Spaces:
Sleeping
Sleeping
import datetime | |
from typing import Dict, NamedTuple, List, Any, Optional, Callable, Set | |
import cloudpickle | |
import enum | |
import time | |
from mlagents_envs.environment import UnityEnvironment | |
from mlagents_envs.exception import ( | |
UnityCommunicationException, | |
UnityTimeOutException, | |
UnityEnvironmentException, | |
UnityCommunicatorStoppedException, | |
) | |
from multiprocessing import Process, Pipe, Queue | |
from multiprocessing.connection import Connection | |
from queue import Empty as EmptyQueueException | |
from mlagents_envs.base_env import BaseEnv, BehaviorName, BehaviorSpec | |
from mlagents_envs import logging_util | |
from mlagents.trainers.env_manager import EnvManager, EnvironmentStep, AllStepResult | |
from mlagents.trainers.settings import TrainerSettings | |
from mlagents_envs.timers import ( | |
TimerNode, | |
timed, | |
hierarchical_timer, | |
reset_timers, | |
get_timer_root, | |
) | |
from mlagents.trainers.settings import ParameterRandomizationSettings, RunOptions | |
from mlagents.trainers.action_info import ActionInfo | |
from mlagents_envs.side_channel.environment_parameters_channel import ( | |
EnvironmentParametersChannel, | |
) | |
from mlagents_envs.side_channel.engine_configuration_channel import ( | |
EngineConfigurationChannel, | |
EngineConfig, | |
) | |
from mlagents_envs.side_channel.stats_side_channel import ( | |
EnvironmentStats, | |
StatsSideChannel, | |
) | |
from mlagents.trainers.training_analytics_side_channel import ( | |
TrainingAnalyticsSideChannel, | |
) | |
from mlagents_envs.side_channel.side_channel import SideChannel | |
logger = logging_util.get_logger(__name__) | |
WORKER_SHUTDOWN_TIMEOUT_S = 10 | |
class EnvironmentCommand(enum.Enum): | |
STEP = 1 | |
BEHAVIOR_SPECS = 2 | |
ENVIRONMENT_PARAMETERS = 3 | |
RESET = 4 | |
CLOSE = 5 | |
ENV_EXITED = 6 | |
CLOSED = 7 | |
TRAINING_STARTED = 8 | |
class EnvironmentRequest(NamedTuple): | |
cmd: EnvironmentCommand | |
payload: Any = None | |
class EnvironmentResponse(NamedTuple): | |
cmd: EnvironmentCommand | |
worker_id: int | |
payload: Any | |
class StepResponse(NamedTuple): | |
all_step_result: AllStepResult | |
timer_root: Optional[TimerNode] | |
environment_stats: EnvironmentStats | |
class UnityEnvWorker: | |
def __init__(self, process: Process, worker_id: int, conn: Connection): | |
self.process = process | |
self.worker_id = worker_id | |
self.conn = conn | |
self.previous_step: EnvironmentStep = EnvironmentStep.empty(worker_id) | |
self.previous_all_action_info: Dict[str, ActionInfo] = {} | |
self.waiting = False | |
self.closed = False | |
def send(self, cmd: EnvironmentCommand, payload: Any = None) -> None: | |
try: | |
req = EnvironmentRequest(cmd, payload) | |
self.conn.send(req) | |
except (BrokenPipeError, EOFError): | |
raise UnityCommunicationException("UnityEnvironment worker: send failed.") | |
def recv(self) -> EnvironmentResponse: | |
try: | |
response: EnvironmentResponse = self.conn.recv() | |
if response.cmd == EnvironmentCommand.ENV_EXITED: | |
env_exception: Exception = response.payload | |
raise env_exception | |
return response | |
except (BrokenPipeError, EOFError): | |
raise UnityCommunicationException("UnityEnvironment worker: recv failed.") | |
def request_close(self): | |
try: | |
self.conn.send(EnvironmentRequest(EnvironmentCommand.CLOSE)) | |
except (BrokenPipeError, EOFError): | |
logger.debug( | |
f"UnityEnvWorker {self.worker_id} got exception trying to close." | |
) | |
pass | |
def worker( | |
parent_conn: Connection, | |
step_queue: Queue, | |
pickled_env_factory: str, | |
worker_id: int, | |
run_options: RunOptions, | |
log_level: int = logging_util.INFO, | |
) -> None: | |
env_factory: Callable[ | |
[int, List[SideChannel]], UnityEnvironment | |
] = cloudpickle.loads(pickled_env_factory) | |
env_parameters = EnvironmentParametersChannel() | |
engine_config = EngineConfig( | |
width=run_options.engine_settings.width, | |
height=run_options.engine_settings.height, | |
quality_level=run_options.engine_settings.quality_level, | |
time_scale=run_options.engine_settings.time_scale, | |
target_frame_rate=run_options.engine_settings.target_frame_rate, | |
capture_frame_rate=run_options.engine_settings.capture_frame_rate, | |
) | |
engine_configuration_channel = EngineConfigurationChannel() | |
engine_configuration_channel.set_configuration(engine_config) | |
stats_channel = StatsSideChannel() | |
training_analytics_channel: Optional[TrainingAnalyticsSideChannel] = None | |
if worker_id == 0: | |
training_analytics_channel = TrainingAnalyticsSideChannel() | |
env: UnityEnvironment = None | |
# Set log level. On some platforms, the logger isn't common with the | |
# main process, so we need to set it again. | |
logging_util.set_log_level(log_level) | |
def _send_response(cmd_name: EnvironmentCommand, payload: Any) -> None: | |
parent_conn.send(EnvironmentResponse(cmd_name, worker_id, payload)) | |
def _generate_all_results() -> AllStepResult: | |
all_step_result: AllStepResult = {} | |
for brain_name in env.behavior_specs: | |
all_step_result[brain_name] = env.get_steps(brain_name) | |
return all_step_result | |
try: | |
side_channels = [env_parameters, engine_configuration_channel, stats_channel] | |
if training_analytics_channel is not None: | |
side_channels.append(training_analytics_channel) | |
env = env_factory(worker_id, side_channels) | |
if ( | |
not env.academy_capabilities | |
or not env.academy_capabilities.trainingAnalytics | |
): | |
# Make sure we don't try to send training analytics if the environment doesn't know how to process | |
# them. This wouldn't be catastrophic, but would result in unknown SideChannel UUIDs being used. | |
training_analytics_channel = None | |
if training_analytics_channel: | |
training_analytics_channel.environment_initialized(run_options) | |
while True: | |
req: EnvironmentRequest = parent_conn.recv() | |
if req.cmd == EnvironmentCommand.STEP: | |
all_action_info = req.payload | |
for brain_name, action_info in all_action_info.items(): | |
if len(action_info.agent_ids) > 0: | |
env.set_actions(brain_name, action_info.env_action) | |
env.step() | |
all_step_result = _generate_all_results() | |
# The timers in this process are independent from all the processes and the "main" process | |
# So after we send back the root timer, we can safely clear them. | |
# Note that we could randomly return timers a fraction of the time if we wanted to reduce | |
# the data transferred. | |
# TODO get gauges from the workers and merge them in the main process too. | |
env_stats = stats_channel.get_and_reset_stats() | |
step_response = StepResponse( | |
all_step_result, get_timer_root(), env_stats | |
) | |
step_queue.put( | |
EnvironmentResponse( | |
EnvironmentCommand.STEP, worker_id, step_response | |
) | |
) | |
reset_timers() | |
elif req.cmd == EnvironmentCommand.BEHAVIOR_SPECS: | |
_send_response(EnvironmentCommand.BEHAVIOR_SPECS, env.behavior_specs) | |
elif req.cmd == EnvironmentCommand.ENVIRONMENT_PARAMETERS: | |
for k, v in req.payload.items(): | |
if isinstance(v, ParameterRandomizationSettings): | |
v.apply(k, env_parameters) | |
elif req.cmd == EnvironmentCommand.TRAINING_STARTED: | |
behavior_name, trainer_config = req.payload | |
if training_analytics_channel: | |
training_analytics_channel.training_started( | |
behavior_name, trainer_config | |
) | |
elif req.cmd == EnvironmentCommand.RESET: | |
env.reset() | |
all_step_result = _generate_all_results() | |
_send_response(EnvironmentCommand.RESET, all_step_result) | |
elif req.cmd == EnvironmentCommand.CLOSE: | |
break | |
except ( | |
KeyboardInterrupt, | |
UnityCommunicationException, | |
UnityTimeOutException, | |
UnityEnvironmentException, | |
UnityCommunicatorStoppedException, | |
) as ex: | |
logger.debug(f"UnityEnvironment worker {worker_id}: environment stopping.") | |
step_queue.put( | |
EnvironmentResponse(EnvironmentCommand.ENV_EXITED, worker_id, ex) | |
) | |
_send_response(EnvironmentCommand.ENV_EXITED, ex) | |
except Exception as ex: | |
logger.exception( | |
f"UnityEnvironment worker {worker_id}: environment raised an unexpected exception." | |
) | |
step_queue.put( | |
EnvironmentResponse(EnvironmentCommand.ENV_EXITED, worker_id, ex) | |
) | |
_send_response(EnvironmentCommand.ENV_EXITED, ex) | |
finally: | |
logger.debug(f"UnityEnvironment worker {worker_id} closing.") | |
if env is not None: | |
env.close() | |
logger.debug(f"UnityEnvironment worker {worker_id} done.") | |
parent_conn.close() | |
step_queue.put(EnvironmentResponse(EnvironmentCommand.CLOSED, worker_id, None)) | |
step_queue.close() | |
class SubprocessEnvManager(EnvManager): | |
def __init__( | |
self, | |
env_factory: Callable[[int, List[SideChannel]], BaseEnv], | |
run_options: RunOptions, | |
n_env: int = 1, | |
): | |
super().__init__() | |
self.env_workers: List[UnityEnvWorker] = [] | |
self.step_queue: Queue = Queue() | |
self.workers_alive = 0 | |
self.env_factory = env_factory | |
self.run_options = run_options | |
self.env_parameters: Optional[Dict] = None | |
# Each worker is correlated with a list of times they restarted within the last time period. | |
self.recent_restart_timestamps: List[List[datetime.datetime]] = [ | |
[] for _ in range(n_env) | |
] | |
self.restart_counts: List[int] = [0] * n_env | |
for worker_idx in range(n_env): | |
self.env_workers.append( | |
self.create_worker( | |
worker_idx, self.step_queue, env_factory, run_options | |
) | |
) | |
self.workers_alive += 1 | |
def create_worker( | |
worker_id: int, | |
step_queue: Queue, | |
env_factory: Callable[[int, List[SideChannel]], BaseEnv], | |
run_options: RunOptions, | |
) -> UnityEnvWorker: | |
parent_conn, child_conn = Pipe() | |
# Need to use cloudpickle for the env factory function since function objects aren't picklable | |
# on Windows as of Python 3.6. | |
pickled_env_factory = cloudpickle.dumps(env_factory) | |
child_process = Process( | |
target=worker, | |
args=( | |
child_conn, | |
step_queue, | |
pickled_env_factory, | |
worker_id, | |
run_options, | |
logger.level, | |
), | |
) | |
child_process.start() | |
return UnityEnvWorker(child_process, worker_id, parent_conn) | |
def _queue_steps(self) -> None: | |
for env_worker in self.env_workers: | |
if not env_worker.waiting: | |
env_action_info = self._take_step(env_worker.previous_step) | |
env_worker.previous_all_action_info = env_action_info | |
env_worker.send(EnvironmentCommand.STEP, env_action_info) | |
env_worker.waiting = True | |
def _restart_failed_workers(self, first_failure: EnvironmentResponse) -> None: | |
if first_failure.cmd != EnvironmentCommand.ENV_EXITED: | |
return | |
# Drain the step queue to make sure all workers are paused and we have found all concurrent errors. | |
# Pausing all training is needed since we need to reset all pending training steps as they could be corrupted. | |
other_failures: Dict[int, Exception] = self._drain_step_queue() | |
# TODO: Once we use python 3.9 switch to using the | operator to combine dicts. | |
failures: Dict[int, Exception] = { | |
**{first_failure.worker_id: first_failure.payload}, | |
**other_failures, | |
} | |
for worker_id, ex in failures.items(): | |
self._assert_worker_can_restart(worker_id, ex) | |
logger.warning(f"Restarting worker[{worker_id}] after '{ex}'") | |
self.recent_restart_timestamps[worker_id].append(datetime.datetime.now()) | |
self.restart_counts[worker_id] += 1 | |
self.env_workers[worker_id] = self.create_worker( | |
worker_id, self.step_queue, self.env_factory, self.run_options | |
) | |
# The restarts were successful, clear all the existing training trajectories so we don't use corrupted or | |
# outdated data. | |
self.reset(self.env_parameters) | |
def _drain_step_queue(self) -> Dict[int, Exception]: | |
""" | |
Drains all steps out of the step queue and returns all exceptions from crashed workers. | |
This will effectively pause all workers so that they won't do anything until _queue_steps is called. | |
""" | |
all_failures = {} | |
workers_still_pending = {w.worker_id for w in self.env_workers if w.waiting} | |
deadline = datetime.datetime.now() + datetime.timedelta(minutes=1) | |
while workers_still_pending and deadline > datetime.datetime.now(): | |
try: | |
while True: | |
step: EnvironmentResponse = self.step_queue.get_nowait() | |
if step.cmd == EnvironmentCommand.ENV_EXITED: | |
workers_still_pending.add(step.worker_id) | |
all_failures[step.worker_id] = step.payload | |
else: | |
workers_still_pending.remove(step.worker_id) | |
self.env_workers[step.worker_id].waiting = False | |
except EmptyQueueException: | |
pass | |
if deadline < datetime.datetime.now(): | |
still_waiting = {w.worker_id for w in self.env_workers if w.waiting} | |
raise TimeoutError(f"Workers {still_waiting} stuck in waiting state") | |
return all_failures | |
def _assert_worker_can_restart(self, worker_id: int, exception: Exception) -> None: | |
""" | |
Checks if we can recover from an exception from a worker. | |
If the restart limit is exceeded it will raise a UnityCommunicationException. | |
If the exception is not recoverable it re-raises the exception. | |
""" | |
if ( | |
isinstance(exception, UnityCommunicationException) | |
or isinstance(exception, UnityTimeOutException) | |
or isinstance(exception, UnityEnvironmentException) | |
or isinstance(exception, UnityCommunicatorStoppedException) | |
): | |
if self._worker_has_restart_quota(worker_id): | |
return | |
else: | |
logger.error( | |
f"Worker {worker_id} exceeded the allowed number of restarts." | |
) | |
raise exception | |
raise exception | |
def _worker_has_restart_quota(self, worker_id: int) -> bool: | |
self._drop_old_restart_timestamps(worker_id) | |
max_lifetime_restarts = self.run_options.env_settings.max_lifetime_restarts | |
max_limit_check = ( | |
max_lifetime_restarts == -1 | |
or self.restart_counts[worker_id] < max_lifetime_restarts | |
) | |
rate_limit_n = self.run_options.env_settings.restarts_rate_limit_n | |
rate_limit_check = ( | |
rate_limit_n == -1 | |
or len(self.recent_restart_timestamps[worker_id]) < rate_limit_n | |
) | |
return rate_limit_check and max_limit_check | |
def _drop_old_restart_timestamps(self, worker_id: int) -> None: | |
""" | |
Drops environment restart timestamps that are outside of the current window. | |
""" | |
def _filter(t: datetime.datetime) -> bool: | |
return t > datetime.datetime.now() - datetime.timedelta( | |
seconds=self.run_options.env_settings.restarts_rate_limit_period_s | |
) | |
self.recent_restart_timestamps[worker_id] = list( | |
filter(_filter, self.recent_restart_timestamps[worker_id]) | |
) | |
def _step(self) -> List[EnvironmentStep]: | |
# Queue steps for any workers which aren't in the "waiting" state. | |
self._queue_steps() | |
worker_steps: List[EnvironmentResponse] = [] | |
step_workers: Set[int] = set() | |
# Poll the step queue for completed steps from environment workers until we retrieve | |
# 1 or more, which we will then return as StepInfos | |
while len(worker_steps) < 1: | |
try: | |
while True: | |
step: EnvironmentResponse = self.step_queue.get_nowait() | |
if step.cmd == EnvironmentCommand.ENV_EXITED: | |
# If even one env exits try to restart all envs that failed. | |
self._restart_failed_workers(step) | |
# Clear state and restart this function. | |
worker_steps.clear() | |
step_workers.clear() | |
self._queue_steps() | |
elif step.worker_id not in step_workers: | |
self.env_workers[step.worker_id].waiting = False | |
worker_steps.append(step) | |
step_workers.add(step.worker_id) | |
except EmptyQueueException: | |
pass | |
step_infos = self._postprocess_steps(worker_steps) | |
return step_infos | |
def _reset_env(self, config: Optional[Dict] = None) -> List[EnvironmentStep]: | |
while any(ew.waiting for ew in self.env_workers): | |
if not self.step_queue.empty(): | |
step = self.step_queue.get_nowait() | |
self.env_workers[step.worker_id].waiting = False | |
# Send config to environment | |
self.set_env_parameters(config) | |
# First enqueue reset commands for all workers so that they reset in parallel | |
for ew in self.env_workers: | |
ew.send(EnvironmentCommand.RESET, config) | |
# Next (synchronously) collect the reset observations from each worker in sequence | |
for ew in self.env_workers: | |
ew.previous_step = EnvironmentStep(ew.recv().payload, ew.worker_id, {}, {}) | |
return list(map(lambda ew: ew.previous_step, self.env_workers)) | |
def set_env_parameters(self, config: Dict = None) -> None: | |
""" | |
Sends environment parameter settings to C# via the | |
EnvironmentParametersSidehannel for each worker. | |
:param config: Dict of environment parameter keys and values | |
""" | |
self.env_parameters = config | |
for ew in self.env_workers: | |
ew.send(EnvironmentCommand.ENVIRONMENT_PARAMETERS, config) | |
def on_training_started( | |
self, behavior_name: str, trainer_settings: TrainerSettings | |
) -> None: | |
""" | |
Handle traing starting for a new behavior type. Generally nothing is necessary here. | |
:param behavior_name: | |
:param trainer_settings: | |
:return: | |
""" | |
for ew in self.env_workers: | |
ew.send( | |
EnvironmentCommand.TRAINING_STARTED, (behavior_name, trainer_settings) | |
) | |
def training_behaviors(self) -> Dict[BehaviorName, BehaviorSpec]: | |
result: Dict[BehaviorName, BehaviorSpec] = {} | |
for worker in self.env_workers: | |
worker.send(EnvironmentCommand.BEHAVIOR_SPECS) | |
result.update(worker.recv().payload) | |
return result | |
def close(self) -> None: | |
logger.debug("SubprocessEnvManager closing.") | |
for env_worker in self.env_workers: | |
env_worker.request_close() | |
# Pull messages out of the queue until every worker has CLOSED or we time out. | |
deadline = time.time() + WORKER_SHUTDOWN_TIMEOUT_S | |
while self.workers_alive > 0 and time.time() < deadline: | |
try: | |
step: EnvironmentResponse = self.step_queue.get_nowait() | |
env_worker = self.env_workers[step.worker_id] | |
if step.cmd == EnvironmentCommand.CLOSED and not env_worker.closed: | |
env_worker.closed = True | |
self.workers_alive -= 1 | |
# Discard all other messages. | |
except EmptyQueueException: | |
pass | |
self.step_queue.close() | |
# Sanity check to kill zombie workers and report an issue if they occur. | |
if self.workers_alive > 0: | |
logger.error("SubprocessEnvManager had workers that didn't signal shutdown") | |
for env_worker in self.env_workers: | |
if not env_worker.closed and env_worker.process.is_alive(): | |
env_worker.process.terminate() | |
logger.error( | |
"A SubprocessEnvManager worker did not shut down correctly so it was forcefully terminated." | |
) | |
self.step_queue.join_thread() | |
def _postprocess_steps( | |
self, env_steps: List[EnvironmentResponse] | |
) -> List[EnvironmentStep]: | |
step_infos = [] | |
timer_nodes = [] | |
for step in env_steps: | |
payload: StepResponse = step.payload | |
env_worker = self.env_workers[step.worker_id] | |
new_step = EnvironmentStep( | |
payload.all_step_result, | |
step.worker_id, | |
env_worker.previous_all_action_info, | |
payload.environment_stats, | |
) | |
step_infos.append(new_step) | |
env_worker.previous_step = new_step | |
if payload.timer_root: | |
timer_nodes.append(payload.timer_root) | |
if timer_nodes: | |
with hierarchical_timer("workers") as main_timer_node: | |
for worker_timer_node in timer_nodes: | |
main_timer_node.merge( | |
worker_timer_node, root_name="worker_root", is_parallel=True | |
) | |
return step_infos | |
def _take_step(self, last_step: EnvironmentStep) -> Dict[BehaviorName, ActionInfo]: | |
all_action_info: Dict[str, ActionInfo] = {} | |
for brain_name, step_tuple in last_step.current_all_step_result.items(): | |
if brain_name in self.policies: | |
all_action_info[brain_name] = self.policies[brain_name].get_action( | |
step_tuple[0], last_step.worker_id | |
) | |
return all_action_info | |