Spaces:
Sleeping
Sleeping
from ..libmp.backend import xrange | |
# TODO: should use diagonalization-based algorithms | |
class MatrixCalculusMethods(object): | |
def _exp_pade(ctx, a): | |
""" | |
Exponential of a matrix using Pade approximants. | |
See G. H. Golub, C. F. van Loan 'Matrix Computations', | |
third Ed., page 572 | |
TODO: | |
- find a good estimate for q | |
- reduce the number of matrix multiplications to improve | |
performance | |
""" | |
def eps_pade(p): | |
return ctx.mpf(2)**(3-2*p) * \ | |
ctx.factorial(p)**2/(ctx.factorial(2*p)**2 * (2*p + 1)) | |
q = 4 | |
extraq = 8 | |
while 1: | |
if eps_pade(q) < ctx.eps: | |
break | |
q += 1 | |
q += extraq | |
j = int(max(1, ctx.mag(ctx.mnorm(a,'inf')))) | |
extra = q | |
prec = ctx.prec | |
ctx.dps += extra + 3 | |
try: | |
a = a/2**j | |
na = a.rows | |
den = ctx.eye(na) | |
num = ctx.eye(na) | |
x = ctx.eye(na) | |
c = ctx.mpf(1) | |
for k in range(1, q+1): | |
c *= ctx.mpf(q - k + 1)/((2*q - k + 1) * k) | |
x = a*x | |
cx = c*x | |
num += cx | |
den += (-1)**k * cx | |
f = ctx.lu_solve_mat(den, num) | |
for k in range(j): | |
f = f*f | |
finally: | |
ctx.prec = prec | |
return f*1 | |
def expm(ctx, A, method='taylor'): | |
r""" | |
Computes the matrix exponential of a square matrix `A`, which is defined | |
by the power series | |
.. math :: | |
\exp(A) = I + A + \frac{A^2}{2!} + \frac{A^3}{3!} + \ldots | |
With method='taylor', the matrix exponential is computed | |
using the Taylor series. With method='pade', Pade approximants | |
are used instead. | |
**Examples** | |
Basic examples:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = True | |
>>> expm(zeros(3)) | |
[1.0 0.0 0.0] | |
[0.0 1.0 0.0] | |
[0.0 0.0 1.0] | |
>>> expm(eye(3)) | |
[2.71828182845905 0.0 0.0] | |
[ 0.0 2.71828182845905 0.0] | |
[ 0.0 0.0 2.71828182845905] | |
>>> expm([[1,1,0],[1,0,1],[0,1,0]]) | |
[ 3.86814500615414 2.26812870852145 0.841130841230196] | |
[ 2.26812870852145 2.44114713886289 1.42699786729125] | |
[0.841130841230196 1.42699786729125 1.6000162976327] | |
>>> expm([[1,1,0],[1,0,1],[0,1,0]], method='pade') | |
[ 3.86814500615414 2.26812870852145 0.841130841230196] | |
[ 2.26812870852145 2.44114713886289 1.42699786729125] | |
[0.841130841230196 1.42699786729125 1.6000162976327] | |
>>> expm([[1+j, 0], [1+j,1]]) | |
[(1.46869393991589 + 2.28735528717884j) 0.0] | |
[ (1.03776739863568 + 3.536943175722j) (2.71828182845905 + 0.0j)] | |
Matrices with large entries are allowed:: | |
>>> expm(matrix([[1,2],[2,3]])**25) | |
[5.65024064048415e+2050488462815550 9.14228140091932e+2050488462815550] | |
[9.14228140091932e+2050488462815550 1.47925220414035e+2050488462815551] | |
The identity `\exp(A+B) = \exp(A) \exp(B)` does not hold for | |
noncommuting matrices:: | |
>>> A = hilbert(3) | |
>>> B = A + eye(3) | |
>>> chop(mnorm(A*B - B*A)) | |
0.0 | |
>>> chop(mnorm(expm(A+B) - expm(A)*expm(B))) | |
0.0 | |
>>> B = A + ones(3) | |
>>> mnorm(A*B - B*A) | |
1.8 | |
>>> mnorm(expm(A+B) - expm(A)*expm(B)) | |
42.0927851137247 | |
""" | |
if method == 'pade': | |
prec = ctx.prec | |
try: | |
A = ctx.matrix(A) | |
ctx.prec += 2*A.rows | |
res = ctx._exp_pade(A) | |
finally: | |
ctx.prec = prec | |
return res | |
A = ctx.matrix(A) | |
prec = ctx.prec | |
j = int(max(1, ctx.mag(ctx.mnorm(A,'inf')))) | |
j += int(0.5*prec**0.5) | |
try: | |
ctx.prec += 10 + 2*j | |
tol = +ctx.eps | |
A = A/2**j | |
T = A | |
Y = A**0 + A | |
k = 2 | |
while 1: | |
T *= A * (1/ctx.mpf(k)) | |
if ctx.mnorm(T, 'inf') < tol: | |
break | |
Y += T | |
k += 1 | |
for k in xrange(j): | |
Y = Y*Y | |
finally: | |
ctx.prec = prec | |
Y *= 1 | |
return Y | |
def cosm(ctx, A): | |
r""" | |
Gives the cosine of a square matrix `A`, defined in analogy | |
with the matrix exponential. | |
Examples:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = True | |
>>> X = eye(3) | |
>>> cosm(X) | |
[0.54030230586814 0.0 0.0] | |
[ 0.0 0.54030230586814 0.0] | |
[ 0.0 0.0 0.54030230586814] | |
>>> X = hilbert(3) | |
>>> cosm(X) | |
[ 0.424403834569555 -0.316643413047167 -0.221474945949293] | |
[-0.316643413047167 0.820646708837824 -0.127183694770039] | |
[-0.221474945949293 -0.127183694770039 0.909236687217541] | |
>>> X = matrix([[1+j,-2],[0,-j]]) | |
>>> cosm(X) | |
[(0.833730025131149 - 0.988897705762865j) (1.07485840848393 - 0.17192140544213j)] | |
[ 0.0 (1.54308063481524 + 0.0j)] | |
""" | |
B = 0.5 * (ctx.expm(A*ctx.j) + ctx.expm(A*(-ctx.j))) | |
if not sum(A.apply(ctx.im).apply(abs)): | |
B = B.apply(ctx.re) | |
return B | |
def sinm(ctx, A): | |
r""" | |
Gives the sine of a square matrix `A`, defined in analogy | |
with the matrix exponential. | |
Examples:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = True | |
>>> X = eye(3) | |
>>> sinm(X) | |
[0.841470984807897 0.0 0.0] | |
[ 0.0 0.841470984807897 0.0] | |
[ 0.0 0.0 0.841470984807897] | |
>>> X = hilbert(3) | |
>>> sinm(X) | |
[0.711608512150994 0.339783913247439 0.220742837314741] | |
[0.339783913247439 0.244113865695532 0.187231271174372] | |
[0.220742837314741 0.187231271174372 0.155816730769635] | |
>>> X = matrix([[1+j,-2],[0,-j]]) | |
>>> sinm(X) | |
[(1.29845758141598 + 0.634963914784736j) (-1.96751511930922 + 0.314700021761367j)] | |
[ 0.0 (0.0 - 1.1752011936438j)] | |
""" | |
B = (-0.5j) * (ctx.expm(A*ctx.j) - ctx.expm(A*(-ctx.j))) | |
if not sum(A.apply(ctx.im).apply(abs)): | |
B = B.apply(ctx.re) | |
return B | |
def _sqrtm_rot(ctx, A, _may_rotate): | |
# If the iteration fails to converge, cheat by performing | |
# a rotation by a complex number | |
u = ctx.j**0.3 | |
return ctx.sqrtm(u*A, _may_rotate) / ctx.sqrt(u) | |
def sqrtm(ctx, A, _may_rotate=2): | |
r""" | |
Computes a square root of the square matrix `A`, i.e. returns | |
a matrix `B = A^{1/2}` such that `B^2 = A`. The square root | |
of a matrix, if it exists, is not unique. | |
**Examples** | |
Square roots of some simple matrices:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = True | |
>>> sqrtm([[1,0], [0,1]]) | |
[1.0 0.0] | |
[0.0 1.0] | |
>>> sqrtm([[0,0], [0,0]]) | |
[0.0 0.0] | |
[0.0 0.0] | |
>>> sqrtm([[2,0],[0,1]]) | |
[1.4142135623731 0.0] | |
[ 0.0 1.0] | |
>>> sqrtm([[1,1],[1,0]]) | |
[ (0.920442065259926 - 0.21728689675164j) (0.568864481005783 + 0.351577584254143j)] | |
[(0.568864481005783 + 0.351577584254143j) (0.351577584254143 - 0.568864481005783j)] | |
>>> sqrtm([[1,0],[0,1]]) | |
[1.0 0.0] | |
[0.0 1.0] | |
>>> sqrtm([[-1,0],[0,1]]) | |
[(0.0 - 1.0j) 0.0] | |
[ 0.0 (1.0 + 0.0j)] | |
>>> sqrtm([[j,0],[0,j]]) | |
[(0.707106781186547 + 0.707106781186547j) 0.0] | |
[ 0.0 (0.707106781186547 + 0.707106781186547j)] | |
A square root of a rotation matrix, giving the corresponding | |
half-angle rotation matrix:: | |
>>> t1 = 0.75 | |
>>> t2 = t1 * 0.5 | |
>>> A1 = matrix([[cos(t1), -sin(t1)], [sin(t1), cos(t1)]]) | |
>>> A2 = matrix([[cos(t2), -sin(t2)], [sin(t2), cos(t2)]]) | |
>>> sqrtm(A1) | |
[0.930507621912314 -0.366272529086048] | |
[0.366272529086048 0.930507621912314] | |
>>> A2 | |
[0.930507621912314 -0.366272529086048] | |
[0.366272529086048 0.930507621912314] | |
The identity `(A^2)^{1/2} = A` does not necessarily hold:: | |
>>> A = matrix([[4,1,4],[7,8,9],[10,2,11]]) | |
>>> sqrtm(A**2) | |
[ 4.0 1.0 4.0] | |
[ 7.0 8.0 9.0] | |
[10.0 2.0 11.0] | |
>>> sqrtm(A)**2 | |
[ 4.0 1.0 4.0] | |
[ 7.0 8.0 9.0] | |
[10.0 2.0 11.0] | |
>>> A = matrix([[-4,1,4],[7,-8,9],[10,2,11]]) | |
>>> sqrtm(A**2) | |
[ 7.43715112194995 -0.324127569985474 1.8481718827526] | |
[-0.251549715716942 9.32699765900402 2.48221180985147] | |
[ 4.11609388833616 0.775751877098258 13.017955697342] | |
>>> chop(sqrtm(A)**2) | |
[-4.0 1.0 4.0] | |
[ 7.0 -8.0 9.0] | |
[10.0 2.0 11.0] | |
For some matrices, a square root does not exist:: | |
>>> sqrtm([[0,1], [0,0]]) | |
Traceback (most recent call last): | |
... | |
ZeroDivisionError: matrix is numerically singular | |
Two examples from the documentation for Matlab's ``sqrtm``:: | |
>>> mp.dps = 15; mp.pretty = True | |
>>> sqrtm([[7,10],[15,22]]) | |
[1.56669890360128 1.74077655955698] | |
[2.61116483933547 4.17786374293675] | |
>>> | |
>>> X = matrix(\ | |
... [[5,-4,1,0,0], | |
... [-4,6,-4,1,0], | |
... [1,-4,6,-4,1], | |
... [0,1,-4,6,-4], | |
... [0,0,1,-4,5]]) | |
>>> Y = matrix(\ | |
... [[2,-1,-0,-0,-0], | |
... [-1,2,-1,0,-0], | |
... [0,-1,2,-1,0], | |
... [-0,0,-1,2,-1], | |
... [-0,-0,-0,-1,2]]) | |
>>> mnorm(sqrtm(X) - Y) | |
4.53155328326114e-19 | |
""" | |
A = ctx.matrix(A) | |
# Trivial | |
if A*0 == A: | |
return A | |
prec = ctx.prec | |
if _may_rotate: | |
d = ctx.det(A) | |
if abs(ctx.im(d)) < 16*ctx.eps and ctx.re(d) < 0: | |
return ctx._sqrtm_rot(A, _may_rotate-1) | |
try: | |
ctx.prec += 10 | |
tol = ctx.eps * 128 | |
Y = A | |
Z = I = A**0 | |
k = 0 | |
# Denman-Beavers iteration | |
while 1: | |
Yprev = Y | |
try: | |
Y, Z = 0.5*(Y+ctx.inverse(Z)), 0.5*(Z+ctx.inverse(Y)) | |
except ZeroDivisionError: | |
if _may_rotate: | |
Y = ctx._sqrtm_rot(A, _may_rotate-1) | |
break | |
else: | |
raise | |
mag1 = ctx.mnorm(Y-Yprev, 'inf') | |
mag2 = ctx.mnorm(Y, 'inf') | |
if mag1 <= mag2*tol: | |
break | |
if _may_rotate and k > 6 and not mag1 < mag2 * 0.001: | |
return ctx._sqrtm_rot(A, _may_rotate-1) | |
k += 1 | |
if k > ctx.prec: | |
raise ctx.NoConvergence | |
finally: | |
ctx.prec = prec | |
Y *= 1 | |
return Y | |
def logm(ctx, A): | |
r""" | |
Computes a logarithm of the square matrix `A`, i.e. returns | |
a matrix `B = \log(A)` such that `\exp(B) = A`. The logarithm | |
of a matrix, if it exists, is not unique. | |
**Examples** | |
Logarithms of some simple matrices:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = True | |
>>> X = eye(3) | |
>>> logm(X) | |
[0.0 0.0 0.0] | |
[0.0 0.0 0.0] | |
[0.0 0.0 0.0] | |
>>> logm(2*X) | |
[0.693147180559945 0.0 0.0] | |
[ 0.0 0.693147180559945 0.0] | |
[ 0.0 0.0 0.693147180559945] | |
>>> logm(expm(X)) | |
[1.0 0.0 0.0] | |
[0.0 1.0 0.0] | |
[0.0 0.0 1.0] | |
A logarithm of a complex matrix:: | |
>>> X = matrix([[2+j, 1, 3], [1-j, 1-2*j, 1], [-4, -5, j]]) | |
>>> B = logm(X) | |
>>> nprint(B) | |
[ (0.808757 + 0.107759j) (2.20752 + 0.202762j) (1.07376 - 0.773874j)] | |
[ (0.905709 - 0.107795j) (0.0287395 - 0.824993j) (0.111619 + 0.514272j)] | |
[(-0.930151 + 0.399512j) (-2.06266 - 0.674397j) (0.791552 + 0.519839j)] | |
>>> chop(expm(B)) | |
[(2.0 + 1.0j) 1.0 3.0] | |
[(1.0 - 1.0j) (1.0 - 2.0j) 1.0] | |
[ -4.0 -5.0 (0.0 + 1.0j)] | |
A matrix `X` close to the identity matrix, for which | |
`\log(\exp(X)) = \exp(\log(X)) = X` holds:: | |
>>> X = eye(3) + hilbert(3)/4 | |
>>> X | |
[ 1.25 0.125 0.0833333333333333] | |
[ 0.125 1.08333333333333 0.0625] | |
[0.0833333333333333 0.0625 1.05] | |
>>> logm(expm(X)) | |
[ 1.25 0.125 0.0833333333333333] | |
[ 0.125 1.08333333333333 0.0625] | |
[0.0833333333333333 0.0625 1.05] | |
>>> expm(logm(X)) | |
[ 1.25 0.125 0.0833333333333333] | |
[ 0.125 1.08333333333333 0.0625] | |
[0.0833333333333333 0.0625 1.05] | |
A logarithm of a rotation matrix, giving back the angle of | |
the rotation:: | |
>>> t = 3.7 | |
>>> A = matrix([[cos(t),sin(t)],[-sin(t),cos(t)]]) | |
>>> chop(logm(A)) | |
[ 0.0 -2.58318530717959] | |
[2.58318530717959 0.0] | |
>>> (2*pi-t) | |
2.58318530717959 | |
For some matrices, a logarithm does not exist:: | |
>>> logm([[1,0], [0,0]]) | |
Traceback (most recent call last): | |
... | |
ZeroDivisionError: matrix is numerically singular | |
Logarithm of a matrix with large entries:: | |
>>> logm(hilbert(3) * 10**20).apply(re) | |
[ 45.5597513593433 1.27721006042799 0.317662687717978] | |
[ 1.27721006042799 42.5222778973542 2.24003708791604] | |
[0.317662687717978 2.24003708791604 42.395212822267] | |
""" | |
A = ctx.matrix(A) | |
prec = ctx.prec | |
try: | |
ctx.prec += 10 | |
tol = ctx.eps * 128 | |
I = A**0 | |
B = A | |
n = 0 | |
while 1: | |
B = ctx.sqrtm(B) | |
n += 1 | |
if ctx.mnorm(B-I, 'inf') < 0.125: | |
break | |
T = X = B-I | |
L = X*0 | |
k = 1 | |
while 1: | |
if k & 1: | |
L += T / k | |
else: | |
L -= T / k | |
T *= X | |
if ctx.mnorm(T, 'inf') < tol: | |
break | |
k += 1 | |
if k > ctx.prec: | |
raise ctx.NoConvergence | |
finally: | |
ctx.prec = prec | |
L *= 2**n | |
return L | |
def powm(ctx, A, r): | |
r""" | |
Computes `A^r = \exp(A \log r)` for a matrix `A` and complex | |
number `r`. | |
**Examples** | |
Powers and inverse powers of a matrix:: | |
>>> from mpmath import * | |
>>> mp.dps = 15; mp.pretty = True | |
>>> A = matrix([[4,1,4],[7,8,9],[10,2,11]]) | |
>>> powm(A, 2) | |
[ 63.0 20.0 69.0] | |
[174.0 89.0 199.0] | |
[164.0 48.0 179.0] | |
>>> chop(powm(powm(A, 4), 1/4.)) | |
[ 4.0 1.0 4.0] | |
[ 7.0 8.0 9.0] | |
[10.0 2.0 11.0] | |
>>> powm(extraprec(20)(powm)(A, -4), -1/4.) | |
[ 4.0 1.0 4.0] | |
[ 7.0 8.0 9.0] | |
[10.0 2.0 11.0] | |
>>> chop(powm(powm(A, 1+0.5j), 1/(1+0.5j))) | |
[ 4.0 1.0 4.0] | |
[ 7.0 8.0 9.0] | |
[10.0 2.0 11.0] | |
>>> powm(extraprec(5)(powm)(A, -1.5), -1/(1.5)) | |
[ 4.0 1.0 4.0] | |
[ 7.0 8.0 9.0] | |
[10.0 2.0 11.0] | |
A Fibonacci-generating matrix:: | |
>>> powm([[1,1],[1,0]], 10) | |
[89.0 55.0] | |
[55.0 34.0] | |
>>> fib(10) | |
55.0 | |
>>> powm([[1,1],[1,0]], 6.5) | |
[(16.5166626964253 - 0.0121089837381789j) (10.2078589271083 + 0.0195927472575932j)] | |
[(10.2078589271083 + 0.0195927472575932j) (6.30880376931698 - 0.0317017309957721j)] | |
>>> (phi**6.5 - (1-phi)**6.5)/sqrt(5) | |
(10.2078589271083 - 0.0195927472575932j) | |
>>> powm([[1,1],[1,0]], 6.2) | |
[ (14.3076953002666 - 0.008222855781077j) (8.81733464837593 + 0.0133048601383712j)] | |
[(8.81733464837593 + 0.0133048601383712j) (5.49036065189071 - 0.0215277159194482j)] | |
>>> (phi**6.2 - (1-phi)**6.2)/sqrt(5) | |
(8.81733464837593 - 0.0133048601383712j) | |
""" | |
A = ctx.matrix(A) | |
r = ctx.convert(r) | |
prec = ctx.prec | |
try: | |
ctx.prec += 10 | |
if ctx.isint(r): | |
v = A ** int(r) | |
elif ctx.isint(r*2): | |
y = int(r*2) | |
v = ctx.sqrtm(A) ** y | |
else: | |
v = ctx.expm(r*ctx.logm(A)) | |
finally: | |
ctx.prec = prec | |
v *= 1 | |
return v | |