Spaces:
Sleeping
Sleeping
""" | |
Implements the PSLQ algorithm for integer relation detection, | |
and derivative algorithms for constant recognition. | |
""" | |
from .libmp.backend import xrange | |
from .libmp import int_types, sqrt_fixed | |
# round to nearest integer (can be done more elegantly...) | |
def round_fixed(x, prec): | |
return ((x + (1<<(prec-1))) >> prec) << prec | |
class IdentificationMethods(object): | |
pass | |
def pslq(ctx, x, tol=None, maxcoeff=1000, maxsteps=100, verbose=False): | |
r""" | |
Given a vector of real numbers `x = [x_0, x_1, ..., x_n]`, ``pslq(x)`` | |
uses the PSLQ algorithm to find a list of integers | |
`[c_0, c_1, ..., c_n]` such that | |
.. math :: | |
|c_1 x_1 + c_2 x_2 + ... + c_n x_n| < \mathrm{tol} | |
and such that `\max |c_k| < \mathrm{maxcoeff}`. If no such vector | |
exists, :func:`~mpmath.pslq` returns ``None``. The tolerance defaults to | |
3/4 of the working precision. | |
**Examples** | |
Find rational approximations for `\pi`:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = True | |
>>> pslq([-1, pi], tol=0.01) | |
[22, 7] | |
>>> pslq([-1, pi], tol=0.001) | |
[355, 113] | |
>>> mpf(22)/7; mpf(355)/113; +pi | |
3.14285714285714 | |
3.14159292035398 | |
3.14159265358979 | |
Pi is not a rational number with denominator less than 1000:: | |
>>> pslq([-1, pi]) | |
>>> | |
To within the standard precision, it can however be approximated | |
by at least one rational number with denominator less than `10^{12}`:: | |
>>> p, q = pslq([-1, pi], maxcoeff=10**12) | |
>>> print(p); print(q) | |
238410049439 | |
75888275702 | |
>>> mpf(p)/q | |
3.14159265358979 | |
The PSLQ algorithm can be applied to long vectors. For example, | |
we can investigate the rational (in)dependence of integer square | |
roots:: | |
>>> mp.dps = 30 | |
>>> pslq([sqrt(n) for n in range(2, 5+1)]) | |
>>> | |
>>> pslq([sqrt(n) for n in range(2, 6+1)]) | |
>>> | |
>>> pslq([sqrt(n) for n in range(2, 8+1)]) | |
[2, 0, 0, 0, 0, 0, -1] | |
**Machin formulas** | |
A famous formula for `\pi` is Machin's, | |
.. math :: | |
\frac{\pi}{4} = 4 \operatorname{acot} 5 - \operatorname{acot} 239 | |
There are actually infinitely many formulas of this type. Two | |
others are | |
.. math :: | |
\frac{\pi}{4} = \operatorname{acot} 1 | |
\frac{\pi}{4} = 12 \operatorname{acot} 49 + 32 \operatorname{acot} 57 | |
+ 5 \operatorname{acot} 239 + 12 \operatorname{acot} 110443 | |
We can easily verify the formulas using the PSLQ algorithm:: | |
>>> mp.dps = 30 | |
>>> pslq([pi/4, acot(1)]) | |
[1, -1] | |
>>> pslq([pi/4, acot(5), acot(239)]) | |
[1, -4, 1] | |
>>> pslq([pi/4, acot(49), acot(57), acot(239), acot(110443)]) | |
[1, -12, -32, 5, -12] | |
We could try to generate a custom Machin-like formula by running | |
the PSLQ algorithm with a few inverse cotangent values, for example | |
acot(2), acot(3) ... acot(10). Unfortunately, there is a linear | |
dependence among these values, resulting in only that dependence | |
being detected, with a zero coefficient for `\pi`:: | |
>>> pslq([pi] + [acot(n) for n in range(2,11)]) | |
[0, 1, -1, 0, 0, 0, -1, 0, 0, 0] | |
We get better luck by removing linearly dependent terms:: | |
>>> pslq([pi] + [acot(n) for n in range(2,11) if n not in (3, 5)]) | |
[1, -8, 0, 0, 4, 0, 0, 0] | |
In other words, we found the following formula:: | |
>>> 8*acot(2) - 4*acot(7) | |
3.14159265358979323846264338328 | |
>>> +pi | |
3.14159265358979323846264338328 | |
**Algorithm** | |
This is a fairly direct translation to Python of the pseudocode given by | |
David Bailey, "The PSLQ Integer Relation Algorithm": | |
http://www.cecm.sfu.ca/organics/papers/bailey/paper/html/node3.html | |
The present implementation uses fixed-point instead of floating-point | |
arithmetic, since this is significantly (about 7x) faster. | |
""" | |
n = len(x) | |
if n < 2: | |
raise ValueError("n cannot be less than 2") | |
# At too low precision, the algorithm becomes meaningless | |
prec = ctx.prec | |
if prec < 53: | |
raise ValueError("prec cannot be less than 53") | |
if verbose and prec // max(2,n) < 5: | |
print("Warning: precision for PSLQ may be too low") | |
target = int(prec * 0.75) | |
if tol is None: | |
tol = ctx.mpf(2)**(-target) | |
else: | |
tol = ctx.convert(tol) | |
extra = 60 | |
prec += extra | |
if verbose: | |
print("PSLQ using prec %i and tol %s" % (prec, ctx.nstr(tol))) | |
tol = ctx.to_fixed(tol, prec) | |
assert tol | |
# Convert to fixed-point numbers. The dummy None is added so we can | |
# use 1-based indexing. (This just allows us to be consistent with | |
# Bailey's indexing. The algorithm is 100 lines long, so debugging | |
# a single wrong index can be painful.) | |
x = [None] + [ctx.to_fixed(ctx.mpf(xk), prec) for xk in x] | |
# Sanity check on magnitudes | |
minx = min(abs(xx) for xx in x[1:]) | |
if not minx: | |
raise ValueError("PSLQ requires a vector of nonzero numbers") | |
if minx < tol//100: | |
if verbose: | |
print("STOPPING: (one number is too small)") | |
return None | |
g = sqrt_fixed((4<<prec)//3, prec) | |
A = {} | |
B = {} | |
H = {} | |
# Initialization | |
# step 1 | |
for i in xrange(1, n+1): | |
for j in xrange(1, n+1): | |
A[i,j] = B[i,j] = (i==j) << prec | |
H[i,j] = 0 | |
# step 2 | |
s = [None] + [0] * n | |
for k in xrange(1, n+1): | |
t = 0 | |
for j in xrange(k, n+1): | |
t += (x[j]**2 >> prec) | |
s[k] = sqrt_fixed(t, prec) | |
t = s[1] | |
y = x[:] | |
for k in xrange(1, n+1): | |
y[k] = (x[k] << prec) // t | |
s[k] = (s[k] << prec) // t | |
# step 3 | |
for i in xrange(1, n+1): | |
for j in xrange(i+1, n): | |
H[i,j] = 0 | |
if i <= n-1: | |
if s[i]: | |
H[i,i] = (s[i+1] << prec) // s[i] | |
else: | |
H[i,i] = 0 | |
for j in range(1, i): | |
sjj1 = s[j]*s[j+1] | |
if sjj1: | |
H[i,j] = ((-y[i]*y[j])<<prec)//sjj1 | |
else: | |
H[i,j] = 0 | |
# step 4 | |
for i in xrange(2, n+1): | |
for j in xrange(i-1, 0, -1): | |
#t = floor(H[i,j]/H[j,j] + 0.5) | |
if H[j,j]: | |
t = round_fixed((H[i,j] << prec)//H[j,j], prec) | |
else: | |
#t = 0 | |
continue | |
y[j] = y[j] + (t*y[i] >> prec) | |
for k in xrange(1, j+1): | |
H[i,k] = H[i,k] - (t*H[j,k] >> prec) | |
for k in xrange(1, n+1): | |
A[i,k] = A[i,k] - (t*A[j,k] >> prec) | |
B[k,j] = B[k,j] + (t*B[k,i] >> prec) | |
# Main algorithm | |
for REP in range(maxsteps): | |
# Step 1 | |
m = -1 | |
szmax = -1 | |
for i in range(1, n): | |
h = H[i,i] | |
sz = (g**i * abs(h)) >> (prec*(i-1)) | |
if sz > szmax: | |
m = i | |
szmax = sz | |
# Step 2 | |
y[m], y[m+1] = y[m+1], y[m] | |
for i in xrange(1,n+1): H[m,i], H[m+1,i] = H[m+1,i], H[m,i] | |
for i in xrange(1,n+1): A[m,i], A[m+1,i] = A[m+1,i], A[m,i] | |
for i in xrange(1,n+1): B[i,m], B[i,m+1] = B[i,m+1], B[i,m] | |
# Step 3 | |
if m <= n - 2: | |
t0 = sqrt_fixed((H[m,m]**2 + H[m,m+1]**2)>>prec, prec) | |
# A zero element probably indicates that the precision has | |
# been exhausted. XXX: this could be spurious, due to | |
# using fixed-point arithmetic | |
if not t0: | |
break | |
t1 = (H[m,m] << prec) // t0 | |
t2 = (H[m,m+1] << prec) // t0 | |
for i in xrange(m, n+1): | |
t3 = H[i,m] | |
t4 = H[i,m+1] | |
H[i,m] = (t1*t3+t2*t4) >> prec | |
H[i,m+1] = (-t2*t3+t1*t4) >> prec | |
# Step 4 | |
for i in xrange(m+1, n+1): | |
for j in xrange(min(i-1, m+1), 0, -1): | |
try: | |
t = round_fixed((H[i,j] << prec)//H[j,j], prec) | |
# Precision probably exhausted | |
except ZeroDivisionError: | |
break | |
y[j] = y[j] + ((t*y[i]) >> prec) | |
for k in xrange(1, j+1): | |
H[i,k] = H[i,k] - (t*H[j,k] >> prec) | |
for k in xrange(1, n+1): | |
A[i,k] = A[i,k] - (t*A[j,k] >> prec) | |
B[k,j] = B[k,j] + (t*B[k,i] >> prec) | |
# Until a relation is found, the error typically decreases | |
# slowly (e.g. a factor 1-10) with each step TODO: we could | |
# compare err from two successive iterations. If there is a | |
# large drop (several orders of magnitude), that indicates a | |
# "high quality" relation was detected. Reporting this to | |
# the user somehow might be useful. | |
best_err = maxcoeff<<prec | |
for i in xrange(1, n+1): | |
err = abs(y[i]) | |
# Maybe we are done? | |
if err < tol: | |
# We are done if the coefficients are acceptable | |
vec = [int(round_fixed(B[j,i], prec) >> prec) for j in \ | |
range(1,n+1)] | |
if max(abs(v) for v in vec) < maxcoeff: | |
if verbose: | |
print("FOUND relation at iter %i/%i, error: %s" % \ | |
(REP, maxsteps, ctx.nstr(err / ctx.mpf(2)**prec, 1))) | |
return vec | |
best_err = min(err, best_err) | |
# Calculate a lower bound for the norm. We could do this | |
# more exactly (using the Euclidean norm) but there is probably | |
# no practical benefit. | |
recnorm = max(abs(h) for h in H.values()) | |
if recnorm: | |
norm = ((1 << (2*prec)) // recnorm) >> prec | |
norm //= 100 | |
else: | |
norm = ctx.inf | |
if verbose: | |
print("%i/%i: Error: %8s Norm: %s" % \ | |
(REP, maxsteps, ctx.nstr(best_err / ctx.mpf(2)**prec, 1), norm)) | |
if norm >= maxcoeff: | |
break | |
if verbose: | |
print("CANCELLING after step %i/%i." % (REP, maxsteps)) | |
print("Could not find an integer relation. Norm bound: %s" % norm) | |
return None | |
def findpoly(ctx, x, n=1, **kwargs): | |
r""" | |
``findpoly(x, n)`` returns the coefficients of an integer | |
polynomial `P` of degree at most `n` such that `P(x) \approx 0`. | |
If no polynomial having `x` as a root can be found, | |
:func:`~mpmath.findpoly` returns ``None``. | |
:func:`~mpmath.findpoly` works by successively calling :func:`~mpmath.pslq` with | |
the vectors `[1, x]`, `[1, x, x^2]`, `[1, x, x^2, x^3]`, ..., | |
`[1, x, x^2, .., x^n]` as input. Keyword arguments given to | |
:func:`~mpmath.findpoly` are forwarded verbatim to :func:`~mpmath.pslq`. In | |
particular, you can specify a tolerance for `P(x)` with ``tol`` | |
and a maximum permitted coefficient size with ``maxcoeff``. | |
For large values of `n`, it is recommended to run :func:`~mpmath.findpoly` | |
at high precision; preferably 50 digits or more. | |
**Examples** | |
By default (degree `n = 1`), :func:`~mpmath.findpoly` simply finds a linear | |
polynomial with a rational root:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = True | |
>>> findpoly(0.7) | |
[-10, 7] | |
The generated coefficient list is valid input to ``polyval`` and | |
``polyroots``:: | |
>>> nprint(polyval(findpoly(phi, 2), phi), 1) | |
-2.0e-16 | |
>>> for r in polyroots(findpoly(phi, 2)): | |
... print(r) | |
... | |
-0.618033988749895 | |
1.61803398874989 | |
Numbers of the form `m + n \sqrt p` for integers `(m, n, p)` are | |
solutions to quadratic equations. As we find here, `1+\sqrt 2` | |
is a root of the polynomial `x^2 - 2x - 1`:: | |
>>> findpoly(1+sqrt(2), 2) | |
[1, -2, -1] | |
>>> findroot(lambda x: x**2 - 2*x - 1, 1) | |
2.4142135623731 | |
Despite only containing square roots, the following number results | |
in a polynomial of degree 4:: | |
>>> findpoly(sqrt(2)+sqrt(3), 4) | |
[1, 0, -10, 0, 1] | |
In fact, `x^4 - 10x^2 + 1` is the *minimal polynomial* of | |
`r = \sqrt 2 + \sqrt 3`, meaning that a rational polynomial of | |
lower degree having `r` as a root does not exist. Given sufficient | |
precision, :func:`~mpmath.findpoly` will usually find the correct | |
minimal polynomial of a given algebraic number. | |
**Non-algebraic numbers** | |
If :func:`~mpmath.findpoly` fails to find a polynomial with given | |
coefficient size and tolerance constraints, that means no such | |
polynomial exists. | |
We can verify that `\pi` is not an algebraic number of degree 3 with | |
coefficients less than 1000:: | |
>>> mp.dps = 15 | |
>>> findpoly(pi, 3) | |
>>> | |
It is always possible to find an algebraic approximation of a number | |
using one (or several) of the following methods: | |
1. Increasing the permitted degree | |
2. Allowing larger coefficients | |
3. Reducing the tolerance | |
One example of each method is shown below:: | |
>>> mp.dps = 15 | |
>>> findpoly(pi, 4) | |
[95, -545, 863, -183, -298] | |
>>> findpoly(pi, 3, maxcoeff=10000) | |
[836, -1734, -2658, -457] | |
>>> findpoly(pi, 3, tol=1e-7) | |
[-4, 22, -29, -2] | |
It is unknown whether Euler's constant is transcendental (or even | |
irrational). We can use :func:`~mpmath.findpoly` to check that if is | |
an algebraic number, its minimal polynomial must have degree | |
at least 7 and a coefficient of magnitude at least 1000000:: | |
>>> mp.dps = 200 | |
>>> findpoly(euler, 6, maxcoeff=10**6, tol=1e-100, maxsteps=1000) | |
>>> | |
Note that the high precision and strict tolerance is necessary | |
for such high-degree runs, since otherwise unwanted low-accuracy | |
approximations will be detected. It may also be necessary to set | |
maxsteps high to prevent a premature exit (before the coefficient | |
bound has been reached). Running with ``verbose=True`` to get an | |
idea what is happening can be useful. | |
""" | |
x = ctx.mpf(x) | |
if n < 1: | |
raise ValueError("n cannot be less than 1") | |
if x == 0: | |
return [1, 0] | |
xs = [ctx.mpf(1)] | |
for i in range(1,n+1): | |
xs.append(x**i) | |
a = ctx.pslq(xs, **kwargs) | |
if a is not None: | |
return a[::-1] | |
def fracgcd(p, q): | |
x, y = p, q | |
while y: | |
x, y = y, x % y | |
if x != 1: | |
p //= x | |
q //= x | |
if q == 1: | |
return p | |
return p, q | |
def pslqstring(r, constants): | |
q = r[0] | |
r = r[1:] | |
s = [] | |
for i in range(len(r)): | |
p = r[i] | |
if p: | |
z = fracgcd(-p,q) | |
cs = constants[i][1] | |
if cs == '1': | |
cs = '' | |
else: | |
cs = '*' + cs | |
if isinstance(z, int_types): | |
if z > 0: term = str(z) + cs | |
else: term = ("(%s)" % z) + cs | |
else: | |
term = ("(%s/%s)" % z) + cs | |
s.append(term) | |
s = ' + '.join(s) | |
if '+' in s or '*' in s: | |
s = '(' + s + ')' | |
return s or '0' | |
def prodstring(r, constants): | |
q = r[0] | |
r = r[1:] | |
num = [] | |
den = [] | |
for i in range(len(r)): | |
p = r[i] | |
if p: | |
z = fracgcd(-p,q) | |
cs = constants[i][1] | |
if isinstance(z, int_types): | |
if abs(z) == 1: t = cs | |
else: t = '%s**%s' % (cs, abs(z)) | |
([num,den][z<0]).append(t) | |
else: | |
t = '%s**(%s/%s)' % (cs, abs(z[0]), z[1]) | |
([num,den][z[0]<0]).append(t) | |
num = '*'.join(num) | |
den = '*'.join(den) | |
if num and den: return "(%s)/(%s)" % (num, den) | |
if num: return num | |
if den: return "1/(%s)" % den | |
def quadraticstring(ctx,t,a,b,c): | |
if c < 0: | |
a,b,c = -a,-b,-c | |
u1 = (-b+ctx.sqrt(b**2-4*a*c))/(2*c) | |
u2 = (-b-ctx.sqrt(b**2-4*a*c))/(2*c) | |
if abs(u1-t) < abs(u2-t): | |
if b: s = '((%s+sqrt(%s))/%s)' % (-b,b**2-4*a*c,2*c) | |
else: s = '(sqrt(%s)/%s)' % (-4*a*c,2*c) | |
else: | |
if b: s = '((%s-sqrt(%s))/%s)' % (-b,b**2-4*a*c,2*c) | |
else: s = '(-sqrt(%s)/%s)' % (-4*a*c,2*c) | |
return s | |
# Transformation y = f(x,c), with inverse function x = f(y,c) | |
# The third entry indicates whether the transformation is | |
# redundant when c = 1 | |
transforms = [ | |
(lambda ctx,x,c: x*c, '$y/$c', 0), | |
(lambda ctx,x,c: x/c, '$c*$y', 1), | |
(lambda ctx,x,c: c/x, '$c/$y', 0), | |
(lambda ctx,x,c: (x*c)**2, 'sqrt($y)/$c', 0), | |
(lambda ctx,x,c: (x/c)**2, '$c*sqrt($y)', 1), | |
(lambda ctx,x,c: (c/x)**2, '$c/sqrt($y)', 0), | |
(lambda ctx,x,c: c*x**2, 'sqrt($y)/sqrt($c)', 1), | |
(lambda ctx,x,c: x**2/c, 'sqrt($c)*sqrt($y)', 1), | |
(lambda ctx,x,c: c/x**2, 'sqrt($c)/sqrt($y)', 1), | |
(lambda ctx,x,c: ctx.sqrt(x*c), '$y**2/$c', 0), | |
(lambda ctx,x,c: ctx.sqrt(x/c), '$c*$y**2', 1), | |
(lambda ctx,x,c: ctx.sqrt(c/x), '$c/$y**2', 0), | |
(lambda ctx,x,c: c*ctx.sqrt(x), '$y**2/$c**2', 1), | |
(lambda ctx,x,c: ctx.sqrt(x)/c, '$c**2*$y**2', 1), | |
(lambda ctx,x,c: c/ctx.sqrt(x), '$c**2/$y**2', 1), | |
(lambda ctx,x,c: ctx.exp(x*c), 'log($y)/$c', 0), | |
(lambda ctx,x,c: ctx.exp(x/c), '$c*log($y)', 1), | |
(lambda ctx,x,c: ctx.exp(c/x), '$c/log($y)', 0), | |
(lambda ctx,x,c: c*ctx.exp(x), 'log($y/$c)', 1), | |
(lambda ctx,x,c: ctx.exp(x)/c, 'log($c*$y)', 1), | |
(lambda ctx,x,c: c/ctx.exp(x), 'log($c/$y)', 0), | |
(lambda ctx,x,c: ctx.ln(x*c), 'exp($y)/$c', 0), | |
(lambda ctx,x,c: ctx.ln(x/c), '$c*exp($y)', 1), | |
(lambda ctx,x,c: ctx.ln(c/x), '$c/exp($y)', 0), | |
(lambda ctx,x,c: c*ctx.ln(x), 'exp($y/$c)', 1), | |
(lambda ctx,x,c: ctx.ln(x)/c, 'exp($c*$y)', 1), | |
(lambda ctx,x,c: c/ctx.ln(x), 'exp($c/$y)', 0), | |
] | |
def identify(ctx, x, constants=[], tol=None, maxcoeff=1000, full=False, | |
verbose=False): | |
r""" | |
Given a real number `x`, ``identify(x)`` attempts to find an exact | |
formula for `x`. This formula is returned as a string. If no match | |
is found, ``None`` is returned. With ``full=True``, a list of | |
matching formulas is returned. | |
As a simple example, :func:`~mpmath.identify` will find an algebraic | |
formula for the golden ratio:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = True | |
>>> identify(phi) | |
'((1+sqrt(5))/2)' | |
:func:`~mpmath.identify` can identify simple algebraic numbers and simple | |
combinations of given base constants, as well as certain basic | |
transformations thereof. More specifically, :func:`~mpmath.identify` | |
looks for the following: | |
1. Fractions | |
2. Quadratic algebraic numbers | |
3. Rational linear combinations of the base constants | |
4. Any of the above after first transforming `x` into `f(x)` where | |
`f(x)` is `1/x`, `\sqrt x`, `x^2`, `\log x` or `\exp x`, either | |
directly or with `x` or `f(x)` multiplied or divided by one of | |
the base constants | |
5. Products of fractional powers of the base constants and | |
small integers | |
Base constants can be given as a list of strings representing mpmath | |
expressions (:func:`~mpmath.identify` will ``eval`` the strings to numerical | |
values and use the original strings for the output), or as a dict of | |
formula:value pairs. | |
In order not to produce spurious results, :func:`~mpmath.identify` should | |
be used with high precision; preferably 50 digits or more. | |
**Examples** | |
Simple identifications can be performed safely at standard | |
precision. Here the default recognition of rational, algebraic, | |
and exp/log of algebraic numbers is demonstrated:: | |
>>> mp.dps = 15 | |
>>> identify(0.22222222222222222) | |
'(2/9)' | |
>>> identify(1.9662210973805663) | |
'sqrt(((24+sqrt(48))/8))' | |
>>> identify(4.1132503787829275) | |
'exp((sqrt(8)/2))' | |
>>> identify(0.881373587019543) | |
'log(((2+sqrt(8))/2))' | |
By default, :func:`~mpmath.identify` does not recognize `\pi`. At standard | |
precision it finds a not too useful approximation. At slightly | |
increased precision, this approximation is no longer accurate | |
enough and :func:`~mpmath.identify` more correctly returns ``None``:: | |
>>> identify(pi) | |
'(2**(176/117)*3**(20/117)*5**(35/39))/(7**(92/117))' | |
>>> mp.dps = 30 | |
>>> identify(pi) | |
>>> | |
Numbers such as `\pi`, and simple combinations of user-defined | |
constants, can be identified if they are provided explicitly:: | |
>>> identify(3*pi-2*e, ['pi', 'e']) | |
'(3*pi + (-2)*e)' | |
Here is an example using a dict of constants. Note that the | |
constants need not be "atomic"; :func:`~mpmath.identify` can just | |
as well express the given number in terms of expressions | |
given by formulas:: | |
>>> identify(pi+e, {'a':pi+2, 'b':2*e}) | |
'((-2) + 1*a + (1/2)*b)' | |
Next, we attempt some identifications with a set of base constants. | |
It is necessary to increase the precision a bit. | |
>>> mp.dps = 50 | |
>>> base = ['sqrt(2)','pi','log(2)'] | |
>>> identify(0.25, base) | |
'(1/4)' | |
>>> identify(3*pi + 2*sqrt(2) + 5*log(2)/7, base) | |
'(2*sqrt(2) + 3*pi + (5/7)*log(2))' | |
>>> identify(exp(pi+2), base) | |
'exp((2 + 1*pi))' | |
>>> identify(1/(3+sqrt(2)), base) | |
'((3/7) + (-1/7)*sqrt(2))' | |
>>> identify(sqrt(2)/(3*pi+4), base) | |
'sqrt(2)/(4 + 3*pi)' | |
>>> identify(5**(mpf(1)/3)*pi*log(2)**2, base) | |
'5**(1/3)*pi*log(2)**2' | |
An example of an erroneous solution being found when too low | |
precision is used:: | |
>>> mp.dps = 15 | |
>>> identify(1/(3*pi-4*e+sqrt(8)), ['pi', 'e', 'sqrt(2)']) | |
'((11/25) + (-158/75)*pi + (76/75)*e + (44/15)*sqrt(2))' | |
>>> mp.dps = 50 | |
>>> identify(1/(3*pi-4*e+sqrt(8)), ['pi', 'e', 'sqrt(2)']) | |
'1/(3*pi + (-4)*e + 2*sqrt(2))' | |
**Finding approximate solutions** | |
The tolerance ``tol`` defaults to 3/4 of the working precision. | |
Lowering the tolerance is useful for finding approximate matches. | |
We can for example try to generate approximations for pi:: | |
>>> mp.dps = 15 | |
>>> identify(pi, tol=1e-2) | |
'(22/7)' | |
>>> identify(pi, tol=1e-3) | |
'(355/113)' | |
>>> identify(pi, tol=1e-10) | |
'(5**(339/269))/(2**(64/269)*3**(13/269)*7**(92/269))' | |
With ``full=True``, and by supplying a few base constants, | |
``identify`` can generate almost endless lists of approximations | |
for any number (the output below has been truncated to show only | |
the first few):: | |
>>> for p in identify(pi, ['e', 'catalan'], tol=1e-5, full=True): | |
... print(p) | |
... # doctest: +ELLIPSIS | |
e/log((6 + (-4/3)*e)) | |
(3**3*5*e*catalan**2)/(2*7**2) | |
sqrt(((-13) + 1*e + 22*catalan)) | |
log(((-6) + 24*e + 4*catalan)/e) | |
exp(catalan*((-1/5) + (8/15)*e)) | |
catalan*(6 + (-6)*e + 15*catalan) | |
sqrt((5 + 26*e + (-3)*catalan))/e | |
e*sqrt(((-27) + 2*e + 25*catalan)) | |
log(((-1) + (-11)*e + 59*catalan)) | |
((3/20) + (21/20)*e + (3/20)*catalan) | |
... | |
The numerical values are roughly as close to `\pi` as permitted by the | |
specified tolerance: | |
>>> e/log(6-4*e/3) | |
3.14157719846001 | |
>>> 135*e*catalan**2/98 | |
3.14166950419369 | |
>>> sqrt(e-13+22*catalan) | |
3.14158000062992 | |
>>> log(24*e-6+4*catalan)-1 | |
3.14158791577159 | |
**Symbolic processing** | |
The output formula can be evaluated as a Python expression. | |
Note however that if fractions (like '2/3') are present in | |
the formula, Python's :func:`~mpmath.eval()` may erroneously perform | |
integer division. Note also that the output is not necessarily | |
in the algebraically simplest form:: | |
>>> identify(sqrt(2)) | |
'(sqrt(8)/2)' | |
As a solution to both problems, consider using SymPy's | |
:func:`~mpmath.sympify` to convert the formula into a symbolic expression. | |
SymPy can be used to pretty-print or further simplify the formula | |
symbolically:: | |
>>> from sympy import sympify # doctest: +SKIP | |
>>> sympify(identify(sqrt(2))) # doctest: +SKIP | |
2**(1/2) | |
Sometimes :func:`~mpmath.identify` can simplify an expression further than | |
a symbolic algorithm:: | |
>>> from sympy import simplify # doctest: +SKIP | |
>>> x = sympify('-1/(-3/2+(1/2)*5**(1/2))*(3/2-1/2*5**(1/2))**(1/2)') # doctest: +SKIP | |
>>> x # doctest: +SKIP | |
(3/2 - 5**(1/2)/2)**(-1/2) | |
>>> x = simplify(x) # doctest: +SKIP | |
>>> x # doctest: +SKIP | |
2/(6 - 2*5**(1/2))**(1/2) | |
>>> mp.dps = 30 # doctest: +SKIP | |
>>> x = sympify(identify(x.evalf(30))) # doctest: +SKIP | |
>>> x # doctest: +SKIP | |
1/2 + 5**(1/2)/2 | |
(In fact, this functionality is available directly in SymPy as the | |
function :func:`~mpmath.nsimplify`, which is essentially a wrapper for | |
:func:`~mpmath.identify`.) | |
**Miscellaneous issues and limitations** | |
The input `x` must be a real number. All base constants must be | |
positive real numbers and must not be rationals or rational linear | |
combinations of each other. | |
The worst-case computation time grows quickly with the number of | |
base constants. Already with 3 or 4 base constants, | |
:func:`~mpmath.identify` may require several seconds to finish. To search | |
for relations among a large number of constants, you should | |
consider using :func:`~mpmath.pslq` directly. | |
The extended transformations are applied to x, not the constants | |
separately. As a result, ``identify`` will for example be able to | |
recognize ``exp(2*pi+3)`` with ``pi`` given as a base constant, but | |
not ``2*exp(pi)+3``. It will be able to recognize the latter if | |
``exp(pi)`` is given explicitly as a base constant. | |
""" | |
solutions = [] | |
def addsolution(s): | |
if verbose: print("Found: ", s) | |
solutions.append(s) | |
x = ctx.mpf(x) | |
# Further along, x will be assumed positive | |
if x == 0: | |
if full: return ['0'] | |
else: return '0' | |
if x < 0: | |
sol = ctx.identify(-x, constants, tol, maxcoeff, full, verbose) | |
if sol is None: | |
return sol | |
if full: | |
return ["-(%s)"%s for s in sol] | |
else: | |
return "-(%s)" % sol | |
if tol: | |
tol = ctx.mpf(tol) | |
else: | |
tol = ctx.eps**0.7 | |
M = maxcoeff | |
if constants: | |
if isinstance(constants, dict): | |
constants = [(ctx.mpf(v), name) for (name, v) in sorted(constants.items())] | |
else: | |
namespace = dict((name, getattr(ctx,name)) for name in dir(ctx)) | |
constants = [(eval(p, namespace), p) for p in constants] | |
else: | |
constants = [] | |
# We always want to find at least rational terms | |
if 1 not in [value for (name, value) in constants]: | |
constants = [(ctx.mpf(1), '1')] + constants | |
# PSLQ with simple algebraic and functional transformations | |
for ft, ftn, red in transforms: | |
for c, cn in constants: | |
if red and cn == '1': | |
continue | |
t = ft(ctx,x,c) | |
# Prevent exponential transforms from wreaking havoc | |
if abs(t) > M**2 or abs(t) < tol: | |
continue | |
# Linear combination of base constants | |
r = ctx.pslq([t] + [a[0] for a in constants], tol, M) | |
s = None | |
if r is not None and max(abs(uw) for uw in r) <= M and r[0]: | |
s = pslqstring(r, constants) | |
# Quadratic algebraic numbers | |
else: | |
q = ctx.pslq([ctx.one, t, t**2], tol, M) | |
if q is not None and len(q) == 3 and q[2]: | |
aa, bb, cc = q | |
if max(abs(aa),abs(bb),abs(cc)) <= M: | |
s = quadraticstring(ctx,t,aa,bb,cc) | |
if s: | |
if cn == '1' and ('/$c' in ftn): | |
s = ftn.replace('$y', s).replace('/$c', '') | |
else: | |
s = ftn.replace('$y', s).replace('$c', cn) | |
addsolution(s) | |
if not full: return solutions[0] | |
if verbose: | |
print(".") | |
# Check for a direct multiplicative formula | |
if x != 1: | |
# Allow fractional powers of fractions | |
ilogs = [2,3,5,7] | |
# Watch out for existing fractional powers of fractions | |
logs = [] | |
for a, s in constants: | |
if not sum(bool(ctx.findpoly(ctx.ln(a)/ctx.ln(i),1)) for i in ilogs): | |
logs.append((ctx.ln(a), s)) | |
logs = [(ctx.ln(i),str(i)) for i in ilogs] + logs | |
r = ctx.pslq([ctx.ln(x)] + [a[0] for a in logs], tol, M) | |
if r is not None and max(abs(uw) for uw in r) <= M and r[0]: | |
addsolution(prodstring(r, logs)) | |
if not full: return solutions[0] | |
if full: | |
return sorted(solutions, key=len) | |
else: | |
return None | |
IdentificationMethods.pslq = pslq | |
IdentificationMethods.findpoly = findpoly | |
IdentificationMethods.identify = identify | |
if __name__ == '__main__': | |
import doctest | |
doctest.testmod() | |