Spaces:
Sleeping
Sleeping
from ..libmp.backend import xrange | |
from .functions import defun, defun_wrapped | |
def gammaprod(ctx, a, b, _infsign=False): | |
a = [ctx.convert(x) for x in a] | |
b = [ctx.convert(x) for x in b] | |
poles_num = [] | |
poles_den = [] | |
regular_num = [] | |
regular_den = [] | |
for x in a: [regular_num, poles_num][ctx.isnpint(x)].append(x) | |
for x in b: [regular_den, poles_den][ctx.isnpint(x)].append(x) | |
# One more pole in numerator or denominator gives 0 or inf | |
if len(poles_num) < len(poles_den): return ctx.zero | |
if len(poles_num) > len(poles_den): | |
# Get correct sign of infinity for x+h, h -> 0 from above | |
# XXX: hack, this should be done properly | |
if _infsign: | |
a = [x and x*(1+ctx.eps) or x+ctx.eps for x in poles_num] | |
b = [x and x*(1+ctx.eps) or x+ctx.eps for x in poles_den] | |
return ctx.sign(ctx.gammaprod(a+regular_num,b+regular_den)) * ctx.inf | |
else: | |
return ctx.inf | |
# All poles cancel | |
# lim G(i)/G(j) = (-1)**(i+j) * gamma(1-j) / gamma(1-i) | |
p = ctx.one | |
orig = ctx.prec | |
try: | |
ctx.prec = orig + 15 | |
while poles_num: | |
i = poles_num.pop() | |
j = poles_den.pop() | |
p *= (-1)**(i+j) * ctx.gamma(1-j) / ctx.gamma(1-i) | |
for x in regular_num: p *= ctx.gamma(x) | |
for x in regular_den: p /= ctx.gamma(x) | |
finally: | |
ctx.prec = orig | |
return +p | |
def beta(ctx, x, y): | |
x = ctx.convert(x) | |
y = ctx.convert(y) | |
if ctx.isinf(y): | |
x, y = y, x | |
if ctx.isinf(x): | |
if x == ctx.inf and not ctx._im(y): | |
if y == ctx.ninf: | |
return ctx.nan | |
if y > 0: | |
return ctx.zero | |
if ctx.isint(y): | |
return ctx.nan | |
if y < 0: | |
return ctx.sign(ctx.gamma(y)) * ctx.inf | |
return ctx.nan | |
xy = ctx.fadd(x, y, prec=2*ctx.prec) | |
return ctx.gammaprod([x, y], [xy]) | |
def binomial(ctx, n, k): | |
n1 = ctx.fadd(n, 1, prec=2*ctx.prec) | |
k1 = ctx.fadd(k, 1, prec=2*ctx.prec) | |
nk1 = ctx.fsub(n1, k, prec=2*ctx.prec) | |
return ctx.gammaprod([n1], [k1, nk1]) | |
def rf(ctx, x, n): | |
xn = ctx.fadd(x, n, prec=2*ctx.prec) | |
return ctx.gammaprod([xn], [x]) | |
def ff(ctx, x, n): | |
x1 = ctx.fadd(x, 1, prec=2*ctx.prec) | |
xn1 = ctx.fadd(ctx.fsub(x, n, prec=2*ctx.prec), 1, prec=2*ctx.prec) | |
return ctx.gammaprod([x1], [xn1]) | |
def fac2(ctx, x): | |
if ctx.isinf(x): | |
if x == ctx.inf: | |
return x | |
return ctx.nan | |
return 2**(x/2)*(ctx.pi/2)**((ctx.cospi(x)-1)/4)*ctx.gamma(x/2+1) | |
def barnesg(ctx, z): | |
if ctx.isinf(z): | |
if z == ctx.inf: | |
return z | |
return ctx.nan | |
if ctx.isnan(z): | |
return z | |
if (not ctx._im(z)) and ctx._re(z) <= 0 and ctx.isint(ctx._re(z)): | |
return z*0 | |
# Account for size (would not be needed if computing log(G)) | |
if abs(z) > 5: | |
ctx.dps += 2*ctx.log(abs(z),2) | |
# Reflection formula | |
if ctx.re(z) < -ctx.dps: | |
w = 1-z | |
pi2 = 2*ctx.pi | |
u = ctx.expjpi(2*w) | |
v = ctx.j*ctx.pi/12 - ctx.j*ctx.pi*w**2/2 + w*ctx.ln(1-u) - \ | |
ctx.j*ctx.polylog(2, u)/pi2 | |
v = ctx.barnesg(2-z)*ctx.exp(v)/pi2**w | |
if ctx._is_real_type(z): | |
v = ctx._re(v) | |
return v | |
# Estimate terms for asymptotic expansion | |
# TODO: fixme, obviously | |
N = ctx.dps // 2 + 5 | |
G = 1 | |
while abs(z) < N or ctx.re(z) < 1: | |
G /= ctx.gamma(z) | |
z += 1 | |
z -= 1 | |
s = ctx.mpf(1)/12 | |
s -= ctx.log(ctx.glaisher) | |
s += z*ctx.log(2*ctx.pi)/2 | |
s += (z**2/2-ctx.mpf(1)/12)*ctx.log(z) | |
s -= 3*z**2/4 | |
z2k = z2 = z**2 | |
for k in xrange(1, N+1): | |
t = ctx.bernoulli(2*k+2) / (4*k*(k+1)*z2k) | |
if abs(t) < ctx.eps: | |
#print k, N # check how many terms were needed | |
break | |
z2k *= z2 | |
s += t | |
#if k == N: | |
# print "warning: series for barnesg failed to converge", ctx.dps | |
return G*ctx.exp(s) | |
def superfac(ctx, z): | |
return ctx.barnesg(z+2) | |
def hyperfac(ctx, z): | |
# XXX: estimate needed extra bits accurately | |
if z == ctx.inf: | |
return z | |
if abs(z) > 5: | |
extra = 4*int(ctx.log(abs(z),2)) | |
else: | |
extra = 0 | |
ctx.prec += extra | |
if not ctx._im(z) and ctx._re(z) < 0 and ctx.isint(ctx._re(z)): | |
n = int(ctx.re(z)) | |
h = ctx.hyperfac(-n-1) | |
if ((n+1)//2) & 1: | |
h = -h | |
if ctx._is_complex_type(z): | |
return h + 0j | |
return h | |
zp1 = z+1 | |
# Wrong branch cut | |
#v = ctx.gamma(zp1)**z | |
#ctx.prec -= extra | |
#return v / ctx.barnesg(zp1) | |
v = ctx.exp(z*ctx.loggamma(zp1)) | |
ctx.prec -= extra | |
return v / ctx.barnesg(zp1) | |
''' | |
@defun | |
def psi0(ctx, z): | |
"""Shortcut for psi(0,z) (the digamma function)""" | |
return ctx.psi(0, z) | |
@defun | |
def psi1(ctx, z): | |
"""Shortcut for psi(1,z) (the trigamma function)""" | |
return ctx.psi(1, z) | |
@defun | |
def psi2(ctx, z): | |
"""Shortcut for psi(2,z) (the tetragamma function)""" | |
return ctx.psi(2, z) | |
@defun | |
def psi3(ctx, z): | |
"""Shortcut for psi(3,z) (the pentagamma function)""" | |
return ctx.psi(3, z) | |
''' | |