Spaces:
Sleeping
Sleeping
""" | |
Computational functions for interval arithmetic. | |
""" | |
from .backend import xrange | |
from .libmpf import ( | |
ComplexResult, | |
round_down, round_up, round_floor, round_ceiling, round_nearest, | |
prec_to_dps, repr_dps, dps_to_prec, | |
bitcount, | |
from_float, | |
fnan, finf, fninf, fzero, fhalf, fone, fnone, | |
mpf_sign, mpf_lt, mpf_le, mpf_gt, mpf_ge, mpf_eq, mpf_cmp, | |
mpf_min_max, | |
mpf_floor, from_int, to_int, to_str, from_str, | |
mpf_abs, mpf_neg, mpf_pos, mpf_add, mpf_sub, mpf_mul, mpf_mul_int, | |
mpf_div, mpf_shift, mpf_pow_int, | |
from_man_exp, MPZ_ONE) | |
from .libelefun import ( | |
mpf_log, mpf_exp, mpf_sqrt, mpf_atan, mpf_atan2, | |
mpf_pi, mod_pi2, mpf_cos_sin | |
) | |
from .gammazeta import mpf_gamma, mpf_rgamma, mpf_loggamma, mpc_loggamma | |
def mpi_str(s, prec): | |
sa, sb = s | |
dps = prec_to_dps(prec) + 5 | |
return "[%s, %s]" % (to_str(sa, dps), to_str(sb, dps)) | |
#dps = prec_to_dps(prec) | |
#m = mpi_mid(s, prec) | |
#d = mpf_shift(mpi_delta(s, 20), -1) | |
#return "%s +/- %s" % (to_str(m, dps), to_str(d, 3)) | |
mpi_zero = (fzero, fzero) | |
mpi_one = (fone, fone) | |
def mpi_eq(s, t): | |
return s == t | |
def mpi_ne(s, t): | |
return s != t | |
def mpi_lt(s, t): | |
sa, sb = s | |
ta, tb = t | |
if mpf_lt(sb, ta): return True | |
if mpf_ge(sa, tb): return False | |
return None | |
def mpi_le(s, t): | |
sa, sb = s | |
ta, tb = t | |
if mpf_le(sb, ta): return True | |
if mpf_gt(sa, tb): return False | |
return None | |
def mpi_gt(s, t): return mpi_lt(t, s) | |
def mpi_ge(s, t): return mpi_le(t, s) | |
def mpi_add(s, t, prec=0): | |
sa, sb = s | |
ta, tb = t | |
a = mpf_add(sa, ta, prec, round_floor) | |
b = mpf_add(sb, tb, prec, round_ceiling) | |
if a == fnan: a = fninf | |
if b == fnan: b = finf | |
return a, b | |
def mpi_sub(s, t, prec=0): | |
sa, sb = s | |
ta, tb = t | |
a = mpf_sub(sa, tb, prec, round_floor) | |
b = mpf_sub(sb, ta, prec, round_ceiling) | |
if a == fnan: a = fninf | |
if b == fnan: b = finf | |
return a, b | |
def mpi_delta(s, prec): | |
sa, sb = s | |
return mpf_sub(sb, sa, prec, round_up) | |
def mpi_mid(s, prec): | |
sa, sb = s | |
return mpf_shift(mpf_add(sa, sb, prec, round_nearest), -1) | |
def mpi_pos(s, prec): | |
sa, sb = s | |
a = mpf_pos(sa, prec, round_floor) | |
b = mpf_pos(sb, prec, round_ceiling) | |
return a, b | |
def mpi_neg(s, prec=0): | |
sa, sb = s | |
a = mpf_neg(sb, prec, round_floor) | |
b = mpf_neg(sa, prec, round_ceiling) | |
return a, b | |
def mpi_abs(s, prec=0): | |
sa, sb = s | |
sas = mpf_sign(sa) | |
sbs = mpf_sign(sb) | |
# Both points nonnegative? | |
if sas >= 0: | |
a = mpf_pos(sa, prec, round_floor) | |
b = mpf_pos(sb, prec, round_ceiling) | |
# Upper point nonnegative? | |
elif sbs >= 0: | |
a = fzero | |
negsa = mpf_neg(sa) | |
if mpf_lt(negsa, sb): | |
b = mpf_pos(sb, prec, round_ceiling) | |
else: | |
b = mpf_pos(negsa, prec, round_ceiling) | |
# Both negative? | |
else: | |
a = mpf_neg(sb, prec, round_floor) | |
b = mpf_neg(sa, prec, round_ceiling) | |
return a, b | |
# TODO: optimize | |
def mpi_mul_mpf(s, t, prec): | |
return mpi_mul(s, (t, t), prec) | |
def mpi_div_mpf(s, t, prec): | |
return mpi_div(s, (t, t), prec) | |
def mpi_mul(s, t, prec=0): | |
sa, sb = s | |
ta, tb = t | |
sas = mpf_sign(sa) | |
sbs = mpf_sign(sb) | |
tas = mpf_sign(ta) | |
tbs = mpf_sign(tb) | |
if sas == sbs == 0: | |
# Should maybe be undefined | |
if ta == fninf or tb == finf: | |
return fninf, finf | |
return fzero, fzero | |
if tas == tbs == 0: | |
# Should maybe be undefined | |
if sa == fninf or sb == finf: | |
return fninf, finf | |
return fzero, fzero | |
if sas >= 0: | |
# positive * positive | |
if tas >= 0: | |
a = mpf_mul(sa, ta, prec, round_floor) | |
b = mpf_mul(sb, tb, prec, round_ceiling) | |
if a == fnan: a = fzero | |
if b == fnan: b = finf | |
# positive * negative | |
elif tbs <= 0: | |
a = mpf_mul(sb, ta, prec, round_floor) | |
b = mpf_mul(sa, tb, prec, round_ceiling) | |
if a == fnan: a = fninf | |
if b == fnan: b = fzero | |
# positive * both signs | |
else: | |
a = mpf_mul(sb, ta, prec, round_floor) | |
b = mpf_mul(sb, tb, prec, round_ceiling) | |
if a == fnan: a = fninf | |
if b == fnan: b = finf | |
elif sbs <= 0: | |
# negative * positive | |
if tas >= 0: | |
a = mpf_mul(sa, tb, prec, round_floor) | |
b = mpf_mul(sb, ta, prec, round_ceiling) | |
if a == fnan: a = fninf | |
if b == fnan: b = fzero | |
# negative * negative | |
elif tbs <= 0: | |
a = mpf_mul(sb, tb, prec, round_floor) | |
b = mpf_mul(sa, ta, prec, round_ceiling) | |
if a == fnan: a = fzero | |
if b == fnan: b = finf | |
# negative * both signs | |
else: | |
a = mpf_mul(sa, tb, prec, round_floor) | |
b = mpf_mul(sa, ta, prec, round_ceiling) | |
if a == fnan: a = fninf | |
if b == fnan: b = finf | |
else: | |
# General case: perform all cross-multiplications and compare | |
# Since the multiplications can be done exactly, we need only | |
# do 4 (instead of 8: two for each rounding mode) | |
cases = [mpf_mul(sa, ta), mpf_mul(sa, tb), mpf_mul(sb, ta), mpf_mul(sb, tb)] | |
if fnan in cases: | |
a, b = (fninf, finf) | |
else: | |
a, b = mpf_min_max(cases) | |
a = mpf_pos(a, prec, round_floor) | |
b = mpf_pos(b, prec, round_ceiling) | |
return a, b | |
def mpi_square(s, prec=0): | |
sa, sb = s | |
if mpf_ge(sa, fzero): | |
a = mpf_mul(sa, sa, prec, round_floor) | |
b = mpf_mul(sb, sb, prec, round_ceiling) | |
elif mpf_le(sb, fzero): | |
a = mpf_mul(sb, sb, prec, round_floor) | |
b = mpf_mul(sa, sa, prec, round_ceiling) | |
else: | |
sa = mpf_neg(sa) | |
sa, sb = mpf_min_max([sa, sb]) | |
a = fzero | |
b = mpf_mul(sb, sb, prec, round_ceiling) | |
return a, b | |
def mpi_div(s, t, prec): | |
sa, sb = s | |
ta, tb = t | |
sas = mpf_sign(sa) | |
sbs = mpf_sign(sb) | |
tas = mpf_sign(ta) | |
tbs = mpf_sign(tb) | |
# 0 / X | |
if sas == sbs == 0: | |
# 0 / <interval containing 0> | |
if (tas < 0 and tbs > 0) or (tas == 0 or tbs == 0): | |
return fninf, finf | |
return fzero, fzero | |
# Denominator contains both negative and positive numbers; | |
# this should properly be a multi-interval, but the closest | |
# match is the entire (extended) real line | |
if tas < 0 and tbs > 0: | |
return fninf, finf | |
# Assume denominator to be nonnegative | |
if tas < 0: | |
return mpi_div(mpi_neg(s), mpi_neg(t), prec) | |
# Division by zero | |
# XXX: make sure all results make sense | |
if tas == 0: | |
# Numerator contains both signs? | |
if sas < 0 and sbs > 0: | |
return fninf, finf | |
if tas == tbs: | |
return fninf, finf | |
# Numerator positive? | |
if sas >= 0: | |
a = mpf_div(sa, tb, prec, round_floor) | |
b = finf | |
if sbs <= 0: | |
a = fninf | |
b = mpf_div(sb, tb, prec, round_ceiling) | |
# Division with positive denominator | |
# We still have to handle nans resulting from inf/0 or inf/inf | |
else: | |
# Nonnegative numerator | |
if sas >= 0: | |
a = mpf_div(sa, tb, prec, round_floor) | |
b = mpf_div(sb, ta, prec, round_ceiling) | |
if a == fnan: a = fzero | |
if b == fnan: b = finf | |
# Nonpositive numerator | |
elif sbs <= 0: | |
a = mpf_div(sa, ta, prec, round_floor) | |
b = mpf_div(sb, tb, prec, round_ceiling) | |
if a == fnan: a = fninf | |
if b == fnan: b = fzero | |
# Numerator contains both signs? | |
else: | |
a = mpf_div(sa, ta, prec, round_floor) | |
b = mpf_div(sb, ta, prec, round_ceiling) | |
if a == fnan: a = fninf | |
if b == fnan: b = finf | |
return a, b | |
def mpi_pi(prec): | |
a = mpf_pi(prec, round_floor) | |
b = mpf_pi(prec, round_ceiling) | |
return a, b | |
def mpi_exp(s, prec): | |
sa, sb = s | |
# exp is monotonic | |
a = mpf_exp(sa, prec, round_floor) | |
b = mpf_exp(sb, prec, round_ceiling) | |
return a, b | |
def mpi_log(s, prec): | |
sa, sb = s | |
# log is monotonic | |
a = mpf_log(sa, prec, round_floor) | |
b = mpf_log(sb, prec, round_ceiling) | |
return a, b | |
def mpi_sqrt(s, prec): | |
sa, sb = s | |
# sqrt is monotonic | |
a = mpf_sqrt(sa, prec, round_floor) | |
b = mpf_sqrt(sb, prec, round_ceiling) | |
return a, b | |
def mpi_atan(s, prec): | |
sa, sb = s | |
a = mpf_atan(sa, prec, round_floor) | |
b = mpf_atan(sb, prec, round_ceiling) | |
return a, b | |
def mpi_pow_int(s, n, prec): | |
sa, sb = s | |
if n < 0: | |
return mpi_div((fone, fone), mpi_pow_int(s, -n, prec+20), prec) | |
if n == 0: | |
return (fone, fone) | |
if n == 1: | |
return s | |
if n == 2: | |
return mpi_square(s, prec) | |
# Odd -- signs are preserved | |
if n & 1: | |
a = mpf_pow_int(sa, n, prec, round_floor) | |
b = mpf_pow_int(sb, n, prec, round_ceiling) | |
# Even -- important to ensure positivity | |
else: | |
sas = mpf_sign(sa) | |
sbs = mpf_sign(sb) | |
# Nonnegative? | |
if sas >= 0: | |
a = mpf_pow_int(sa, n, prec, round_floor) | |
b = mpf_pow_int(sb, n, prec, round_ceiling) | |
# Nonpositive? | |
elif sbs <= 0: | |
a = mpf_pow_int(sb, n, prec, round_floor) | |
b = mpf_pow_int(sa, n, prec, round_ceiling) | |
# Mixed signs? | |
else: | |
a = fzero | |
# max(-a,b)**n | |
sa = mpf_neg(sa) | |
if mpf_ge(sa, sb): | |
b = mpf_pow_int(sa, n, prec, round_ceiling) | |
else: | |
b = mpf_pow_int(sb, n, prec, round_ceiling) | |
return a, b | |
def mpi_pow(s, t, prec): | |
ta, tb = t | |
if ta == tb and ta not in (finf, fninf): | |
if ta == from_int(to_int(ta)): | |
return mpi_pow_int(s, to_int(ta), prec) | |
if ta == fhalf: | |
return mpi_sqrt(s, prec) | |
u = mpi_log(s, prec + 20) | |
v = mpi_mul(u, t, prec + 20) | |
return mpi_exp(v, prec) | |
def MIN(x, y): | |
if mpf_le(x, y): | |
return x | |
return y | |
def MAX(x, y): | |
if mpf_ge(x, y): | |
return x | |
return y | |
def cos_sin_quadrant(x, wp): | |
sign, man, exp, bc = x | |
if x == fzero: | |
return fone, fzero, 0 | |
# TODO: combine evaluation code to avoid duplicate modulo | |
c, s = mpf_cos_sin(x, wp) | |
t, n, wp_ = mod_pi2(man, exp, exp+bc, 15) | |
if sign: | |
n = -1-n | |
return c, s, n | |
def mpi_cos_sin(x, prec): | |
a, b = x | |
if a == b == fzero: | |
return (fone, fone), (fzero, fzero) | |
# Guaranteed to contain both -1 and 1 | |
if (finf in x) or (fninf in x): | |
return (fnone, fone), (fnone, fone) | |
wp = prec + 20 | |
ca, sa, na = cos_sin_quadrant(a, wp) | |
cb, sb, nb = cos_sin_quadrant(b, wp) | |
ca, cb = mpf_min_max([ca, cb]) | |
sa, sb = mpf_min_max([sa, sb]) | |
# Both functions are monotonic within one quadrant | |
if na == nb: | |
pass | |
# Guaranteed to contain both -1 and 1 | |
elif nb - na >= 4: | |
return (fnone, fone), (fnone, fone) | |
else: | |
# cos has maximum between a and b | |
if na//4 != nb//4: | |
cb = fone | |
# cos has minimum | |
if (na-2)//4 != (nb-2)//4: | |
ca = fnone | |
# sin has maximum | |
if (na-1)//4 != (nb-1)//4: | |
sb = fone | |
# sin has minimum | |
if (na-3)//4 != (nb-3)//4: | |
sa = fnone | |
# Perturb to force interval rounding | |
more = from_man_exp((MPZ_ONE<<wp) + (MPZ_ONE<<10), -wp) | |
less = from_man_exp((MPZ_ONE<<wp) - (MPZ_ONE<<10), -wp) | |
def finalize(v, rounding): | |
if bool(v[0]) == (rounding == round_floor): | |
p = more | |
else: | |
p = less | |
v = mpf_mul(v, p, prec, rounding) | |
sign, man, exp, bc = v | |
if exp+bc >= 1: | |
if sign: | |
return fnone | |
return fone | |
return v | |
ca = finalize(ca, round_floor) | |
cb = finalize(cb, round_ceiling) | |
sa = finalize(sa, round_floor) | |
sb = finalize(sb, round_ceiling) | |
return (ca,cb), (sa,sb) | |
def mpi_cos(x, prec): | |
return mpi_cos_sin(x, prec)[0] | |
def mpi_sin(x, prec): | |
return mpi_cos_sin(x, prec)[1] | |
def mpi_tan(x, prec): | |
cos, sin = mpi_cos_sin(x, prec+20) | |
return mpi_div(sin, cos, prec) | |
def mpi_cot(x, prec): | |
cos, sin = mpi_cos_sin(x, prec+20) | |
return mpi_div(cos, sin, prec) | |
def mpi_from_str_a_b(x, y, percent, prec): | |
wp = prec + 20 | |
xa = from_str(x, wp, round_floor) | |
xb = from_str(x, wp, round_ceiling) | |
#ya = from_str(y, wp, round_floor) | |
y = from_str(y, wp, round_ceiling) | |
assert mpf_ge(y, fzero) | |
if percent: | |
y = mpf_mul(MAX(mpf_abs(xa), mpf_abs(xb)), y, wp, round_ceiling) | |
y = mpf_div(y, from_int(100), wp, round_ceiling) | |
a = mpf_sub(xa, y, prec, round_floor) | |
b = mpf_add(xb, y, prec, round_ceiling) | |
return a, b | |
def mpi_from_str(s, prec): | |
""" | |
Parse an interval number given as a string. | |
Allowed forms are | |
"-1.23e-27" | |
Any single decimal floating-point literal. | |
"a +- b" or "a (b)" | |
a is the midpoint of the interval and b is the half-width | |
"a +- b%" or "a (b%)" | |
a is the midpoint of the interval and the half-width | |
is b percent of a (`a \times b / 100`). | |
"[a, b]" | |
The interval indicated directly. | |
"x[y,z]e" | |
x are shared digits, y and z are unequal digits, e is the exponent. | |
""" | |
e = ValueError("Improperly formed interval number '%s'" % s) | |
s = s.replace(" ", "") | |
wp = prec + 20 | |
if "+-" in s: | |
x, y = s.split("+-") | |
return mpi_from_str_a_b(x, y, False, prec) | |
# case 2 | |
elif "(" in s: | |
# Don't confuse with a complex number (x,y) | |
if s[0] == "(" or ")" not in s: | |
raise e | |
s = s.replace(")", "") | |
percent = False | |
if "%" in s: | |
if s[-1] != "%": | |
raise e | |
percent = True | |
s = s.replace("%", "") | |
x, y = s.split("(") | |
return mpi_from_str_a_b(x, y, percent, prec) | |
elif "," in s: | |
if ('[' not in s) or (']' not in s): | |
raise e | |
if s[0] == '[': | |
# case 3 | |
s = s.replace("[", "") | |
s = s.replace("]", "") | |
a, b = s.split(",") | |
a = from_str(a, prec, round_floor) | |
b = from_str(b, prec, round_ceiling) | |
return a, b | |
else: | |
# case 4 | |
x, y = s.split('[') | |
y, z = y.split(',') | |
if 'e' in s: | |
z, e = z.split(']') | |
else: | |
z, e = z.rstrip(']'), '' | |
a = from_str(x+y+e, prec, round_floor) | |
b = from_str(x+z+e, prec, round_ceiling) | |
return a, b | |
else: | |
a = from_str(s, prec, round_floor) | |
b = from_str(s, prec, round_ceiling) | |
return a, b | |
def mpi_to_str(x, dps, use_spaces=True, brackets='[]', mode='brackets', error_dps=4, **kwargs): | |
""" | |
Convert a mpi interval to a string. | |
**Arguments** | |
*dps* | |
decimal places to use for printing | |
*use_spaces* | |
use spaces for more readable output, defaults to true | |
*brackets* | |
pair of strings (or two-character string) giving left and right brackets | |
*mode* | |
mode of display: 'plusminus', 'percent', 'brackets' (default) or 'diff' | |
*error_dps* | |
limit the error to *error_dps* digits (mode 'plusminus and 'percent') | |
Additional keyword arguments are forwarded to the mpf-to-string conversion | |
for the components of the output. | |
**Examples** | |
>>> from mpmath import mpi, mp | |
>>> mp.dps = 30 | |
>>> x = mpi(1, 2)._mpi_ | |
>>> mpi_to_str(x, 2, mode='plusminus') | |
'1.5 +- 0.5' | |
>>> mpi_to_str(x, 2, mode='percent') | |
'1.5 (33.33%)' | |
>>> mpi_to_str(x, 2, mode='brackets') | |
'[1.0, 2.0]' | |
>>> mpi_to_str(x, 2, mode='brackets' , brackets=('<', '>')) | |
'<1.0, 2.0>' | |
>>> x = mpi('5.2582327113062393041', '5.2582327113062749951')._mpi_ | |
>>> mpi_to_str(x, 15, mode='diff') | |
'5.2582327113062[4, 7]' | |
>>> mpi_to_str(mpi(0)._mpi_, 2, mode='percent') | |
'0.0 (0.0%)' | |
""" | |
prec = dps_to_prec(dps) | |
wp = prec + 20 | |
a, b = x | |
mid = mpi_mid(x, prec) | |
delta = mpi_delta(x, prec) | |
a_str = to_str(a, dps, **kwargs) | |
b_str = to_str(b, dps, **kwargs) | |
mid_str = to_str(mid, dps, **kwargs) | |
sp = "" | |
if use_spaces: | |
sp = " " | |
br1, br2 = brackets | |
if mode == 'plusminus': | |
delta_str = to_str(mpf_shift(delta,-1), dps, **kwargs) | |
s = mid_str + sp + "+-" + sp + delta_str | |
elif mode == 'percent': | |
if mid == fzero: | |
p = fzero | |
else: | |
# p = 100 * delta(x) / (2*mid(x)) | |
p = mpf_mul(delta, from_int(100)) | |
p = mpf_div(p, mpf_mul(mid, from_int(2)), wp) | |
s = mid_str + sp + "(" + to_str(p, error_dps) + "%)" | |
elif mode == 'brackets': | |
s = br1 + a_str + "," + sp + b_str + br2 | |
elif mode == 'diff': | |
# use more digits if str(x.a) and str(x.b) are equal | |
if a_str == b_str: | |
a_str = to_str(a, dps+3, **kwargs) | |
b_str = to_str(b, dps+3, **kwargs) | |
# separate mantissa and exponent | |
a = a_str.split('e') | |
if len(a) == 1: | |
a.append('') | |
b = b_str.split('e') | |
if len(b) == 1: | |
b.append('') | |
if a[1] == b[1]: | |
if a[0] != b[0]: | |
for i in xrange(len(a[0]) + 1): | |
if a[0][i] != b[0][i]: | |
break | |
s = (a[0][:i] + br1 + a[0][i:] + ',' + sp + b[0][i:] + br2 | |
+ 'e'*min(len(a[1]), 1) + a[1]) | |
else: # no difference | |
s = a[0] + br1 + br2 + 'e'*min(len(a[1]), 1) + a[1] | |
else: | |
s = br1 + 'e'.join(a) + ',' + sp + 'e'.join(b) + br2 | |
else: | |
raise ValueError("'%s' is unknown mode for printing mpi" % mode) | |
return s | |
def mpci_add(x, y, prec): | |
a, b = x | |
c, d = y | |
return mpi_add(a, c, prec), mpi_add(b, d, prec) | |
def mpci_sub(x, y, prec): | |
a, b = x | |
c, d = y | |
return mpi_sub(a, c, prec), mpi_sub(b, d, prec) | |
def mpci_neg(x, prec=0): | |
a, b = x | |
return mpi_neg(a, prec), mpi_neg(b, prec) | |
def mpci_pos(x, prec): | |
a, b = x | |
return mpi_pos(a, prec), mpi_pos(b, prec) | |
def mpci_mul(x, y, prec): | |
# TODO: optimize for real/imag cases | |
a, b = x | |
c, d = y | |
r1 = mpi_mul(a,c) | |
r2 = mpi_mul(b,d) | |
re = mpi_sub(r1,r2,prec) | |
i1 = mpi_mul(a,d) | |
i2 = mpi_mul(b,c) | |
im = mpi_add(i1,i2,prec) | |
return re, im | |
def mpci_div(x, y, prec): | |
# TODO: optimize for real/imag cases | |
a, b = x | |
c, d = y | |
wp = prec+20 | |
m1 = mpi_square(c) | |
m2 = mpi_square(d) | |
m = mpi_add(m1,m2,wp) | |
re = mpi_add(mpi_mul(a,c), mpi_mul(b,d), wp) | |
im = mpi_sub(mpi_mul(b,c), mpi_mul(a,d), wp) | |
re = mpi_div(re, m, prec) | |
im = mpi_div(im, m, prec) | |
return re, im | |
def mpci_exp(x, prec): | |
a, b = x | |
wp = prec+20 | |
r = mpi_exp(a, wp) | |
c, s = mpi_cos_sin(b, wp) | |
a = mpi_mul(r, c, prec) | |
b = mpi_mul(r, s, prec) | |
return a, b | |
def mpi_shift(x, n): | |
a, b = x | |
return mpf_shift(a,n), mpf_shift(b,n) | |
def mpi_cosh_sinh(x, prec): | |
# TODO: accuracy for small x | |
wp = prec+20 | |
e1 = mpi_exp(x, wp) | |
e2 = mpi_div(mpi_one, e1, wp) | |
c = mpi_add(e1, e2, prec) | |
s = mpi_sub(e1, e2, prec) | |
c = mpi_shift(c, -1) | |
s = mpi_shift(s, -1) | |
return c, s | |
def mpci_cos(x, prec): | |
a, b = x | |
wp = prec+10 | |
c, s = mpi_cos_sin(a, wp) | |
ch, sh = mpi_cosh_sinh(b, wp) | |
re = mpi_mul(c, ch, prec) | |
im = mpi_mul(s, sh, prec) | |
return re, mpi_neg(im) | |
def mpci_sin(x, prec): | |
a, b = x | |
wp = prec+10 | |
c, s = mpi_cos_sin(a, wp) | |
ch, sh = mpi_cosh_sinh(b, wp) | |
re = mpi_mul(s, ch, prec) | |
im = mpi_mul(c, sh, prec) | |
return re, im | |
def mpci_abs(x, prec): | |
a, b = x | |
if a == mpi_zero: | |
return mpi_abs(b) | |
if b == mpi_zero: | |
return mpi_abs(a) | |
# Important: nonnegative | |
a = mpi_square(a) | |
b = mpi_square(b) | |
t = mpi_add(a, b, prec+20) | |
return mpi_sqrt(t, prec) | |
def mpi_atan2(y, x, prec): | |
ya, yb = y | |
xa, xb = x | |
# Constrained to the real line | |
if ya == yb == fzero: | |
if mpf_ge(xa, fzero): | |
return mpi_zero | |
return mpi_pi(prec) | |
# Right half-plane | |
if mpf_ge(xa, fzero): | |
if mpf_ge(ya, fzero): | |
a = mpf_atan2(ya, xb, prec, round_floor) | |
else: | |
a = mpf_atan2(ya, xa, prec, round_floor) | |
if mpf_ge(yb, fzero): | |
b = mpf_atan2(yb, xa, prec, round_ceiling) | |
else: | |
b = mpf_atan2(yb, xb, prec, round_ceiling) | |
# Upper half-plane | |
elif mpf_ge(ya, fzero): | |
b = mpf_atan2(ya, xa, prec, round_ceiling) | |
if mpf_le(xb, fzero): | |
a = mpf_atan2(yb, xb, prec, round_floor) | |
else: | |
a = mpf_atan2(ya, xb, prec, round_floor) | |
# Lower half-plane | |
elif mpf_le(yb, fzero): | |
a = mpf_atan2(yb, xa, prec, round_floor) | |
if mpf_le(xb, fzero): | |
b = mpf_atan2(ya, xb, prec, round_ceiling) | |
else: | |
b = mpf_atan2(yb, xb, prec, round_ceiling) | |
# Covering the origin | |
else: | |
b = mpf_pi(prec, round_ceiling) | |
a = mpf_neg(b) | |
return a, b | |
def mpci_arg(z, prec): | |
x, y = z | |
return mpi_atan2(y, x, prec) | |
def mpci_log(z, prec): | |
x, y = z | |
re = mpi_log(mpci_abs(z, prec+20), prec) | |
im = mpci_arg(z, prec) | |
return re, im | |
def mpci_pow(x, y, prec): | |
# TODO: recognize/speed up real cases, integer y | |
yre, yim = y | |
if yim == mpi_zero: | |
ya, yb = yre | |
if ya == yb: | |
sign, man, exp, bc = yb | |
if man and exp >= 0: | |
return mpci_pow_int(x, (-1)**sign * int(man<<exp), prec) | |
# x^0 | |
if yb == fzero: | |
return mpci_pow_int(x, 0, prec) | |
wp = prec+20 | |
return mpci_exp(mpci_mul(y, mpci_log(x, wp), wp), prec) | |
def mpci_square(x, prec): | |
a, b = x | |
# (a+bi)^2 = (a^2-b^2) + 2abi | |
re = mpi_sub(mpi_square(a), mpi_square(b), prec) | |
im = mpi_mul(a, b, prec) | |
im = mpi_shift(im, 1) | |
return re, im | |
def mpci_pow_int(x, n, prec): | |
if n < 0: | |
return mpci_div((mpi_one,mpi_zero), mpci_pow_int(x, -n, prec+20), prec) | |
if n == 0: | |
return mpi_one, mpi_zero | |
if n == 1: | |
return mpci_pos(x, prec) | |
if n == 2: | |
return mpci_square(x, prec) | |
wp = prec + 20 | |
result = (mpi_one, mpi_zero) | |
while n: | |
if n & 1: | |
result = mpci_mul(result, x, wp) | |
n -= 1 | |
x = mpci_square(x, wp) | |
n >>= 1 | |
return mpci_pos(result, prec) | |
gamma_min_a = from_float(1.46163214496) | |
gamma_min_b = from_float(1.46163214497) | |
gamma_min = (gamma_min_a, gamma_min_b) | |
gamma_mono_imag_a = from_float(-1.1) | |
gamma_mono_imag_b = from_float(1.1) | |
def mpi_overlap(x, y): | |
a, b = x | |
c, d = y | |
if mpf_lt(d, a): return False | |
if mpf_gt(c, b): return False | |
return True | |
# type = 0 -- gamma | |
# type = 1 -- factorial | |
# type = 2 -- 1/gamma | |
# type = 3 -- log-gamma | |
def mpi_gamma(z, prec, type=0): | |
a, b = z | |
wp = prec+20 | |
if type == 1: | |
return mpi_gamma(mpi_add(z, mpi_one, wp), prec, 0) | |
# increasing | |
if mpf_gt(a, gamma_min_b): | |
if type == 0: | |
c = mpf_gamma(a, prec, round_floor) | |
d = mpf_gamma(b, prec, round_ceiling) | |
elif type == 2: | |
c = mpf_rgamma(b, prec, round_floor) | |
d = mpf_rgamma(a, prec, round_ceiling) | |
elif type == 3: | |
c = mpf_loggamma(a, prec, round_floor) | |
d = mpf_loggamma(b, prec, round_ceiling) | |
# decreasing | |
elif mpf_gt(a, fzero) and mpf_lt(b, gamma_min_a): | |
if type == 0: | |
c = mpf_gamma(b, prec, round_floor) | |
d = mpf_gamma(a, prec, round_ceiling) | |
elif type == 2: | |
c = mpf_rgamma(a, prec, round_floor) | |
d = mpf_rgamma(b, prec, round_ceiling) | |
elif type == 3: | |
c = mpf_loggamma(b, prec, round_floor) | |
d = mpf_loggamma(a, prec, round_ceiling) | |
else: | |
# TODO: reflection formula | |
znew = mpi_add(z, mpi_one, wp) | |
if type == 0: return mpi_div(mpi_gamma(znew, prec+2, 0), z, prec) | |
if type == 2: return mpi_mul(mpi_gamma(znew, prec+2, 2), z, prec) | |
if type == 3: return mpi_sub(mpi_gamma(znew, prec+2, 3), mpi_log(z, prec+2), prec) | |
return c, d | |
def mpci_gamma(z, prec, type=0): | |
(a1,a2), (b1,b2) = z | |
# Real case | |
if b1 == b2 == fzero and (type != 3 or mpf_gt(a1,fzero)): | |
return mpi_gamma(z, prec, type), mpi_zero | |
# Estimate precision | |
wp = prec+20 | |
if type != 3: | |
amag = a2[2]+a2[3] | |
bmag = b2[2]+b2[3] | |
if a2 != fzero: | |
mag = max(amag, bmag) | |
else: | |
mag = bmag | |
an = abs(to_int(a2)) | |
bn = abs(to_int(b2)) | |
absn = max(an, bn) | |
gamma_size = max(0,absn*mag) | |
wp += bitcount(gamma_size) | |
# Assume type != 1 | |
if type == 1: | |
(a1,a2) = mpi_add((a1,a2), mpi_one, wp); z = (a1,a2), (b1,b2) | |
type = 0 | |
# Avoid non-monotonic region near the negative real axis | |
if mpf_lt(a1, gamma_min_b): | |
if mpi_overlap((b1,b2), (gamma_mono_imag_a, gamma_mono_imag_b)): | |
# TODO: reflection formula | |
#if mpf_lt(a2, mpf_shift(fone,-1)): | |
# znew = mpci_sub((mpi_one,mpi_zero),z,wp) | |
# ... | |
# Recurrence: | |
# gamma(z) = gamma(z+1)/z | |
znew = mpi_add((a1,a2), mpi_one, wp), (b1,b2) | |
if type == 0: return mpci_div(mpci_gamma(znew, prec+2, 0), z, prec) | |
if type == 2: return mpci_mul(mpci_gamma(znew, prec+2, 2), z, prec) | |
if type == 3: return mpci_sub(mpci_gamma(znew, prec+2, 3), mpci_log(z,prec+2), prec) | |
# Use monotonicity (except for a small region close to the | |
# origin and near poles) | |
# upper half-plane | |
if mpf_ge(b1, fzero): | |
minre = mpc_loggamma((a1,b2), wp, round_floor) | |
maxre = mpc_loggamma((a2,b1), wp, round_ceiling) | |
minim = mpc_loggamma((a1,b1), wp, round_floor) | |
maxim = mpc_loggamma((a2,b2), wp, round_ceiling) | |
# lower half-plane | |
elif mpf_le(b2, fzero): | |
minre = mpc_loggamma((a1,b1), wp, round_floor) | |
maxre = mpc_loggamma((a2,b2), wp, round_ceiling) | |
minim = mpc_loggamma((a2,b1), wp, round_floor) | |
maxim = mpc_loggamma((a1,b2), wp, round_ceiling) | |
# crosses real axis | |
else: | |
maxre = mpc_loggamma((a2,fzero), wp, round_ceiling) | |
# stretches more into the lower half-plane | |
if mpf_gt(mpf_neg(b1), b2): | |
minre = mpc_loggamma((a1,b1), wp, round_ceiling) | |
else: | |
minre = mpc_loggamma((a1,b2), wp, round_ceiling) | |
minim = mpc_loggamma((a2,b1), wp, round_floor) | |
maxim = mpc_loggamma((a2,b2), wp, round_floor) | |
w = (minre[0], maxre[0]), (minim[1], maxim[1]) | |
if type == 3: | |
return mpi_pos(w[0], prec), mpi_pos(w[1], prec) | |
if type == 2: | |
w = mpci_neg(w) | |
return mpci_exp(w, prec) | |
def mpi_loggamma(z, prec): return mpi_gamma(z, prec, type=3) | |
def mpci_loggamma(z, prec): return mpci_gamma(z, prec, type=3) | |
def mpi_rgamma(z, prec): return mpi_gamma(z, prec, type=2) | |
def mpci_rgamma(z, prec): return mpci_gamma(z, prec, type=2) | |
def mpi_factorial(z, prec): return mpi_gamma(z, prec, type=1) | |
def mpci_factorial(z, prec): return mpci_gamma(z, prec, type=1) | |