Spaces:
Sleeping
Sleeping
from typing import Dict, cast | |
import attr | |
from mlagents.torch_utils import torch, default_device | |
from mlagents.trainers.buffer import AgentBuffer, BufferKey, RewardSignalUtil | |
from mlagents_envs.timers import timed | |
from mlagents.trainers.policy.torch_policy import TorchPolicy | |
from mlagents.trainers.optimizer.torch_optimizer import TorchOptimizer | |
from mlagents.trainers.settings import ( | |
TrainerSettings, | |
OnPolicyHyperparamSettings, | |
ScheduleType, | |
) | |
from mlagents.trainers.torch_entities.networks import ValueNetwork | |
from mlagents.trainers.torch_entities.agent_action import AgentAction | |
from mlagents.trainers.torch_entities.action_log_probs import ActionLogProbs | |
from mlagents.trainers.torch_entities.utils import ModelUtils | |
from mlagents.trainers.trajectory import ObsUtil | |
class PPOSettings(OnPolicyHyperparamSettings): | |
beta: float = 5.0e-3 | |
epsilon: float = 0.2 | |
lambd: float = 0.95 | |
num_epoch: int = 3 | |
shared_critic: bool = False | |
learning_rate_schedule: ScheduleType = ScheduleType.LINEAR | |
beta_schedule: ScheduleType = ScheduleType.LINEAR | |
epsilon_schedule: ScheduleType = ScheduleType.LINEAR | |
class TorchPPOOptimizer(TorchOptimizer): | |
def __init__(self, policy: TorchPolicy, trainer_settings: TrainerSettings): | |
""" | |
Takes a Policy and a Dict of trainer parameters and creates an Optimizer around the policy. | |
The PPO optimizer has a value estimator and a loss function. | |
:param policy: A TorchPolicy object that will be updated by this PPO Optimizer. | |
:param trainer_params: Trainer parameters dictionary that specifies the | |
properties of the trainer. | |
""" | |
# Create the graph here to give more granular control of the TF graph to the Optimizer. | |
super().__init__(policy, trainer_settings) | |
reward_signal_configs = trainer_settings.reward_signals | |
reward_signal_names = [key.value for key, _ in reward_signal_configs.items()] | |
self.hyperparameters: PPOSettings = cast( | |
PPOSettings, trainer_settings.hyperparameters | |
) | |
params = list(self.policy.actor.parameters()) | |
if self.hyperparameters.shared_critic: | |
self._critic = policy.actor | |
else: | |
self._critic = ValueNetwork( | |
reward_signal_names, | |
policy.behavior_spec.observation_specs, | |
network_settings=trainer_settings.network_settings, | |
) | |
self._critic.to(default_device()) | |
params += list(self._critic.parameters()) | |
self.decay_learning_rate = ModelUtils.DecayedValue( | |
self.hyperparameters.learning_rate_schedule, | |
self.hyperparameters.learning_rate, | |
1e-10, | |
self.trainer_settings.max_steps, | |
) | |
self.decay_epsilon = ModelUtils.DecayedValue( | |
self.hyperparameters.epsilon_schedule, | |
self.hyperparameters.epsilon, | |
0.1, | |
self.trainer_settings.max_steps, | |
) | |
self.decay_beta = ModelUtils.DecayedValue( | |
self.hyperparameters.beta_schedule, | |
self.hyperparameters.beta, | |
1e-5, | |
self.trainer_settings.max_steps, | |
) | |
self.optimizer = torch.optim.Adam( | |
params, lr=self.trainer_settings.hyperparameters.learning_rate | |
) | |
self.stats_name_to_update_name = { | |
"Losses/Value Loss": "value_loss", | |
"Losses/Policy Loss": "policy_loss", | |
} | |
self.stream_names = list(self.reward_signals.keys()) | |
def critic(self): | |
return self._critic | |
def update(self, batch: AgentBuffer, num_sequences: int) -> Dict[str, float]: | |
""" | |
Performs update on model. | |
:param batch: Batch of experiences. | |
:param num_sequences: Number of sequences to process. | |
:return: Results of update. | |
""" | |
# Get decayed parameters | |
decay_lr = self.decay_learning_rate.get_value(self.policy.get_current_step()) | |
decay_eps = self.decay_epsilon.get_value(self.policy.get_current_step()) | |
decay_bet = self.decay_beta.get_value(self.policy.get_current_step()) | |
returns = {} | |
old_values = {} | |
for name in self.reward_signals: | |
old_values[name] = ModelUtils.list_to_tensor( | |
batch[RewardSignalUtil.value_estimates_key(name)] | |
) | |
returns[name] = ModelUtils.list_to_tensor( | |
batch[RewardSignalUtil.returns_key(name)] | |
) | |
n_obs = len(self.policy.behavior_spec.observation_specs) | |
current_obs = ObsUtil.from_buffer(batch, n_obs) | |
# Convert to tensors | |
current_obs = [ModelUtils.list_to_tensor(obs) for obs in current_obs] | |
act_masks = ModelUtils.list_to_tensor(batch[BufferKey.ACTION_MASK]) | |
actions = AgentAction.from_buffer(batch) | |
memories = [ | |
ModelUtils.list_to_tensor(batch[BufferKey.MEMORY][i]) | |
for i in range(0, len(batch[BufferKey.MEMORY]), self.policy.sequence_length) | |
] | |
if len(memories) > 0: | |
memories = torch.stack(memories).unsqueeze(0) | |
# Get value memories | |
value_memories = [ | |
ModelUtils.list_to_tensor(batch[BufferKey.CRITIC_MEMORY][i]) | |
for i in range( | |
0, len(batch[BufferKey.CRITIC_MEMORY]), self.policy.sequence_length | |
) | |
] | |
if len(value_memories) > 0: | |
value_memories = torch.stack(value_memories).unsqueeze(0) | |
run_out = self.policy.actor.get_stats( | |
current_obs, | |
actions, | |
masks=act_masks, | |
memories=memories, | |
sequence_length=self.policy.sequence_length, | |
) | |
log_probs = run_out["log_probs"] | |
entropy = run_out["entropy"] | |
values, _ = self.critic.critic_pass( | |
current_obs, | |
memories=value_memories, | |
sequence_length=self.policy.sequence_length, | |
) | |
old_log_probs = ActionLogProbs.from_buffer(batch).flatten() | |
log_probs = log_probs.flatten() | |
loss_masks = ModelUtils.list_to_tensor(batch[BufferKey.MASKS], dtype=torch.bool) | |
value_loss = ModelUtils.trust_region_value_loss( | |
values, old_values, returns, decay_eps, loss_masks | |
) | |
policy_loss = ModelUtils.trust_region_policy_loss( | |
ModelUtils.list_to_tensor(batch[BufferKey.ADVANTAGES]), | |
log_probs, | |
old_log_probs, | |
loss_masks, | |
decay_eps, | |
) | |
loss = ( | |
policy_loss | |
+ 0.5 * value_loss | |
- decay_bet * ModelUtils.masked_mean(entropy, loss_masks) | |
) | |
# Set optimizer learning rate | |
ModelUtils.update_learning_rate(self.optimizer, decay_lr) | |
self.optimizer.zero_grad() | |
loss.backward() | |
self.optimizer.step() | |
update_stats = { | |
# NOTE: abs() is not technically correct, but matches the behavior in TensorFlow. | |
# TODO: After PyTorch is default, change to something more correct. | |
"Losses/Policy Loss": torch.abs(policy_loss).item(), | |
"Losses/Value Loss": value_loss.item(), | |
"Policy/Learning Rate": decay_lr, | |
"Policy/Epsilon": decay_eps, | |
"Policy/Beta": decay_bet, | |
} | |
return update_stats | |
# TODO move module update into TorchOptimizer for reward_provider | |
def get_modules(self): | |
modules = { | |
"Optimizer:value_optimizer": self.optimizer, | |
"Optimizer:critic": self._critic, | |
} | |
for reward_provider in self.reward_signals.values(): | |
modules.update(reward_provider.get_modules()) | |
return modules | |