Spaces:
Sleeping
Sleeping
#!/usr/bin/python | |
# -*- coding: utf-8 -*- | |
################################################################################################## | |
# module for the eigenvalue problem | |
# Copyright 2013 Timo Hartmann (thartmann15 at gmail.com) | |
# | |
# todo: | |
# - implement balancing | |
# - agressive early deflation | |
# | |
################################################################################################## | |
""" | |
The eigenvalue problem | |
---------------------- | |
This file contains routines for the eigenvalue problem. | |
high level routines: | |
hessenberg : reduction of a real or complex square matrix to upper Hessenberg form | |
schur : reduction of a real or complex square matrix to upper Schur form | |
eig : eigenvalues and eigenvectors of a real or complex square matrix | |
low level routines: | |
hessenberg_reduce_0 : reduction of a real or complex square matrix to upper Hessenberg form | |
hessenberg_reduce_1 : auxiliary routine to hessenberg_reduce_0 | |
qr_step : a single implicitly shifted QR step for an upper Hessenberg matrix | |
hessenberg_qr : Schur decomposition of an upper Hessenberg matrix | |
eig_tr_r : right eigenvectors of an upper triangular matrix | |
eig_tr_l : left eigenvectors of an upper triangular matrix | |
""" | |
from ..libmp.backend import xrange | |
class Eigen(object): | |
pass | |
def defun(f): | |
setattr(Eigen, f.__name__, f) | |
return f | |
def hessenberg_reduce_0(ctx, A, T): | |
""" | |
This routine computes the (upper) Hessenberg decomposition of a square matrix A. | |
Given A, an unitary matrix Q is calculated such that | |
Q' A Q = H and Q' Q = Q Q' = 1 | |
where H is an upper Hessenberg matrix, meaning that it only contains zeros | |
below the first subdiagonal. Here ' denotes the hermitian transpose (i.e. | |
transposition and conjugation). | |
parameters: | |
A (input/output) On input, A contains the square matrix A of | |
dimension (n,n). On output, A contains a compressed representation | |
of Q and H. | |
T (output) An array of length n containing the first elements of | |
the Householder reflectors. | |
""" | |
# internally we work with householder reflections from the right. | |
# let u be a row vector (i.e. u[i]=A[i,:i]). then | |
# Q is build up by reflectors of the type (1-v'v) where v is a suitable | |
# modification of u. these reflectors are applyed to A from the right. | |
# because we work with reflectors from the right we have to start with | |
# the bottom row of A and work then upwards (this corresponds to | |
# some kind of RQ decomposition). | |
# the first part of the vectors v (i.e. A[i,:(i-1)]) are stored as row vectors | |
# in the lower left part of A (excluding the diagonal and subdiagonal). | |
# the last entry of v is stored in T. | |
# the upper right part of A (including diagonal and subdiagonal) becomes H. | |
n = A.rows | |
if n <= 2: return | |
for i in xrange(n-1, 1, -1): | |
# scale the vector | |
scale = 0 | |
for k in xrange(0, i): | |
scale += abs(ctx.re(A[i,k])) + abs(ctx.im(A[i,k])) | |
scale_inv = 0 | |
if scale != 0: | |
scale_inv = 1 / scale | |
if scale == 0 or ctx.isinf(scale_inv): | |
# sadly there are floating point numbers not equal to zero whose reciprocal is infinity | |
T[i] = 0 | |
A[i,i-1] = 0 | |
continue | |
# calculate parameters for housholder transformation | |
H = 0 | |
for k in xrange(0, i): | |
A[i,k] *= scale_inv | |
rr = ctx.re(A[i,k]) | |
ii = ctx.im(A[i,k]) | |
H += rr * rr + ii * ii | |
F = A[i,i-1] | |
f = abs(F) | |
G = ctx.sqrt(H) | |
A[i,i-1] = - G * scale | |
if f == 0: | |
T[i] = G | |
else: | |
ff = F / f | |
T[i] = F + G * ff | |
A[i,i-1] *= ff | |
H += G * f | |
H = 1 / ctx.sqrt(H) | |
T[i] *= H | |
for k in xrange(0, i - 1): | |
A[i,k] *= H | |
for j in xrange(0, i): | |
# apply housholder transformation (from right) | |
G = ctx.conj(T[i]) * A[j,i-1] | |
for k in xrange(0, i-1): | |
G += ctx.conj(A[i,k]) * A[j,k] | |
A[j,i-1] -= G * T[i] | |
for k in xrange(0, i-1): | |
A[j,k] -= G * A[i,k] | |
for j in xrange(0, n): | |
# apply housholder transformation (from left) | |
G = T[i] * A[i-1,j] | |
for k in xrange(0, i-1): | |
G += A[i,k] * A[k,j] | |
A[i-1,j] -= G * ctx.conj(T[i]) | |
for k in xrange(0, i-1): | |
A[k,j] -= G * ctx.conj(A[i,k]) | |
def hessenberg_reduce_1(ctx, A, T): | |
""" | |
This routine forms the unitary matrix Q described in hessenberg_reduce_0. | |
parameters: | |
A (input/output) On input, A is the same matrix as delivered by | |
hessenberg_reduce_0. On output, A is set to Q. | |
T (input) On input, T is the same array as delivered by hessenberg_reduce_0. | |
""" | |
n = A.rows | |
if n == 1: | |
A[0,0] = 1 | |
return | |
A[0,0] = A[1,1] = 1 | |
A[0,1] = A[1,0] = 0 | |
for i in xrange(2, n): | |
if T[i] != 0: | |
for j in xrange(0, i): | |
G = T[i] * A[i-1,j] | |
for k in xrange(0, i-1): | |
G += A[i,k] * A[k,j] | |
A[i-1,j] -= G * ctx.conj(T[i]) | |
for k in xrange(0, i-1): | |
A[k,j] -= G * ctx.conj(A[i,k]) | |
A[i,i] = 1 | |
for j in xrange(0, i): | |
A[j,i] = A[i,j] = 0 | |
def hessenberg(ctx, A, overwrite_a = False): | |
""" | |
This routine computes the Hessenberg decomposition of a square matrix A. | |
Given A, an unitary matrix Q is determined such that | |
Q' A Q = H and Q' Q = Q Q' = 1 | |
where H is an upper right Hessenberg matrix. Here ' denotes the hermitian | |
transpose (i.e. transposition and conjugation). | |
input: | |
A : a real or complex square matrix | |
overwrite_a : if true, allows modification of A which may improve | |
performance. if false, A is not modified. | |
output: | |
Q : an unitary matrix | |
H : an upper right Hessenberg matrix | |
example: | |
>>> from mpmath import mp | |
>>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]]) | |
>>> Q, H = mp.hessenberg(A) | |
>>> mp.nprint(H, 3) # doctest:+SKIP | |
[ 3.15 2.23 4.44] | |
[-0.769 4.85 3.05] | |
[ 0.0 3.61 7.0] | |
>>> print(mp.chop(A - Q * H * Q.transpose_conj())) | |
[0.0 0.0 0.0] | |
[0.0 0.0 0.0] | |
[0.0 0.0 0.0] | |
return value: (Q, H) | |
""" | |
n = A.rows | |
if n == 1: | |
return (ctx.matrix([[1]]), A) | |
if not overwrite_a: | |
A = A.copy() | |
T = ctx.matrix(n, 1) | |
hessenberg_reduce_0(ctx, A, T) | |
Q = A.copy() | |
hessenberg_reduce_1(ctx, Q, T) | |
for x in xrange(n): | |
for y in xrange(x+2, n): | |
A[y,x] = 0 | |
return Q, A | |
########################################################################### | |
def qr_step(ctx, n0, n1, A, Q, shift): | |
""" | |
This subroutine executes a single implicitly shifted QR step applied to an | |
upper Hessenberg matrix A. Given A and shift as input, first an QR | |
decomposition is calculated: | |
Q R = A - shift * 1 . | |
The output is then following matrix: | |
R Q + shift * 1 | |
parameters: | |
n0, n1 (input) Two integers which specify the submatrix A[n0:n1,n0:n1] | |
on which this subroutine operators. The subdiagonal elements | |
to the left and below this submatrix must be deflated (i.e. zero). | |
following restriction is imposed: n1>=n0+2 | |
A (input/output) On input, A is an upper Hessenberg matrix. | |
On output, A is replaced by "R Q + shift * 1" | |
Q (input/output) The parameter Q is multiplied by the unitary matrix | |
Q arising from the QR decomposition. Q can also be false, in which | |
case the unitary matrix Q is not computated. | |
shift (input) a complex number specifying the shift. idealy close to an | |
eigenvalue of the bottemmost part of the submatrix A[n0:n1,n0:n1]. | |
references: | |
Stoer, Bulirsch - Introduction to Numerical Analysis. | |
Kresser : Numerical Methods for General and Structured Eigenvalue Problems | |
""" | |
# implicitly shifted and bulge chasing is explained at p.398/399 in "Stoer, Bulirsch - Introduction to Numerical Analysis" | |
# for bulge chasing see also "Watkins - The Matrix Eigenvalue Problem" sec.4.5,p.173 | |
# the Givens rotation we used is determined as follows: let c,s be two complex | |
# numbers. then we have following relation: | |
# | |
# v = sqrt(|c|^2 + |s|^2) | |
# | |
# 1/v [ c~ s~] [c] = [v] | |
# [-s c ] [s] [0] | |
# | |
# the matrix on the left is our Givens rotation. | |
n = A.rows | |
# first step | |
# calculate givens rotation | |
c = A[n0 ,n0] - shift | |
s = A[n0+1,n0] | |
v = ctx.hypot(ctx.hypot(ctx.re(c), ctx.im(c)), ctx.hypot(ctx.re(s), ctx.im(s))) | |
if v == 0: | |
v = 1 | |
c = 1 | |
s = 0 | |
else: | |
c /= v | |
s /= v | |
cc = ctx.conj(c) | |
cs = ctx.conj(s) | |
for k in xrange(n0, n): | |
# apply givens rotation from the left | |
x = A[n0 ,k] | |
y = A[n0+1,k] | |
A[n0 ,k] = cc * x + cs * y | |
A[n0+1,k] = c * y - s * x | |
for k in xrange(min(n1, n0+3)): | |
# apply givens rotation from the right | |
x = A[k,n0 ] | |
y = A[k,n0+1] | |
A[k,n0 ] = c * x + s * y | |
A[k,n0+1] = cc * y - cs * x | |
if not isinstance(Q, bool): | |
for k in xrange(n): | |
# eigenvectors | |
x = Q[k,n0 ] | |
y = Q[k,n0+1] | |
Q[k,n0 ] = c * x + s * y | |
Q[k,n0+1] = cc * y - cs * x | |
# chase the bulge | |
for j in xrange(n0, n1 - 2): | |
# calculate givens rotation | |
c = A[j+1,j] | |
s = A[j+2,j] | |
v = ctx.hypot(ctx.hypot(ctx.re(c), ctx.im(c)), ctx.hypot(ctx.re(s), ctx.im(s))) | |
if v == 0: | |
A[j+1,j] = 0 | |
v = 1 | |
c = 1 | |
s = 0 | |
else: | |
A[j+1,j] = v | |
c /= v | |
s /= v | |
A[j+2,j] = 0 | |
cc = ctx.conj(c) | |
cs = ctx.conj(s) | |
for k in xrange(j+1, n): | |
# apply givens rotation from the left | |
x = A[j+1,k] | |
y = A[j+2,k] | |
A[j+1,k] = cc * x + cs * y | |
A[j+2,k] = c * y - s * x | |
for k in xrange(0, min(n1, j+4)): | |
# apply givens rotation from the right | |
x = A[k,j+1] | |
y = A[k,j+2] | |
A[k,j+1] = c * x + s * y | |
A[k,j+2] = cc * y - cs * x | |
if not isinstance(Q, bool): | |
for k in xrange(0, n): | |
# eigenvectors | |
x = Q[k,j+1] | |
y = Q[k,j+2] | |
Q[k,j+1] = c * x + s * y | |
Q[k,j+2] = cc * y - cs * x | |
def hessenberg_qr(ctx, A, Q): | |
""" | |
This routine computes the Schur decomposition of an upper Hessenberg matrix A. | |
Given A, an unitary matrix Q is determined such that | |
Q' A Q = R and Q' Q = Q Q' = 1 | |
where R is an upper right triangular matrix. Here ' denotes the hermitian | |
transpose (i.e. transposition and conjugation). | |
parameters: | |
A (input/output) On input, A contains an upper Hessenberg matrix. | |
On output, A is replace by the upper right triangluar matrix R. | |
Q (input/output) The parameter Q is multiplied by the unitary | |
matrix Q arising from the Schur decomposition. Q can also be | |
false, in which case the unitary matrix Q is not computated. | |
""" | |
n = A.rows | |
norm = 0 | |
for x in xrange(n): | |
for y in xrange(min(x+2, n)): | |
norm += ctx.re(A[y,x]) ** 2 + ctx.im(A[y,x]) ** 2 | |
norm = ctx.sqrt(norm) / n | |
if norm == 0: | |
return | |
n0 = 0 | |
n1 = n | |
eps = ctx.eps / (100 * n) | |
maxits = ctx.dps * 4 | |
its = totalits = 0 | |
while 1: | |
# kressner p.32 algo 3 | |
# the active submatrix is A[n0:n1,n0:n1] | |
k = n0 | |
while k + 1 < n1: | |
s = abs(ctx.re(A[k,k])) + abs(ctx.im(A[k,k])) + abs(ctx.re(A[k+1,k+1])) + abs(ctx.im(A[k+1,k+1])) | |
if s < eps * norm: | |
s = norm | |
if abs(A[k+1,k]) < eps * s: | |
break | |
k += 1 | |
if k + 1 < n1: | |
# deflation found at position (k+1, k) | |
A[k+1,k] = 0 | |
n0 = k + 1 | |
its = 0 | |
if n0 + 1 >= n1: | |
# block of size at most two has converged | |
n0 = 0 | |
n1 = k + 1 | |
if n1 < 2: | |
# QR algorithm has converged | |
return | |
else: | |
if (its % 30) == 10: | |
# exceptional shift | |
shift = A[n1-1,n1-2] | |
elif (its % 30) == 20: | |
# exceptional shift | |
shift = abs(A[n1-1,n1-2]) | |
elif (its % 30) == 29: | |
# exceptional shift | |
shift = norm | |
else: | |
# A = [ a b ] det(x-A)=x*x-x*tr(A)+det(A) | |
# [ c d ] | |
# | |
# eigenvalues bad: (tr(A)+sqrt((tr(A))**2-4*det(A)))/2 | |
# bad because of cancellation if |c| is small and |a-d| is small, too. | |
# | |
# eigenvalues good: (a+d+sqrt((a-d)**2+4*b*c))/2 | |
t = A[n1-2,n1-2] + A[n1-1,n1-1] | |
s = (A[n1-1,n1-1] - A[n1-2,n1-2]) ** 2 + 4 * A[n1-1,n1-2] * A[n1-2,n1-1] | |
if ctx.re(s) > 0: | |
s = ctx.sqrt(s) | |
else: | |
s = ctx.sqrt(-s) * 1j | |
a = (t + s) / 2 | |
b = (t - s) / 2 | |
if abs(A[n1-1,n1-1] - a) > abs(A[n1-1,n1-1] - b): | |
shift = b | |
else: | |
shift = a | |
its += 1 | |
totalits += 1 | |
qr_step(ctx, n0, n1, A, Q, shift) | |
if its > maxits: | |
raise RuntimeError("qr: failed to converge after %d steps" % its) | |
def schur(ctx, A, overwrite_a = False): | |
""" | |
This routine computes the Schur decomposition of a square matrix A. | |
Given A, an unitary matrix Q is determined such that | |
Q' A Q = R and Q' Q = Q Q' = 1 | |
where R is an upper right triangular matrix. Here ' denotes the | |
hermitian transpose (i.e. transposition and conjugation). | |
input: | |
A : a real or complex square matrix | |
overwrite_a : if true, allows modification of A which may improve | |
performance. if false, A is not modified. | |
output: | |
Q : an unitary matrix | |
R : an upper right triangular matrix | |
return value: (Q, R) | |
example: | |
>>> from mpmath import mp | |
>>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]]) | |
>>> Q, R = mp.schur(A) | |
>>> mp.nprint(R, 3) # doctest:+SKIP | |
[2.0 0.417 -2.53] | |
[0.0 4.0 -4.74] | |
[0.0 0.0 9.0] | |
>>> print(mp.chop(A - Q * R * Q.transpose_conj())) | |
[0.0 0.0 0.0] | |
[0.0 0.0 0.0] | |
[0.0 0.0 0.0] | |
warning: The Schur decomposition is not unique. | |
""" | |
n = A.rows | |
if n == 1: | |
return (ctx.matrix([[1]]), A) | |
if not overwrite_a: | |
A = A.copy() | |
T = ctx.matrix(n, 1) | |
hessenberg_reduce_0(ctx, A, T) | |
Q = A.copy() | |
hessenberg_reduce_1(ctx, Q, T) | |
for x in xrange(n): | |
for y in xrange(x + 2, n): | |
A[y,x] = 0 | |
hessenberg_qr(ctx, A, Q) | |
return Q, A | |
def eig_tr_r(ctx, A): | |
""" | |
This routine calculates the right eigenvectors of an upper right triangular matrix. | |
input: | |
A an upper right triangular matrix | |
output: | |
ER a matrix whose columns form the right eigenvectors of A | |
return value: ER | |
""" | |
# this subroutine is inspired by the lapack routines ctrevc.f,clatrs.f | |
n = A.rows | |
ER = ctx.eye(n) | |
eps = ctx.eps | |
unfl = ctx.ldexp(ctx.one, -ctx.prec * 30) | |
# since mpmath effectively has no limits on the exponent, we simply scale doubles up | |
# original double has prec*20 | |
smlnum = unfl * (n / eps) | |
simin = 1 / ctx.sqrt(eps) | |
rmax = 1 | |
for i in xrange(1, n): | |
s = A[i,i] | |
smin = max(eps * abs(s), smlnum) | |
for j in xrange(i - 1, -1, -1): | |
r = 0 | |
for k in xrange(j + 1, i + 1): | |
r += A[j,k] * ER[k,i] | |
t = A[j,j] - s | |
if abs(t) < smin: | |
t = smin | |
r = -r / t | |
ER[j,i] = r | |
rmax = max(rmax, abs(r)) | |
if rmax > simin: | |
for k in xrange(j, i+1): | |
ER[k,i] /= rmax | |
rmax = 1 | |
if rmax != 1: | |
for k in xrange(0, i + 1): | |
ER[k,i] /= rmax | |
return ER | |
def eig_tr_l(ctx, A): | |
""" | |
This routine calculates the left eigenvectors of an upper right triangular matrix. | |
input: | |
A an upper right triangular matrix | |
output: | |
EL a matrix whose rows form the left eigenvectors of A | |
return value: EL | |
""" | |
n = A.rows | |
EL = ctx.eye(n) | |
eps = ctx.eps | |
unfl = ctx.ldexp(ctx.one, -ctx.prec * 30) | |
# since mpmath effectively has no limits on the exponent, we simply scale doubles up | |
# original double has prec*20 | |
smlnum = unfl * (n / eps) | |
simin = 1 / ctx.sqrt(eps) | |
rmax = 1 | |
for i in xrange(0, n - 1): | |
s = A[i,i] | |
smin = max(eps * abs(s), smlnum) | |
for j in xrange(i + 1, n): | |
r = 0 | |
for k in xrange(i, j): | |
r += EL[i,k] * A[k,j] | |
t = A[j,j] - s | |
if abs(t) < smin: | |
t = smin | |
r = -r / t | |
EL[i,j] = r | |
rmax = max(rmax, abs(r)) | |
if rmax > simin: | |
for k in xrange(i, j + 1): | |
EL[i,k] /= rmax | |
rmax = 1 | |
if rmax != 1: | |
for k in xrange(i, n): | |
EL[i,k] /= rmax | |
return EL | |
def eig(ctx, A, left = False, right = True, overwrite_a = False): | |
""" | |
This routine computes the eigenvalues and optionally the left and right | |
eigenvectors of a square matrix A. Given A, a vector E and matrices ER | |
and EL are calculated such that | |
A ER[:,i] = E[i] ER[:,i] | |
EL[i,:] A = EL[i,:] E[i] | |
E contains the eigenvalues of A. The columns of ER contain the right eigenvectors | |
of A whereas the rows of EL contain the left eigenvectors. | |
input: | |
A : a real or complex square matrix of shape (n, n) | |
left : if true, the left eigenvectors are calculated. | |
right : if true, the right eigenvectors are calculated. | |
overwrite_a : if true, allows modification of A which may improve | |
performance. if false, A is not modified. | |
output: | |
E : a list of length n containing the eigenvalues of A. | |
ER : a matrix whose columns contain the right eigenvectors of A. | |
EL : a matrix whose rows contain the left eigenvectors of A. | |
return values: | |
E if left and right are both false. | |
(E, ER) if right is true and left is false. | |
(E, EL) if left is true and right is false. | |
(E, EL, ER) if left and right are true. | |
examples: | |
>>> from mpmath import mp | |
>>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]]) | |
>>> E, ER = mp.eig(A) | |
>>> print(mp.chop(A * ER[:,0] - E[0] * ER[:,0])) | |
[0.0] | |
[0.0] | |
[0.0] | |
>>> E, EL, ER = mp.eig(A,left = True, right = True) | |
>>> E, EL, ER = mp.eig_sort(E, EL, ER) | |
>>> mp.nprint(E) | |
[2.0, 4.0, 9.0] | |
>>> print(mp.chop(A * ER[:,0] - E[0] * ER[:,0])) | |
[0.0] | |
[0.0] | |
[0.0] | |
>>> print(mp.chop( EL[0,:] * A - EL[0,:] * E[0])) | |
[0.0 0.0 0.0] | |
warning: | |
- If there are multiple eigenvalues, the eigenvectors do not necessarily | |
span the whole vectorspace, i.e. ER and EL may have not full rank. | |
Furthermore in that case the eigenvectors are numerical ill-conditioned. | |
- In the general case the eigenvalues have no natural order. | |
see also: | |
- eigh (or eigsy, eighe) for the symmetric eigenvalue problem. | |
- eig_sort for sorting of eigenvalues and eigenvectors | |
""" | |
n = A.rows | |
if n == 1: | |
if left and (not right): | |
return ([A[0]], ctx.matrix([[1]])) | |
if right and (not left): | |
return ([A[0]], ctx.matrix([[1]])) | |
return ([A[0]], ctx.matrix([[1]]), ctx.matrix([[1]])) | |
if not overwrite_a: | |
A = A.copy() | |
T = ctx.zeros(n, 1) | |
hessenberg_reduce_0(ctx, A, T) | |
if left or right: | |
Q = A.copy() | |
hessenberg_reduce_1(ctx, Q, T) | |
else: | |
Q = False | |
for x in xrange(n): | |
for y in xrange(x + 2, n): | |
A[y,x] = 0 | |
hessenberg_qr(ctx, A, Q) | |
E = [0 for i in xrange(n)] | |
for i in xrange(n): | |
E[i] = A[i,i] | |
if not (left or right): | |
return E | |
if left: | |
EL = eig_tr_l(ctx, A) | |
EL = EL * Q.transpose_conj() | |
if right: | |
ER = eig_tr_r(ctx, A) | |
ER = Q * ER | |
if left and (not right): | |
return (E, EL) | |
if right and (not left): | |
return (E, ER) | |
return (E, EL, ER) | |
def eig_sort(ctx, E, EL = False, ER = False, f = "real"): | |
""" | |
This routine sorts the eigenvalues and eigenvectors delivered by ``eig``. | |
parameters: | |
E : the eigenvalues as delivered by eig | |
EL : the left eigenvectors as delivered by eig, or false | |
ER : the right eigenvectors as delivered by eig, or false | |
f : either a string ("real" sort by increasing real part, "imag" sort by | |
increasing imag part, "abs" sort by absolute value) or a function | |
mapping complexs to the reals, i.e. ``f = lambda x: -mp.re(x) `` | |
would sort the eigenvalues by decreasing real part. | |
return values: | |
E if EL and ER are both false. | |
(E, ER) if ER is not false and left is false. | |
(E, EL) if EL is not false and right is false. | |
(E, EL, ER) if EL and ER are not false. | |
example: | |
>>> from mpmath import mp | |
>>> A = mp.matrix([[3, -1, 2], [2, 5, -5], [-2, -3, 7]]) | |
>>> E, EL, ER = mp.eig(A,left = True, right = True) | |
>>> E, EL, ER = mp.eig_sort(E, EL, ER) | |
>>> mp.nprint(E) | |
[2.0, 4.0, 9.0] | |
>>> E, EL, ER = mp.eig_sort(E, EL, ER,f = lambda x: -mp.re(x)) | |
>>> mp.nprint(E) | |
[9.0, 4.0, 2.0] | |
>>> print(mp.chop(A * ER[:,0] - E[0] * ER[:,0])) | |
[0.0] | |
[0.0] | |
[0.0] | |
>>> print(mp.chop( EL[0,:] * A - EL[0,:] * E[0])) | |
[0.0 0.0 0.0] | |
""" | |
if isinstance(f, str): | |
if f == "real": | |
f = ctx.re | |
elif f == "imag": | |
f = ctx.im | |
elif f == "abs": | |
f = abs | |
else: | |
raise RuntimeError("unknown function %s" % f) | |
n = len(E) | |
# Sort eigenvalues (bubble-sort) | |
for i in xrange(n): | |
imax = i | |
s = f(E[i]) # s is the current maximal element | |
for j in xrange(i + 1, n): | |
c = f(E[j]) | |
if c < s: | |
s = c | |
imax = j | |
if imax != i: | |
# swap eigenvalues | |
z = E[i] | |
E[i] = E[imax] | |
E[imax] = z | |
if not isinstance(EL, bool): | |
for j in xrange(n): | |
z = EL[i,j] | |
EL[i,j] = EL[imax,j] | |
EL[imax,j] = z | |
if not isinstance(ER, bool): | |
for j in xrange(n): | |
z = ER[j,i] | |
ER[j,i] = ER[j,imax] | |
ER[j,imax] = z | |
if isinstance(EL, bool) and isinstance(ER, bool): | |
return E | |
if isinstance(EL, bool) and not(isinstance(ER, bool)): | |
return (E, ER) | |
if isinstance(ER, bool) and not(isinstance(EL, bool)): | |
return (E, EL) | |
return (E, EL, ER) | |