Spaces:
Sleeping
Sleeping
import sys | |
import numpy as np | |
from typing import List, Dict, TypeVar, Generic, Tuple, Any, Union | |
from collections import defaultdict, Counter | |
import queue | |
from mlagents.torch_utils import torch | |
from mlagents_envs.base_env import ( | |
ActionTuple, | |
DecisionSteps, | |
DecisionStep, | |
TerminalSteps, | |
TerminalStep, | |
) | |
from mlagents_envs.side_channel.stats_side_channel import ( | |
StatsAggregationMethod, | |
EnvironmentStats, | |
) | |
from mlagents.trainers.exception import UnityTrainerException | |
from mlagents.trainers.trajectory import AgentStatus, Trajectory, AgentExperience | |
from mlagents.trainers.policy import Policy | |
from mlagents.trainers.action_info import ActionInfo, ActionInfoOutputs | |
from mlagents.trainers.stats import StatsReporter | |
from mlagents.trainers.behavior_id_utils import ( | |
get_global_agent_id, | |
get_global_group_id, | |
GlobalAgentId, | |
GlobalGroupId, | |
) | |
from mlagents.trainers.torch_entities.action_log_probs import LogProbsTuple | |
from mlagents.trainers.torch_entities.utils import ModelUtils | |
T = TypeVar("T") | |
class AgentProcessor: | |
""" | |
AgentProcessor contains a dictionary per-agent trajectory buffers. The buffers are indexed by agent_id. | |
Buffer also contains an update_buffer that corresponds to the buffer used when updating the model. | |
One AgentProcessor should be created per agent group. | |
""" | |
def __init__( | |
self, | |
policy: Policy, | |
behavior_id: str, | |
stats_reporter: StatsReporter, | |
max_trajectory_length: int = sys.maxsize, | |
): | |
""" | |
Create an AgentProcessor. | |
:param trainer: Trainer instance connected to this AgentProcessor. Trainer is given trajectory | |
when it is finished. | |
:param policy: Policy instance associated with this AgentProcessor. | |
:param max_trajectory_length: Maximum length of a trajectory before it is added to the trainer. | |
:param stats_category: The category under which to write the stats. Usually, this comes from the Trainer. | |
""" | |
self._experience_buffers: Dict[ | |
GlobalAgentId, List[AgentExperience] | |
] = defaultdict(list) | |
self._last_step_result: Dict[GlobalAgentId, Tuple[DecisionStep, int]] = {} | |
# current_group_obs is used to collect the current (i.e. the most recently seen) | |
# obs of all the agents in the same group, and assemble the group obs. | |
# It is a dictionary of GlobalGroupId to dictionaries of GlobalAgentId to observation. | |
self._current_group_obs: Dict[ | |
GlobalGroupId, Dict[GlobalAgentId, List[np.ndarray]] | |
] = defaultdict(lambda: defaultdict(list)) | |
# group_status is used to collect the current, most recently seen | |
# group status of all the agents in the same group, and assemble the group's status. | |
# It is a dictionary of GlobalGroupId to dictionaries of GlobalAgentId to AgentStatus. | |
self._group_status: Dict[ | |
GlobalGroupId, Dict[GlobalAgentId, AgentStatus] | |
] = defaultdict(lambda: defaultdict(None)) | |
# last_take_action_outputs stores the action a_t taken before the current observation s_(t+1), while | |
# grabbing previous_action from the policy grabs the action PRIOR to that, a_(t-1). | |
self._last_take_action_outputs: Dict[GlobalAgentId, ActionInfoOutputs] = {} | |
self._episode_steps: Counter = Counter() | |
self._episode_rewards: Dict[GlobalAgentId, float] = defaultdict(float) | |
self._stats_reporter = stats_reporter | |
self._max_trajectory_length = max_trajectory_length | |
self._trajectory_queues: List[AgentManagerQueue[Trajectory]] = [] | |
self._behavior_id = behavior_id | |
# Note: In the future this policy reference will be the policy of the env_manager and not the trainer. | |
# We can in that case just grab the action from the policy rather than having it passed in. | |
self.policy = policy | |
def add_experiences( | |
self, | |
decision_steps: DecisionSteps, | |
terminal_steps: TerminalSteps, | |
worker_id: int, | |
previous_action: ActionInfo, | |
) -> None: | |
""" | |
Adds experiences to each agent's experience history. | |
:param decision_steps: current DecisionSteps. | |
:param terminal_steps: current TerminalSteps. | |
:param previous_action: The outputs of the Policy's get_action method. | |
""" | |
take_action_outputs = previous_action.outputs | |
if take_action_outputs: | |
try: | |
for _entropy in take_action_outputs["entropy"]: | |
if isinstance(_entropy, torch.Tensor): | |
_entropy = ModelUtils.to_numpy(_entropy) | |
self._stats_reporter.add_stat("Policy/Entropy", _entropy) | |
except KeyError: | |
pass | |
# Make unique agent_ids that are global across workers | |
action_global_agent_ids = [ | |
get_global_agent_id(worker_id, ag_id) for ag_id in previous_action.agent_ids | |
] | |
for global_id in action_global_agent_ids: | |
if global_id in self._last_step_result: # Don't store if agent just reset | |
self._last_take_action_outputs[global_id] = take_action_outputs | |
# Iterate over all the terminal steps, first gather all the group obs | |
# and then create the AgentExperiences/Trajectories. _add_to_group_status | |
# stores Group statuses in a common data structure self.group_status | |
for terminal_step in terminal_steps.values(): | |
self._add_group_status_and_obs(terminal_step, worker_id) | |
for terminal_step in terminal_steps.values(): | |
local_id = terminal_step.agent_id | |
global_id = get_global_agent_id(worker_id, local_id) | |
self._process_step( | |
terminal_step, worker_id, terminal_steps.agent_id_to_index[local_id] | |
) | |
# Iterate over all the decision steps, first gather all the group obs | |
# and then create the trajectories. _add_to_group_status | |
# stores Group statuses in a common data structure self.group_status | |
for ongoing_step in decision_steps.values(): | |
self._add_group_status_and_obs(ongoing_step, worker_id) | |
for ongoing_step in decision_steps.values(): | |
local_id = ongoing_step.agent_id | |
self._process_step( | |
ongoing_step, worker_id, decision_steps.agent_id_to_index[local_id] | |
) | |
# Clear the last seen group obs when agents die, but only after all of the group | |
# statuses were added to the trajectory. | |
for terminal_step in terminal_steps.values(): | |
local_id = terminal_step.agent_id | |
global_id = get_global_agent_id(worker_id, local_id) | |
self._clear_group_status_and_obs(global_id) | |
for _gid in action_global_agent_ids: | |
# If the ID doesn't have a last step result, the agent just reset, | |
# don't store the action. | |
if _gid in self._last_step_result: | |
if "action" in take_action_outputs: | |
self.policy.save_previous_action( | |
[_gid], take_action_outputs["action"] | |
) | |
def _add_group_status_and_obs( | |
self, step: Union[TerminalStep, DecisionStep], worker_id: int | |
) -> None: | |
""" | |
Takes a TerminalStep or DecisionStep and adds the information in it | |
to self.group_status. This information can then be retrieved | |
when constructing trajectories to get the status of group mates. Also stores the current | |
observation into current_group_obs, to be used to get the next group observations | |
for bootstrapping. | |
:param step: TerminalStep or DecisionStep | |
:param worker_id: Worker ID of this particular environment. Used to generate a | |
global group id. | |
""" | |
global_agent_id = get_global_agent_id(worker_id, step.agent_id) | |
stored_decision_step, idx = self._last_step_result.get( | |
global_agent_id, (None, None) | |
) | |
stored_take_action_outputs = self._last_take_action_outputs.get( | |
global_agent_id, None | |
) | |
if stored_decision_step is not None and stored_take_action_outputs is not None: | |
# 0, the default group_id, means that the agent doesn't belong to an agent group. | |
# If 0, don't add any groupmate information. | |
if step.group_id > 0: | |
global_group_id = get_global_group_id(worker_id, step.group_id) | |
stored_actions = stored_take_action_outputs["action"] | |
action_tuple = ActionTuple( | |
continuous=stored_actions.continuous[idx], | |
discrete=stored_actions.discrete[idx], | |
) | |
group_status = AgentStatus( | |
obs=stored_decision_step.obs, | |
reward=step.reward, | |
action=action_tuple, | |
done=isinstance(step, TerminalStep), | |
) | |
self._group_status[global_group_id][global_agent_id] = group_status | |
self._current_group_obs[global_group_id][global_agent_id] = step.obs | |
def _clear_group_status_and_obs(self, global_id: GlobalAgentId) -> None: | |
""" | |
Clears an agent from self._group_status and self._current_group_obs. | |
""" | |
self._delete_in_nested_dict(self._current_group_obs, global_id) | |
self._delete_in_nested_dict(self._group_status, global_id) | |
def _delete_in_nested_dict(self, nested_dict: Dict[str, Any], key: str) -> None: | |
for _manager_id in list(nested_dict.keys()): | |
_team_group = nested_dict[_manager_id] | |
self._safe_delete(_team_group, key) | |
if not _team_group: # if dict is empty | |
self._safe_delete(nested_dict, _manager_id) | |
def _process_step( | |
self, step: Union[TerminalStep, DecisionStep], worker_id: int, index: int | |
) -> None: | |
terminated = isinstance(step, TerminalStep) | |
global_agent_id = get_global_agent_id(worker_id, step.agent_id) | |
global_group_id = get_global_group_id(worker_id, step.group_id) | |
stored_decision_step, idx = self._last_step_result.get( | |
global_agent_id, (None, None) | |
) | |
stored_take_action_outputs = self._last_take_action_outputs.get( | |
global_agent_id, None | |
) | |
if not terminated: | |
# Index is needed to grab from last_take_action_outputs | |
self._last_step_result[global_agent_id] = (step, index) | |
# This state is the consequence of a past action | |
if stored_decision_step is not None and stored_take_action_outputs is not None: | |
obs = stored_decision_step.obs | |
if self.policy.use_recurrent: | |
memory = self.policy.retrieve_previous_memories([global_agent_id])[0, :] | |
else: | |
memory = None | |
done = terminated # Since this is an ongoing step | |
interrupted = step.interrupted if terminated else False | |
# Add the outputs of the last eval | |
stored_actions = stored_take_action_outputs["action"] | |
action_tuple = ActionTuple( | |
continuous=stored_actions.continuous[idx], | |
discrete=stored_actions.discrete[idx], | |
) | |
try: | |
stored_action_probs = stored_take_action_outputs["log_probs"] | |
if not isinstance(stored_action_probs, LogProbsTuple): | |
stored_action_probs = stored_action_probs.to_log_probs_tuple() | |
log_probs_tuple = LogProbsTuple( | |
continuous=stored_action_probs.continuous[idx], | |
discrete=stored_action_probs.discrete[idx], | |
) | |
except KeyError: | |
log_probs_tuple = LogProbsTuple.empty_log_probs() | |
action_mask = stored_decision_step.action_mask | |
prev_action = self.policy.retrieve_previous_action([global_agent_id])[0, :] | |
# Assemble teammate_obs. If none saved, then it will be an empty list. | |
group_statuses = [] | |
for _id, _mate_status in self._group_status[global_group_id].items(): | |
if _id != global_agent_id: | |
group_statuses.append(_mate_status) | |
experience = AgentExperience( | |
obs=obs, | |
reward=step.reward, | |
done=done, | |
action=action_tuple, | |
action_probs=log_probs_tuple, | |
action_mask=action_mask, | |
prev_action=prev_action, | |
interrupted=interrupted, | |
memory=memory, | |
group_status=group_statuses, | |
group_reward=step.group_reward, | |
) | |
# Add the value outputs if needed | |
self._experience_buffers[global_agent_id].append(experience) | |
self._episode_rewards[global_agent_id] += step.reward | |
if not terminated: | |
self._episode_steps[global_agent_id] += 1 | |
# Add a trajectory segment to the buffer if terminal or the length has reached the time horizon | |
if ( | |
len(self._experience_buffers[global_agent_id]) | |
>= self._max_trajectory_length | |
or terminated | |
): | |
next_obs = step.obs | |
next_group_obs = [] | |
for _id, _obs in self._current_group_obs[global_group_id].items(): | |
if _id != global_agent_id: | |
next_group_obs.append(_obs) | |
trajectory = Trajectory( | |
steps=self._experience_buffers[global_agent_id], | |
agent_id=global_agent_id, | |
next_obs=next_obs, | |
next_group_obs=next_group_obs, | |
behavior_id=self._behavior_id, | |
) | |
for traj_queue in self._trajectory_queues: | |
traj_queue.put(trajectory) | |
self._experience_buffers[global_agent_id] = [] | |
if terminated: | |
# Record episode length. | |
self._stats_reporter.add_stat( | |
"Environment/Episode Length", | |
self._episode_steps.get(global_agent_id, 0), | |
) | |
self._clean_agent_data(global_agent_id) | |
def _clean_agent_data(self, global_id: GlobalAgentId) -> None: | |
""" | |
Removes the data for an Agent. | |
""" | |
self._safe_delete(self._experience_buffers, global_id) | |
self._safe_delete(self._last_take_action_outputs, global_id) | |
self._safe_delete(self._last_step_result, global_id) | |
self._safe_delete(self._episode_steps, global_id) | |
self._safe_delete(self._episode_rewards, global_id) | |
self.policy.remove_previous_action([global_id]) | |
self.policy.remove_memories([global_id]) | |
def _safe_delete(self, my_dictionary: Dict[Any, Any], key: Any) -> None: | |
""" | |
Safe removes data from a dictionary. If not found, | |
don't delete. | |
""" | |
if key in my_dictionary: | |
del my_dictionary[key] | |
def publish_trajectory_queue( | |
self, trajectory_queue: "AgentManagerQueue[Trajectory]" | |
) -> None: | |
""" | |
Adds a trajectory queue to the list of queues to publish to when this AgentProcessor | |
assembles a Trajectory | |
:param trajectory_queue: Trajectory queue to publish to. | |
""" | |
self._trajectory_queues.append(trajectory_queue) | |
def end_episode(self) -> None: | |
""" | |
Ends the episode, terminating the current trajectory and stopping stats collection for that | |
episode. Used for forceful reset (e.g. in curriculum or generalization training.) | |
""" | |
all_gids = list(self._experience_buffers.keys()) # Need to make copy | |
for _gid in all_gids: | |
self._clean_agent_data(_gid) | |
class AgentManagerQueue(Generic[T]): | |
""" | |
Queue used by the AgentManager. Note that we make our own class here because in most implementations | |
deque is sufficient and faster. However, if we want to switch to multiprocessing, we'll need to change | |
out this implementation. | |
""" | |
class Empty(Exception): | |
""" | |
Exception for when the queue is empty. | |
""" | |
pass | |
def __init__(self, behavior_id: str, maxlen: int = 0): | |
""" | |
Initializes an AgentManagerQueue. Note that we can give it a behavior_id so that it can be identified | |
separately from an AgentManager. | |
""" | |
self._maxlen: int = maxlen | |
self._queue: queue.Queue = queue.Queue(maxsize=maxlen) | |
self._behavior_id = behavior_id | |
def maxlen(self): | |
""" | |
The maximum length of the queue. | |
:return: Maximum length of the queue. | |
""" | |
return self._maxlen | |
def behavior_id(self): | |
""" | |
The Behavior ID of this queue. | |
:return: Behavior ID associated with the queue. | |
""" | |
return self._behavior_id | |
def qsize(self) -> int: | |
""" | |
Returns the approximate size of the queue. Note that values may differ | |
depending on the underlying queue implementation. | |
""" | |
return self._queue.qsize() | |
def empty(self) -> bool: | |
return self._queue.empty() | |
def get_nowait(self) -> T: | |
""" | |
Gets the next item from the queue, throwing an AgentManagerQueue.Empty exception | |
if the queue is empty. | |
""" | |
try: | |
return self._queue.get_nowait() | |
except queue.Empty: | |
raise self.Empty("The AgentManagerQueue is empty.") | |
def put(self, item: T) -> None: | |
self._queue.put(item) | |
class AgentManager(AgentProcessor): | |
""" | |
An AgentManager is an AgentProcessor that also holds a single trajectory and policy queue. | |
Note: this leaves room for adding AgentProcessors that publish multiple trajectory queues. | |
""" | |
def __init__( | |
self, | |
policy: Policy, | |
behavior_id: str, | |
stats_reporter: StatsReporter, | |
max_trajectory_length: int = sys.maxsize, | |
threaded: bool = True, | |
): | |
super().__init__(policy, behavior_id, stats_reporter, max_trajectory_length) | |
trajectory_queue_len = 20 if threaded else 0 | |
self.trajectory_queue: AgentManagerQueue[Trajectory] = AgentManagerQueue( | |
self._behavior_id, maxlen=trajectory_queue_len | |
) | |
# NOTE: we make policy queues of infinite length to avoid lockups of the trainers. | |
# In the environment manager, we make sure to empty the policy queue before continuing to produce steps. | |
self.policy_queue: AgentManagerQueue[Policy] = AgentManagerQueue( | |
self._behavior_id, maxlen=0 | |
) | |
self.publish_trajectory_queue(self.trajectory_queue) | |
def record_environment_stats( | |
self, env_stats: EnvironmentStats, worker_id: int | |
) -> None: | |
""" | |
Pass stats from the environment to the StatsReporter. | |
Depending on the StatsAggregationMethod, either StatsReporter.add_stat or StatsReporter.set_stat is used. | |
The worker_id is used to determine whether StatsReporter.set_stat should be used. | |
:param env_stats: | |
:param worker_id: | |
:return: | |
""" | |
for stat_name, value_list in env_stats.items(): | |
for val, agg_type in value_list: | |
if agg_type == StatsAggregationMethod.AVERAGE: | |
self._stats_reporter.add_stat(stat_name, val, agg_type) | |
elif agg_type == StatsAggregationMethod.SUM: | |
self._stats_reporter.add_stat(stat_name, val, agg_type) | |
elif agg_type == StatsAggregationMethod.HISTOGRAM: | |
self._stats_reporter.add_stat(stat_name, val, agg_type) | |
elif agg_type == StatsAggregationMethod.MOST_RECENT: | |
# In order to prevent conflicts between multiple environments, | |
# only stats from the first environment are recorded. | |
if worker_id == 0: | |
self._stats_reporter.set_stat(stat_name, val) | |
else: | |
raise UnityTrainerException( | |
f"Unknown StatsAggregationMethod encountered. {agg_type}" | |
) | |