised. | |
def test_levin_0(): | |
mp.dps = 17 | |
eps = mp.mpf(mp.eps) | |
with mp.extraprec(2 * mp.prec): | |
L = mp.levin(method = "levin", variant = "u") | |
S, s, n = [], 0, 1 | |
while 1: | |
s += mp.one / (n * n) | |
n += 1 | |
S.append(s) | |
v, e = L.update_psum(S) | |
if e < eps: | |
break | |
if n > 1000: raise RuntimeError("iteration limit exceeded") | |
eps = mp.exp(0.9 * mp.log(eps)) | |
err = abs(v - mp.pi ** 2 / 6) | |
assert err < eps | |
w = mp.nsum(lambda n: 1/(n * n), [1, mp.inf], method = "levin", levin_variant = "u") | |
err = abs(v - w) | |
assert err < eps | |
def test_levin_1(): | |
mp.dps = 17 | |
eps = mp.mpf(mp.eps) | |
with mp.extraprec(2 * mp.prec): | |
L = mp.levin(method = "levin", variant = "v") | |
A, n = [], 1 | |
while 1: | |
s = mp.mpf(n) ** (2 + 3j) | |
n += 1 | |
A.append(s) | |
v, e = L.update(A) | |
if e < eps: | |
break | |
if n > 1000: raise RuntimeError("iteration limit exceeded") | |
eps = mp.exp(0.9 * mp.log(eps)) | |
err = abs(v - mp.zeta(-2-3j)) | |
assert err < eps | |
w = mp.nsum(lambda n: n ** (2 + 3j), [1, mp.inf], method = "levin", levin_variant = "v") | |
err = abs(v - w) | |
assert err < eps | |
def test_levin_2(): | |
# [2] A. Sidi - "Pratical Extrapolation Methods" p.373 | |
mp.dps = 17 | |
z=mp.mpf(10) | |
eps = mp.mpf(mp.eps) | |
with mp.extraprec(2 * mp.prec): | |
L = mp.levin(method = "sidi", variant = "t") | |
n = 0 | |
while 1: | |
s = (-1)**n * mp.fac(n) * z ** (-n) | |
v, e = L.step(s) | |
n += 1 | |
if e < eps: | |
break | |
if n > 1000: raise RuntimeError("iteration limit exceeded") | |
eps = mp.exp(0.9 * mp.log(eps)) | |
exact = mp.quad(lambda x: mp.exp(-x)/(1+x/z),[0,mp.inf]) | |
# there is also a symbolic expression for the integral: | |
# exact = z * mp.exp(z) * mp.expint(1,z) | |
err = abs(v - exact) | |
assert err < eps | |
w = mp.nsum(lambda n: (-1) ** n * mp.fac(n) * z ** (-n), [0, mp.inf], method = "sidi", levin_variant = "t") | |
assert err < eps | |
def test_levin_3(): | |
mp.dps = 17 | |
z=mp.mpf(2) | |
eps = mp.mpf(mp.eps) | |
with mp.extraprec(7*mp.prec): # we need copious amount of precision to sum this highly divergent series | |
L = mp.levin(method = "levin", variant = "t") | |
n, s = 0, 0 | |
while 1: | |
s += (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n)) | |
n += 1 | |
v, e = L.step_psum(s) | |
if e < eps: | |
break | |
if n > 1000: raise RuntimeError("iteration limit exceeded") | |
eps = mp.exp(0.8 * mp.log(eps)) | |
exact = mp.quad(lambda x: mp.exp( -x * x / 2 - z * x ** 4), [0,mp.inf]) * 2 / mp.sqrt(2 * mp.pi) | |
# there is also a symbolic expression for the integral: | |
# exact = mp.exp(mp.one / (32 * z)) * mp.besselk(mp.one / 4, mp.one / (32 * z)) / (4 * mp.sqrt(z * mp.pi)) | |
err = abs(v - exact) | |
assert err < eps | |
w = mp.nsum(lambda n: (-z)**n * mp.fac(4 * n) / (mp.fac(n) * mp.fac(2 * n) * (4 ** n)), [0, mp.inf], method = "levin", levin_variant = "t", workprec = 8*mp.prec, steps = [2] + [1 for x in xrange(1000)]) | |
err = abs(v - w) | |
assert err < eps | |
def test_levin_nsum(): | |
mp.dps = 17 | |
with mp.extraprec(mp.prec): | |
z = mp.mpf(10) ** (-10) | |
a = mp.nsum(lambda n: n**(-(1+z)), [1, mp.inf], method = "l") - 1 / z | |
assert abs(a - mp.euler) < 1e-10 | |
eps = mp.exp(0.8 * mp.log(mp.eps)) | |
a = mp.nsum(lambda n: (-1)**(n-1) / n, [1, mp.inf], method = "sidi") | |
assert abs(a - mp.log(2)) < eps | |
z = 2 + 1j | |
f = lambda n: mp.rf(2 / mp.mpf(3), n) * mp.rf(4 / mp.mpf(3), n) * z**n / (mp.rf(1 / mp.mpf(3), n) * mp.fac(n)) | |
v = mp.nsum(f, [0, mp.inf], method = "levin", steps = [10 for x in xrange(1000)]) | |
exact = mp.hyp2f1(2 / mp.mpf(3), 4 / mp.mpf(3), 1 / mp.mpf(3), z) | |
assert abs(exact - v) < eps | |
def test_cohen_alt_0(): | |
mp.dps = 17 | |
AC = mp.cohen_alt() | |
S, s, n = [], 0, 1 | |
while 1: | |
s += -((-1) ** n) * mp.one / (n * n) | |
n += 1 | |
S.append(s) | |
v, e = AC.update_psum(S) | |
if e < mp.eps: | |
break | |
if n > 1000: raise RuntimeError("iteration limit exceeded") | |
eps = mp.exp(0.9 * mp.log(mp.eps)) | |
err = abs(v - mp.pi ** 2 / 12) | |
assert err < eps | |
def test_cohen_alt_1(): | |
mp.dps = 17 | |
A = [] | |
AC = mp.cohen_alt() | |
n = 1 | |
while 1: | |
A.append( mp.loggamma(1 + mp.one / (2 * n - 1))) | |
A.append(-mp.loggamma(1 + mp.one / (2 * n))) | |
n += 1 | |
v, e = AC.update(A) | |
if e < mp.eps: | |
break | |
if n > 1000: raise RuntimeError("iteration limit exceeded") | |
v = mp.exp(v) | |
err = abs(v - 1.06215090557106) | |
assert err < 1e-12 | |