Spaces:
Sleeping
Sleeping
from __future__ import print_function | |
from copy import copy | |
from ..libmp.backend import xrange | |
class OptimizationMethods(object): | |
def __init__(ctx): | |
pass | |
############## | |
# 1D-SOLVERS # | |
############## | |
class Newton: | |
""" | |
1d-solver generating pairs of approximative root and error. | |
Needs starting points x0 close to the root. | |
Pro: | |
* converges fast | |
* sometimes more robust than secant with bad second starting point | |
Contra: | |
* converges slowly for multiple roots | |
* needs first derivative | |
* 2 function evaluations per iteration | |
""" | |
maxsteps = 20 | |
def __init__(self, ctx, f, x0, **kwargs): | |
self.ctx = ctx | |
if len(x0) == 1: | |
self.x0 = x0[0] | |
else: | |
raise ValueError('expected 1 starting point, got %i' % len(x0)) | |
self.f = f | |
if not 'df' in kwargs: | |
def df(x): | |
return self.ctx.diff(f, x) | |
else: | |
df = kwargs['df'] | |
self.df = df | |
def __iter__(self): | |
f = self.f | |
df = self.df | |
x0 = self.x0 | |
while True: | |
x1 = x0 - f(x0) / df(x0) | |
error = abs(x1 - x0) | |
x0 = x1 | |
yield (x1, error) | |
class Secant: | |
""" | |
1d-solver generating pairs of approximative root and error. | |
Needs starting points x0 and x1 close to the root. | |
x1 defaults to x0 + 0.25. | |
Pro: | |
* converges fast | |
Contra: | |
* converges slowly for multiple roots | |
""" | |
maxsteps = 30 | |
def __init__(self, ctx, f, x0, **kwargs): | |
self.ctx = ctx | |
if len(x0) == 1: | |
self.x0 = x0[0] | |
self.x1 = self.x0 + 0.25 | |
elif len(x0) == 2: | |
self.x0 = x0[0] | |
self.x1 = x0[1] | |
else: | |
raise ValueError('expected 1 or 2 starting points, got %i' % len(x0)) | |
self.f = f | |
def __iter__(self): | |
f = self.f | |
x0 = self.x0 | |
x1 = self.x1 | |
f0 = f(x0) | |
while True: | |
f1 = f(x1) | |
l = x1 - x0 | |
if not l: | |
break | |
s = (f1 - f0) / l | |
if not s: | |
break | |
x0, x1 = x1, x1 - f1/s | |
f0 = f1 | |
yield x1, abs(l) | |
class MNewton: | |
""" | |
1d-solver generating pairs of approximative root and error. | |
Needs starting point x0 close to the root. | |
Uses modified Newton's method that converges fast regardless of the | |
multiplicity of the root. | |
Pro: | |
* converges fast for multiple roots | |
Contra: | |
* needs first and second derivative of f | |
* 3 function evaluations per iteration | |
""" | |
maxsteps = 20 | |
def __init__(self, ctx, f, x0, **kwargs): | |
self.ctx = ctx | |
if not len(x0) == 1: | |
raise ValueError('expected 1 starting point, got %i' % len(x0)) | |
self.x0 = x0[0] | |
self.f = f | |
if not 'df' in kwargs: | |
def df(x): | |
return self.ctx.diff(f, x) | |
else: | |
df = kwargs['df'] | |
self.df = df | |
if not 'd2f' in kwargs: | |
def d2f(x): | |
return self.ctx.diff(df, x) | |
else: | |
d2f = kwargs['df'] | |
self.d2f = d2f | |
def __iter__(self): | |
x = self.x0 | |
f = self.f | |
df = self.df | |
d2f = self.d2f | |
while True: | |
prevx = x | |
fx = f(x) | |
if fx == 0: | |
break | |
dfx = df(x) | |
d2fx = d2f(x) | |
# x = x - F(x)/F'(x) with F(x) = f(x)/f'(x) | |
x -= fx / (dfx - fx * d2fx / dfx) | |
error = abs(x - prevx) | |
yield x, error | |
class Halley: | |
""" | |
1d-solver generating pairs of approximative root and error. | |
Needs a starting point x0 close to the root. | |
Uses Halley's method with cubic convergence rate. | |
Pro: | |
* converges even faster the Newton's method | |
* useful when computing with *many* digits | |
Contra: | |
* needs first and second derivative of f | |
* 3 function evaluations per iteration | |
* converges slowly for multiple roots | |
""" | |
maxsteps = 20 | |
def __init__(self, ctx, f, x0, **kwargs): | |
self.ctx = ctx | |
if not len(x0) == 1: | |
raise ValueError('expected 1 starting point, got %i' % len(x0)) | |
self.x0 = x0[0] | |
self.f = f | |
if not 'df' in kwargs: | |
def df(x): | |
return self.ctx.diff(f, x) | |
else: | |
df = kwargs['df'] | |
self.df = df | |
if not 'd2f' in kwargs: | |
def d2f(x): | |
return self.ctx.diff(df, x) | |
else: | |
d2f = kwargs['df'] | |
self.d2f = d2f | |
def __iter__(self): | |
x = self.x0 | |
f = self.f | |
df = self.df | |
d2f = self.d2f | |
while True: | |
prevx = x | |
fx = f(x) | |
dfx = df(x) | |
d2fx = d2f(x) | |
x -= 2*fx*dfx / (2*dfx**2 - fx*d2fx) | |
error = abs(x - prevx) | |
yield x, error | |
class Muller: | |
""" | |
1d-solver generating pairs of approximative root and error. | |
Needs starting points x0, x1 and x2 close to the root. | |
x1 defaults to x0 + 0.25; x2 to x1 + 0.25. | |
Uses Muller's method that converges towards complex roots. | |
Pro: | |
* converges fast (somewhat faster than secant) | |
* can find complex roots | |
Contra: | |
* converges slowly for multiple roots | |
* may have complex values for real starting points and real roots | |
http://en.wikipedia.org/wiki/Muller's_method | |
""" | |
maxsteps = 30 | |
def __init__(self, ctx, f, x0, **kwargs): | |
self.ctx = ctx | |
if len(x0) == 1: | |
self.x0 = x0[0] | |
self.x1 = self.x0 + 0.25 | |
self.x2 = self.x1 + 0.25 | |
elif len(x0) == 2: | |
self.x0 = x0[0] | |
self.x1 = x0[1] | |
self.x2 = self.x1 + 0.25 | |
elif len(x0) == 3: | |
self.x0 = x0[0] | |
self.x1 = x0[1] | |
self.x2 = x0[2] | |
else: | |
raise ValueError('expected 1, 2 or 3 starting points, got %i' | |
% len(x0)) | |
self.f = f | |
self.verbose = kwargs['verbose'] | |
def __iter__(self): | |
f = self.f | |
x0 = self.x0 | |
x1 = self.x1 | |
x2 = self.x2 | |
fx0 = f(x0) | |
fx1 = f(x1) | |
fx2 = f(x2) | |
while True: | |
# TODO: maybe refactoring with function for divided differences | |
# calculate divided differences | |
fx2x1 = (fx1 - fx2) / (x1 - x2) | |
fx2x0 = (fx0 - fx2) / (x0 - x2) | |
fx1x0 = (fx0 - fx1) / (x0 - x1) | |
w = fx2x1 + fx2x0 - fx1x0 | |
fx2x1x0 = (fx1x0 - fx2x1) / (x0 - x2) | |
if w == 0 and fx2x1x0 == 0: | |
if self.verbose: | |
print('canceled with') | |
print('x0 =', x0, ', x1 =', x1, 'and x2 =', x2) | |
break | |
x0 = x1 | |
fx0 = fx1 | |
x1 = x2 | |
fx1 = fx2 | |
# denominator should be as large as possible => choose sign | |
r = self.ctx.sqrt(w**2 - 4*fx2*fx2x1x0) | |
if abs(w - r) > abs(w + r): | |
r = -r | |
x2 -= 2*fx2 / (w + r) | |
fx2 = f(x2) | |
error = abs(x2 - x1) | |
yield x2, error | |
# TODO: consider raising a ValueError when there's no sign change in a and b | |
class Bisection: | |
""" | |
1d-solver generating pairs of approximative root and error. | |
Uses bisection method to find a root of f in [a, b]. | |
Might fail for multiple roots (needs sign change). | |
Pro: | |
* robust and reliable | |
Contra: | |
* converges slowly | |
* needs sign change | |
""" | |
maxsteps = 100 | |
def __init__(self, ctx, f, x0, **kwargs): | |
self.ctx = ctx | |
if len(x0) != 2: | |
raise ValueError('expected interval of 2 points, got %i' % len(x0)) | |
self.f = f | |
self.a = x0[0] | |
self.b = x0[1] | |
def __iter__(self): | |
f = self.f | |
a = self.a | |
b = self.b | |
l = b - a | |
fb = f(b) | |
while True: | |
m = self.ctx.ldexp(a + b, -1) | |
fm = f(m) | |
sign = fm * fb | |
if sign < 0: | |
a = m | |
elif sign > 0: | |
b = m | |
fb = fm | |
else: | |
yield m, self.ctx.zero | |
l /= 2 | |
yield (a + b)/2, abs(l) | |
def _getm(method): | |
""" | |
Return a function to calculate m for Illinois-like methods. | |
""" | |
if method == 'illinois': | |
def getm(fz, fb): | |
return 0.5 | |
elif method == 'pegasus': | |
def getm(fz, fb): | |
return fb/(fb + fz) | |
elif method == 'anderson': | |
def getm(fz, fb): | |
m = 1 - fz/fb | |
if m > 0: | |
return m | |
else: | |
return 0.5 | |
else: | |
raise ValueError("method '%s' not recognized" % method) | |
return getm | |
class Illinois: | |
""" | |
1d-solver generating pairs of approximative root and error. | |
Uses Illinois method or similar to find a root of f in [a, b]. | |
Might fail for multiple roots (needs sign change). | |
Combines bisect with secant (improved regula falsi). | |
The only difference between the methods is the scaling factor m, which is | |
used to ensure convergence (you can choose one using the 'method' keyword): | |
Illinois method ('illinois'): | |
m = 0.5 | |
Pegasus method ('pegasus'): | |
m = fb/(fb + fz) | |
Anderson-Bjoerk method ('anderson'): | |
m = 1 - fz/fb if positive else 0.5 | |
Pro: | |
* converges very fast | |
Contra: | |
* has problems with multiple roots | |
* needs sign change | |
""" | |
maxsteps = 30 | |
def __init__(self, ctx, f, x0, **kwargs): | |
self.ctx = ctx | |
if len(x0) != 2: | |
raise ValueError('expected interval of 2 points, got %i' % len(x0)) | |
self.a = x0[0] | |
self.b = x0[1] | |
self.f = f | |
self.tol = kwargs['tol'] | |
self.verbose = kwargs['verbose'] | |
self.method = kwargs.get('method', 'illinois') | |
self.getm = _getm(self.method) | |
if self.verbose: | |
print('using %s method' % self.method) | |
def __iter__(self): | |
method = self.method | |
f = self.f | |
a = self.a | |
b = self.b | |
fa = f(a) | |
fb = f(b) | |
m = None | |
while True: | |
l = b - a | |
if l == 0: | |
break | |
s = (fb - fa) / l | |
z = a - fa/s | |
fz = f(z) | |
if abs(fz) < self.tol: | |
# TODO: better condition (when f is very flat) | |
if self.verbose: | |
print('canceled with z =', z) | |
yield z, l | |
break | |
if fz * fb < 0: # root in [z, b] | |
a = b | |
fa = fb | |
b = z | |
fb = fz | |
else: # root in [a, z] | |
m = self.getm(fz, fb) | |
b = z | |
fb = fz | |
fa = m*fa # scale down to ensure convergence | |
if self.verbose and m and not method == 'illinois': | |
print('m:', m) | |
yield (a + b)/2, abs(l) | |
def Pegasus(*args, **kwargs): | |
""" | |
1d-solver generating pairs of approximative root and error. | |
Uses Pegasus method to find a root of f in [a, b]. | |
Wrapper for illinois to use method='pegasus'. | |
""" | |
kwargs['method'] = 'pegasus' | |
return Illinois(*args, **kwargs) | |
def Anderson(*args, **kwargs): | |
""" | |
1d-solver generating pairs of approximative root and error. | |
Uses Anderson-Bjoerk method to find a root of f in [a, b]. | |
Wrapper for illinois to use method='pegasus'. | |
""" | |
kwargs['method'] = 'anderson' | |
return Illinois(*args, **kwargs) | |
# TODO: check whether it's possible to combine it with Illinois stuff | |
class Ridder: | |
""" | |
1d-solver generating pairs of approximative root and error. | |
Ridders' method to find a root of f in [a, b]. | |
Is told to perform as well as Brent's method while being simpler. | |
Pro: | |
* very fast | |
* simpler than Brent's method | |
Contra: | |
* two function evaluations per step | |
* has problems with multiple roots | |
* needs sign change | |
http://en.wikipedia.org/wiki/Ridders'_method | |
""" | |
maxsteps = 30 | |
def __init__(self, ctx, f, x0, **kwargs): | |
self.ctx = ctx | |
self.f = f | |
if len(x0) != 2: | |
raise ValueError('expected interval of 2 points, got %i' % len(x0)) | |
self.x1 = x0[0] | |
self.x2 = x0[1] | |
self.verbose = kwargs['verbose'] | |
self.tol = kwargs['tol'] | |
def __iter__(self): | |
ctx = self.ctx | |
f = self.f | |
x1 = self.x1 | |
fx1 = f(x1) | |
x2 = self.x2 | |
fx2 = f(x2) | |
while True: | |
x3 = 0.5*(x1 + x2) | |
fx3 = f(x3) | |
x4 = x3 + (x3 - x1) * ctx.sign(fx1 - fx2) * fx3 / ctx.sqrt(fx3**2 - fx1*fx2) | |
fx4 = f(x4) | |
if abs(fx4) < self.tol: | |
# TODO: better condition (when f is very flat) | |
if self.verbose: | |
print('canceled with f(x4) =', fx4) | |
yield x4, abs(x1 - x2) | |
break | |
if fx4 * fx2 < 0: # root in [x4, x2] | |
x1 = x4 | |
fx1 = fx4 | |
else: # root in [x1, x4] | |
x2 = x4 | |
fx2 = fx4 | |
error = abs(x1 - x2) | |
yield (x1 + x2)/2, error | |
class ANewton: | |
""" | |
EXPERIMENTAL 1d-solver generating pairs of approximative root and error. | |
Uses Newton's method modified to use Steffensens method when convergence is | |
slow. (I.e. for multiple roots.) | |
""" | |
maxsteps = 20 | |
def __init__(self, ctx, f, x0, **kwargs): | |
self.ctx = ctx | |
if not len(x0) == 1: | |
raise ValueError('expected 1 starting point, got %i' % len(x0)) | |
self.x0 = x0[0] | |
self.f = f | |
if not 'df' in kwargs: | |
def df(x): | |
return self.ctx.diff(f, x) | |
else: | |
df = kwargs['df'] | |
self.df = df | |
def phi(x): | |
return x - f(x) / df(x) | |
self.phi = phi | |
self.verbose = kwargs['verbose'] | |
def __iter__(self): | |
x0 = self.x0 | |
f = self.f | |
df = self.df | |
phi = self.phi | |
error = 0 | |
counter = 0 | |
while True: | |
prevx = x0 | |
try: | |
x0 = phi(x0) | |
except ZeroDivisionError: | |
if self.verbose: | |
print('ZeroDivisionError: canceled with x =', x0) | |
break | |
preverror = error | |
error = abs(prevx - x0) | |
# TODO: decide not to use convergence acceleration | |
if error and abs(error - preverror) / error < 1: | |
if self.verbose: | |
print('converging slowly') | |
counter += 1 | |
if counter >= 3: | |
# accelerate convergence | |
phi = steffensen(phi) | |
counter = 0 | |
if self.verbose: | |
print('accelerating convergence') | |
yield x0, error | |
# TODO: add Brent | |
############################ | |
# MULTIDIMENSIONAL SOLVERS # | |
############################ | |
def jacobian(ctx, f, x): | |
""" | |
Calculate the Jacobian matrix of a function at the point x0. | |
This is the first derivative of a vectorial function: | |
f : R^m -> R^n with m >= n | |
""" | |
x = ctx.matrix(x) | |
h = ctx.sqrt(ctx.eps) | |
fx = ctx.matrix(f(*x)) | |
m = len(fx) | |
n = len(x) | |
J = ctx.matrix(m, n) | |
for j in xrange(n): | |
xj = x.copy() | |
xj[j] += h | |
Jj = (ctx.matrix(f(*xj)) - fx) / h | |
for i in xrange(m): | |
J[i,j] = Jj[i] | |
return J | |
# TODO: test with user-specified jacobian matrix | |
class MDNewton: | |
""" | |
Find the root of a vector function numerically using Newton's method. | |
f is a vector function representing a nonlinear equation system. | |
x0 is the starting point close to the root. | |
J is a function returning the Jacobian matrix for a point. | |
Supports overdetermined systems. | |
Use the 'norm' keyword to specify which norm to use. Defaults to max-norm. | |
The function to calculate the Jacobian matrix can be given using the | |
keyword 'J'. Otherwise it will be calculated numerically. | |
Please note that this method converges only locally. Especially for high- | |
dimensional systems it is not trivial to find a good starting point being | |
close enough to the root. | |
It is recommended to use a faster, low-precision solver from SciPy [1] or | |
OpenOpt [2] to get an initial guess. Afterwards you can use this method for | |
root-polishing to any precision. | |
[1] http://scipy.org | |
[2] http://openopt.org/Welcome | |
""" | |
maxsteps = 10 | |
def __init__(self, ctx, f, x0, **kwargs): | |
self.ctx = ctx | |
self.f = f | |
if isinstance(x0, (tuple, list)): | |
x0 = ctx.matrix(x0) | |
assert x0.cols == 1, 'need a vector' | |
self.x0 = x0 | |
if 'J' in kwargs: | |
self.J = kwargs['J'] | |
else: | |
def J(*x): | |
return ctx.jacobian(f, x) | |
self.J = J | |
self.norm = kwargs['norm'] | |
self.verbose = kwargs['verbose'] | |
def __iter__(self): | |
f = self.f | |
x0 = self.x0 | |
norm = self.norm | |
J = self.J | |
fx = self.ctx.matrix(f(*x0)) | |
fxnorm = norm(fx) | |
cancel = False | |
while not cancel: | |
# get direction of descent | |
fxn = -fx | |
Jx = J(*x0) | |
s = self.ctx.lu_solve(Jx, fxn) | |
if self.verbose: | |
print('Jx:') | |
print(Jx) | |
print('s:', s) | |
# damping step size TODO: better strategy (hard task) | |
l = self.ctx.one | |
x1 = x0 + s | |
while True: | |
if x1 == x0: | |
if self.verbose: | |
print("canceled, won't get more excact") | |
cancel = True | |
break | |
fx = self.ctx.matrix(f(*x1)) | |
newnorm = norm(fx) | |
if newnorm < fxnorm: | |
# new x accepted | |
fxnorm = newnorm | |
x0 = x1 | |
break | |
l /= 2 | |
x1 = x0 + l*s | |
yield (x0, fxnorm) | |
############# | |
# UTILITIES # | |
############# | |
str2solver = {'newton':Newton, 'secant':Secant, 'mnewton':MNewton, | |
'halley':Halley, 'muller':Muller, 'bisect':Bisection, | |
'illinois':Illinois, 'pegasus':Pegasus, 'anderson':Anderson, | |
'ridder':Ridder, 'anewton':ANewton, 'mdnewton':MDNewton} | |
def findroot(ctx, f, x0, solver='secant', tol=None, verbose=False, verify=True, **kwargs): | |
r""" | |
Find an approximate solution to `f(x) = 0`, using *x0* as starting point or | |
interval for *x*. | |
Multidimensional overdetermined systems are supported. | |
You can specify them using a function or a list of functions. | |
Mathematically speaking, this function returns `x` such that | |
`|f(x)|^2 \leq \mathrm{tol}` is true within the current working precision. | |
If the computed value does not meet this criterion, an exception is raised. | |
This exception can be disabled with *verify=False*. | |
For interval arithmetic (``iv.findroot()``), please note that | |
the returned interval ``x`` is not guaranteed to contain `f(x)=0`! | |
It is only some `x` for which `|f(x)|^2 \leq \mathrm{tol}` certainly holds | |
regardless of numerical error. This may be improved in the future. | |
**Arguments** | |
*f* | |
one dimensional function | |
*x0* | |
starting point, several starting points or interval (depends on solver) | |
*tol* | |
the returned solution has an error smaller than this | |
*verbose* | |
print additional information for each iteration if true | |
*verify* | |
verify the solution and raise a ValueError if `|f(x)|^2 > \mathrm{tol}` | |
*solver* | |
a generator for *f* and *x0* returning approximative solution and error | |
*maxsteps* | |
after how many steps the solver will cancel | |
*df* | |
first derivative of *f* (used by some solvers) | |
*d2f* | |
second derivative of *f* (used by some solvers) | |
*multidimensional* | |
force multidimensional solving | |
*J* | |
Jacobian matrix of *f* (used by multidimensional solvers) | |
*norm* | |
used vector norm (used by multidimensional solvers) | |
solver has to be callable with ``(f, x0, **kwargs)`` and return an generator | |
yielding pairs of approximative solution and estimated error (which is | |
expected to be positive). | |
You can use the following string aliases: | |
'secant', 'mnewton', 'halley', 'muller', 'illinois', 'pegasus', 'anderson', | |
'ridder', 'anewton', 'bisect' | |
See mpmath.calculus.optimization for their documentation. | |
**Examples** | |
The function :func:`~mpmath.findroot` locates a root of a given function using the | |
secant method by default. A simple example use of the secant method is to | |
compute `\pi` as the root of `\sin x` closest to `x_0 = 3`:: | |
>>> from mpmath import * | |
>>> mp.dps = 30; mp.pretty = True | |
>>> findroot(sin, 3) | |
3.14159265358979323846264338328 | |
The secant method can be used to find complex roots of analytic functions, | |
although it must in that case generally be given a nonreal starting value | |
(or else it will never leave the real line):: | |
>>> mp.dps = 15 | |
>>> findroot(lambda x: x**3 + 2*x + 1, j) | |
(0.226698825758202 + 1.46771150871022j) | |
A nice application is to compute nontrivial roots of the Riemann zeta | |
function with many digits (good initial values are needed for convergence):: | |
>>> mp.dps = 30 | |
>>> findroot(zeta, 0.5+14j) | |
(0.5 + 14.1347251417346937904572519836j) | |
The secant method can also be used as an optimization algorithm, by passing | |
it a derivative of a function. The following example locates the positive | |
minimum of the gamma function:: | |
>>> mp.dps = 20 | |
>>> findroot(lambda x: diff(gamma, x), 1) | |
1.4616321449683623413 | |
Finally, a useful application is to compute inverse functions, such as the | |
Lambert W function which is the inverse of `w e^w`, given the first | |
term of the solution's asymptotic expansion as the initial value. In basic | |
cases, this gives identical results to mpmath's built-in ``lambertw`` | |
function:: | |
>>> def lambert(x): | |
... return findroot(lambda w: w*exp(w) - x, log(1+x)) | |
... | |
>>> mp.dps = 15 | |
>>> lambert(1); lambertw(1) | |
0.567143290409784 | |
0.567143290409784 | |
>>> lambert(1000); lambert(1000) | |
5.2496028524016 | |
5.2496028524016 | |
Multidimensional functions are also supported:: | |
>>> f = [lambda x1, x2: x1**2 + x2, | |
... lambda x1, x2: 5*x1**2 - 3*x1 + 2*x2 - 3] | |
>>> findroot(f, (0, 0)) | |
[-0.618033988749895] | |
[-0.381966011250105] | |
>>> findroot(f, (10, 10)) | |
[ 1.61803398874989] | |
[-2.61803398874989] | |
You can verify this by solving the system manually. | |
Please note that the following (more general) syntax also works:: | |
>>> def f(x1, x2): | |
... return x1**2 + x2, 5*x1**2 - 3*x1 + 2*x2 - 3 | |
... | |
>>> findroot(f, (0, 0)) | |
[-0.618033988749895] | |
[-0.381966011250105] | |
**Multiple roots** | |
For multiple roots all methods of the Newtonian family (including secant) | |
converge slowly. Consider this example:: | |
>>> f = lambda x: (x - 1)**99 | |
>>> findroot(f, 0.9, verify=False) | |
0.918073542444929 | |
Even for a very close starting point the secant method converges very | |
slowly. Use ``verbose=True`` to illustrate this. | |
It is possible to modify Newton's method to make it converge regardless of | |
the root's multiplicity:: | |
>>> findroot(f, -10, solver='mnewton') | |
1.0 | |
This variant uses the first and second derivative of the function, which is | |
not very efficient. | |
Alternatively you can use an experimental Newtonian solver that keeps track | |
of the speed of convergence and accelerates it using Steffensen's method if | |
necessary:: | |
>>> findroot(f, -10, solver='anewton', verbose=True) | |
x: -9.88888888888888888889 | |
error: 0.111111111111111111111 | |
converging slowly | |
x: -9.77890011223344556678 | |
error: 0.10998877665544332211 | |
converging slowly | |
x: -9.67002233332199662166 | |
error: 0.108877778911448945119 | |
converging slowly | |
accelerating convergence | |
x: -9.5622443299551077669 | |
error: 0.107778003366888854764 | |
converging slowly | |
x: 0.99999999999999999214 | |
error: 10.562244329955107759 | |
x: 1.0 | |
error: 7.8598304758094664213e-18 | |
ZeroDivisionError: canceled with x = 1.0 | |
1.0 | |
**Complex roots** | |
For complex roots it's recommended to use Muller's method as it converges | |
even for real starting points very fast:: | |
>>> findroot(lambda x: x**4 + x + 1, (0, 1, 2), solver='muller') | |
(0.727136084491197 + 0.934099289460529j) | |
**Intersection methods** | |
When you need to find a root in a known interval, it's highly recommended to | |
use an intersection-based solver like ``'anderson'`` or ``'ridder'``. | |
Usually they converge faster and more reliable. They have however problems | |
with multiple roots and usually need a sign change to find a root:: | |
>>> findroot(lambda x: x**3, (-1, 1), solver='anderson') | |
0.0 | |
Be careful with symmetric functions:: | |
>>> findroot(lambda x: x**2, (-1, 1), solver='anderson') #doctest:+ELLIPSIS | |
Traceback (most recent call last): | |
... | |
ZeroDivisionError | |
It fails even for better starting points, because there is no sign change:: | |
>>> findroot(lambda x: x**2, (-1, .5), solver='anderson') | |
Traceback (most recent call last): | |
... | |
ValueError: Could not find root within given tolerance. (1.0 > 2.16840434497100886801e-19) | |
Try another starting point or tweak arguments. | |
""" | |
prec = ctx.prec | |
try: | |
ctx.prec += 20 | |
# initialize arguments | |
if tol is None: | |
tol = ctx.eps * 2**10 | |
kwargs['verbose'] = kwargs.get('verbose', verbose) | |
if 'd1f' in kwargs: | |
kwargs['df'] = kwargs['d1f'] | |
kwargs['tol'] = tol | |
if isinstance(x0, (list, tuple)): | |
x0 = [ctx.convert(x) for x in x0] | |
else: | |
x0 = [ctx.convert(x0)] | |
if isinstance(solver, str): | |
try: | |
solver = str2solver[solver] | |
except KeyError: | |
raise ValueError('could not recognize solver') | |
# accept list of functions | |
if isinstance(f, (list, tuple)): | |
f2 = copy(f) | |
def tmp(*args): | |
return [fn(*args) for fn in f2] | |
f = tmp | |
# detect multidimensional functions | |
try: | |
fx = f(*x0) | |
multidimensional = isinstance(fx, (list, tuple, ctx.matrix)) | |
except TypeError: | |
fx = f(x0[0]) | |
multidimensional = False | |
if 'multidimensional' in kwargs: | |
multidimensional = kwargs['multidimensional'] | |
if multidimensional: | |
# only one multidimensional solver available at the moment | |
solver = MDNewton | |
if not 'norm' in kwargs: | |
norm = lambda x: ctx.norm(x, 'inf') | |
kwargs['norm'] = norm | |
else: | |
norm = kwargs['norm'] | |
else: | |
norm = abs | |
# happily return starting point if it's a root | |
if norm(fx) == 0: | |
if multidimensional: | |
return ctx.matrix(x0) | |
else: | |
return x0[0] | |
# use solver | |
iterations = solver(ctx, f, x0, **kwargs) | |
if 'maxsteps' in kwargs: | |
maxsteps = kwargs['maxsteps'] | |
else: | |
maxsteps = iterations.maxsteps | |
i = 0 | |
for x, error in iterations: | |
if verbose: | |
print('x: ', x) | |
print('error:', error) | |
i += 1 | |
if error < tol * max(1, norm(x)) or i >= maxsteps: | |
break | |
else: | |
if not i: | |
raise ValueError('Could not find root using the given solver.\n' | |
'Try another starting point or tweak arguments.') | |
if not isinstance(x, (list, tuple, ctx.matrix)): | |
xl = [x] | |
else: | |
xl = x | |
if verify and norm(f(*xl))**2 > tol: # TODO: better condition? | |
raise ValueError('Could not find root within given tolerance. ' | |
'(%s > %s)\n' | |
'Try another starting point or tweak arguments.' | |
% (norm(f(*xl))**2, tol)) | |
return x | |
finally: | |
ctx.prec = prec | |
def multiplicity(ctx, f, root, tol=None, maxsteps=10, **kwargs): | |
""" | |
Return the multiplicity of a given root of f. | |
Internally, numerical derivatives are used. This might be inefficient for | |
higher order derviatives. Due to this, ``multiplicity`` cancels after | |
evaluating 10 derivatives by default. You can be specify the n-th derivative | |
using the dnf keyword. | |
>>> from mpmath import * | |
>>> multiplicity(lambda x: sin(x) - 1, pi/2) | |
2 | |
""" | |
if tol is None: | |
tol = ctx.eps ** 0.8 | |
kwargs['d0f'] = f | |
for i in xrange(maxsteps): | |
dfstr = 'd' + str(i) + 'f' | |
if dfstr in kwargs: | |
df = kwargs[dfstr] | |
else: | |
df = lambda x: ctx.diff(f, x, i) | |
if not abs(df(root)) < tol: | |
break | |
return i | |
def steffensen(f): | |
""" | |
linear convergent function -> quadratic convergent function | |
Steffensen's method for quadratic convergence of a linear converging | |
sequence. | |
Don not use it for higher rates of convergence. | |
It may even work for divergent sequences. | |
Definition: | |
F(x) = (x*f(f(x)) - f(x)**2) / (f(f(x)) - 2*f(x) + x) | |
Example | |
....... | |
You can use Steffensen's method to accelerate a fixpoint iteration of linear | |
(or less) convergence. | |
x* is a fixpoint of the iteration x_{k+1} = phi(x_k) if x* = phi(x*). For | |
phi(x) = x**2 there are two fixpoints: 0 and 1. | |
Let's try Steffensen's method: | |
>>> f = lambda x: x**2 | |
>>> from mpmath.calculus.optimization import steffensen | |
>>> F = steffensen(f) | |
>>> for x in [0.5, 0.9, 2.0]: | |
... fx = Fx = x | |
... for i in xrange(9): | |
... try: | |
... fx = f(fx) | |
... except OverflowError: | |
... pass | |
... try: | |
... Fx = F(Fx) | |
... except ZeroDivisionError: | |
... pass | |
... print('%20g %20g' % (fx, Fx)) | |
0.25 -0.5 | |
0.0625 0.1 | |
0.00390625 -0.0011236 | |
1.52588e-05 1.41691e-09 | |
2.32831e-10 -2.84465e-27 | |
5.42101e-20 2.30189e-80 | |
2.93874e-39 -1.2197e-239 | |
8.63617e-78 0 | |
7.45834e-155 0 | |
0.81 1.02676 | |
0.6561 1.00134 | |
0.430467 1 | |
0.185302 1 | |
0.0343368 1 | |
0.00117902 1 | |
1.39008e-06 1 | |
1.93233e-12 1 | |
3.73392e-24 1 | |
4 1.6 | |
16 1.2962 | |
256 1.10194 | |
65536 1.01659 | |
4.29497e+09 1.00053 | |
1.84467e+19 1 | |
3.40282e+38 1 | |
1.15792e+77 1 | |
1.34078e+154 1 | |
Unmodified, the iteration converges only towards 0. Modified it converges | |
not only much faster, it converges even to the repelling fixpoint 1. | |
""" | |
def F(x): | |
fx = f(x) | |
ffx = f(fx) | |
return (x*ffx - fx**2) / (ffx - 2*fx + x) | |
return F | |
OptimizationMethods.jacobian = jacobian | |
OptimizationMethods.findroot = findroot | |
OptimizationMethods.multiplicity = multiplicity | |
if __name__ == '__main__': | |
import doctest | |
doctest.testmod() | |