Spaces:
Sleeping
Sleeping
from mlagents.torch_utils import torch | |
import warnings | |
from typing import Tuple, Optional, List | |
from mlagents.trainers.torch_entities.layers import ( | |
LinearEncoder, | |
Initialization, | |
linear_layer, | |
LayerNorm, | |
) | |
from mlagents.trainers.torch_entities.model_serialization import exporting_to_onnx | |
from mlagents.trainers.exception import UnityTrainerException | |
def get_zero_entities_mask(entities: List[torch.Tensor]) -> List[torch.Tensor]: | |
""" | |
Takes a List of Tensors and returns a List of mask Tensor with 1 if the input was | |
all zeros (on dimension 2) and 0 otherwise. This is used in the Attention | |
layer to mask the padding observations. | |
""" | |
with torch.no_grad(): | |
if exporting_to_onnx.is_exporting(): | |
with warnings.catch_warnings(): | |
# We ignore a TracerWarning from PyTorch that warns that doing | |
# shape[n].item() will cause the trace to be incorrect (the trace might | |
# not generalize to other inputs) | |
# We ignore this warning because we know the model will always be | |
# run with inputs of the same shape | |
warnings.simplefilter("ignore") | |
# When exporting to ONNX, we want to transpose the entities. This is | |
# because ONNX only support input in NCHW (channel first) format. | |
# Barracuda also expect to get data in NCHW. | |
entities = [ | |
torch.transpose(obs, 2, 1).reshape( | |
-1, obs.shape[1].item(), obs.shape[2].item() | |
) | |
for obs in entities | |
] | |
# Generate the masking tensors for each entities tensor (mask only if all zeros) | |
key_masks: List[torch.Tensor] = [ | |
(torch.sum(ent**2, axis=2) < 0.01).float() for ent in entities | |
] | |
return key_masks | |
class MultiHeadAttention(torch.nn.Module): | |
NEG_INF = -1e6 | |
def __init__(self, embedding_size: int, num_heads: int): | |
""" | |
Multi Head Attention module. We do not use the regular Torch implementation since | |
Barracuda does not support some operators it uses. | |
Takes as input to the forward method 3 tensors: | |
- query: of dimensions (batch_size, number_of_queries, embedding_size) | |
- key: of dimensions (batch_size, number_of_keys, embedding_size) | |
- value: of dimensions (batch_size, number_of_keys, embedding_size) | |
The forward method will return 2 tensors: | |
- The output: (batch_size, number_of_queries, embedding_size) | |
- The attention matrix: (batch_size, num_heads, number_of_queries, number_of_keys) | |
:param embedding_size: The size of the embeddings that will be generated (should be | |
dividable by the num_heads) | |
:param total_max_elements: The maximum total number of entities that can be passed to | |
the module | |
:param num_heads: The number of heads of the attention module | |
""" | |
super().__init__() | |
self.n_heads = num_heads | |
self.head_size: int = embedding_size // self.n_heads | |
self.embedding_size: int = self.head_size * self.n_heads | |
def forward( | |
self, | |
query: torch.Tensor, | |
key: torch.Tensor, | |
value: torch.Tensor, | |
n_q: int, | |
n_k: int, | |
key_mask: Optional[torch.Tensor] = None, | |
) -> Tuple[torch.Tensor, torch.Tensor]: | |
b = -1 # the batch size | |
query = query.reshape( | |
b, n_q, self.n_heads, self.head_size | |
) # (b, n_q, h, emb / h) | |
key = key.reshape(b, n_k, self.n_heads, self.head_size) # (b, n_k, h, emb / h) | |
value = value.reshape( | |
b, n_k, self.n_heads, self.head_size | |
) # (b, n_k, h, emb / h) | |
query = query.permute([0, 2, 1, 3]) # (b, h, n_q, emb / h) | |
# The next few lines are equivalent to : key.permute([0, 2, 3, 1]) | |
# This is a hack, ONNX will compress two permute operations and | |
# Barracuda will not like seeing `permute([0,2,3,1])` | |
key = key.permute([0, 2, 1, 3]) # (b, h, emb / h, n_k) | |
key -= 1 | |
key += 1 | |
key = key.permute([0, 1, 3, 2]) # (b, h, emb / h, n_k) | |
qk = torch.matmul(query, key) # (b, h, n_q, n_k) | |
if key_mask is None: | |
qk = qk / (self.embedding_size**0.5) | |
else: | |
key_mask = key_mask.reshape(b, 1, 1, n_k) | |
qk = (1 - key_mask) * qk / ( | |
self.embedding_size**0.5 | |
) + key_mask * self.NEG_INF | |
att = torch.softmax(qk, dim=3) # (b, h, n_q, n_k) | |
value = value.permute([0, 2, 1, 3]) # (b, h, n_k, emb / h) | |
value_attention = torch.matmul(att, value) # (b, h, n_q, emb / h) | |
value_attention = value_attention.permute([0, 2, 1, 3]) # (b, n_q, h, emb / h) | |
value_attention = value_attention.reshape( | |
b, n_q, self.embedding_size | |
) # (b, n_q, emb) | |
return value_attention, att | |
class EntityEmbedding(torch.nn.Module): | |
""" | |
A module used to embed entities before passing them to a self-attention block. | |
Used in conjunction with ResidualSelfAttention to encode information about a self | |
and additional entities. Can also concatenate self to entities for ego-centric self- | |
attention. Inspired by architecture used in https://arxiv.org/pdf/1909.07528.pdf. | |
""" | |
def __init__( | |
self, | |
entity_size: int, | |
entity_num_max_elements: Optional[int], | |
embedding_size: int, | |
): | |
""" | |
Constructs an EntityEmbedding module. | |
:param x_self_size: Size of "self" entity. | |
:param entity_size: Size of other entities. | |
:param entity_num_max_elements: Maximum elements for a given entity, None for unrestricted. | |
Needs to be assigned in order for model to be exportable to ONNX and Barracuda. | |
:param embedding_size: Embedding size for the entity encoder. | |
:param concat_self: Whether to concatenate x_self to entities. Set True for ego-centric | |
self-attention. | |
""" | |
super().__init__() | |
self.self_size: int = 0 | |
self.entity_size: int = entity_size | |
self.entity_num_max_elements: int = -1 | |
if entity_num_max_elements is not None: | |
self.entity_num_max_elements = entity_num_max_elements | |
self.embedding_size = embedding_size | |
# Initialization scheme from http://www.cs.toronto.edu/~mvolkovs/ICML2020_tfixup.pdf | |
self.self_ent_encoder = LinearEncoder( | |
self.entity_size, | |
1, | |
self.embedding_size, | |
kernel_init=Initialization.Normal, | |
kernel_gain=(0.125 / self.embedding_size) ** 0.5, | |
) | |
def add_self_embedding(self, size: int) -> None: | |
self.self_size = size | |
self.self_ent_encoder = LinearEncoder( | |
self.self_size + self.entity_size, | |
1, | |
self.embedding_size, | |
kernel_init=Initialization.Normal, | |
kernel_gain=(0.125 / self.embedding_size) ** 0.5, | |
) | |
def forward(self, x_self: torch.Tensor, entities: torch.Tensor) -> torch.Tensor: | |
num_entities = self.entity_num_max_elements | |
if num_entities < 0: | |
if exporting_to_onnx.is_exporting(): | |
raise UnityTrainerException( | |
"Trying to export an attention mechanism that doesn't have a set max \ | |
number of elements." | |
) | |
num_entities = entities.shape[1] | |
if exporting_to_onnx.is_exporting(): | |
# When exporting to ONNX, we want to transpose the entities. This is | |
# because ONNX only support input in NCHW (channel first) format. | |
# Barracuda also expect to get data in NCHW. | |
entities = torch.transpose(entities, 2, 1).reshape( | |
-1, num_entities, self.entity_size | |
) | |
if self.self_size > 0: | |
expanded_self = x_self.reshape(-1, 1, self.self_size) | |
expanded_self = torch.cat([expanded_self] * num_entities, dim=1) | |
# Concatenate all observations with self | |
entities = torch.cat([expanded_self, entities], dim=2) | |
# Encode entities | |
encoded_entities = self.self_ent_encoder(entities) | |
return encoded_entities | |
class ResidualSelfAttention(torch.nn.Module): | |
""" | |
Residual self attentioninspired from https://arxiv.org/pdf/1909.07528.pdf. Can be used | |
with an EntityEmbedding module, to apply multi head self attention to encode information | |
about a "Self" and a list of relevant "Entities". | |
""" | |
EPSILON = 1e-7 | |
def __init__( | |
self, | |
embedding_size: int, | |
entity_num_max_elements: Optional[int] = None, | |
num_heads: int = 4, | |
): | |
""" | |
Constructs a ResidualSelfAttention module. | |
:param embedding_size: Embedding sizee for attention mechanism and | |
Q, K, V encoders. | |
:param entity_num_max_elements: A List of ints representing the maximum number | |
of elements in an entity sequence. Should be of length num_entities. Pass None to | |
not restrict the number of elements; however, this will make the module | |
unexportable to ONNX/Barracuda. | |
:param num_heads: Number of heads for Multi Head Self-Attention | |
""" | |
super().__init__() | |
self.max_num_ent: Optional[int] = None | |
if entity_num_max_elements is not None: | |
self.max_num_ent = entity_num_max_elements | |
self.attention = MultiHeadAttention( | |
num_heads=num_heads, embedding_size=embedding_size | |
) | |
# Initialization scheme from http://www.cs.toronto.edu/~mvolkovs/ICML2020_tfixup.pdf | |
self.fc_q = linear_layer( | |
embedding_size, | |
embedding_size, | |
kernel_init=Initialization.Normal, | |
kernel_gain=(0.125 / embedding_size) ** 0.5, | |
) | |
self.fc_k = linear_layer( | |
embedding_size, | |
embedding_size, | |
kernel_init=Initialization.Normal, | |
kernel_gain=(0.125 / embedding_size) ** 0.5, | |
) | |
self.fc_v = linear_layer( | |
embedding_size, | |
embedding_size, | |
kernel_init=Initialization.Normal, | |
kernel_gain=(0.125 / embedding_size) ** 0.5, | |
) | |
self.fc_out = linear_layer( | |
embedding_size, | |
embedding_size, | |
kernel_init=Initialization.Normal, | |
kernel_gain=(0.125 / embedding_size) ** 0.5, | |
) | |
self.embedding_norm = LayerNorm() | |
self.residual_norm = LayerNorm() | |
def forward(self, inp: torch.Tensor, key_masks: List[torch.Tensor]) -> torch.Tensor: | |
# Gather the maximum number of entities information | |
mask = torch.cat(key_masks, dim=1) | |
inp = self.embedding_norm(inp) | |
# Feed to self attention | |
query = self.fc_q(inp) # (b, n_q, emb) | |
key = self.fc_k(inp) # (b, n_k, emb) | |
value = self.fc_v(inp) # (b, n_k, emb) | |
# Only use max num if provided | |
if self.max_num_ent is not None: | |
num_ent = self.max_num_ent | |
else: | |
num_ent = inp.shape[1] | |
if exporting_to_onnx.is_exporting(): | |
raise UnityTrainerException( | |
"Trying to export an attention mechanism that doesn't have a set max \ | |
number of elements." | |
) | |
output, _ = self.attention(query, key, value, num_ent, num_ent, mask) | |
# Residual | |
output = self.fc_out(output) + inp | |
output = self.residual_norm(output) | |
# Average Pooling | |
numerator = torch.sum(output * (1 - mask).reshape(-1, num_ent, 1), dim=1) | |
denominator = torch.sum(1 - mask, dim=1, keepdim=True) + self.EPSILON | |
output = numerator / denominator | |
return output | |