Spaces:
Sleeping
Sleeping
# NOTE: This upgrade script is a temporary measure for the transition between the old-format | |
# configuration file and the new format. It will be marked for deprecation once the | |
# Python CLI and configuration files are finalized, and removed the following release. | |
import attr | |
import cattr | |
import yaml | |
from typing import Dict, Any, Optional | |
import argparse | |
from mlagents.trainers.settings import TrainerSettings, NetworkSettings | |
from mlagents.trainers.cli_utils import load_config | |
from mlagents.trainers.exception import TrainerConfigError | |
from mlagents.plugins import all_trainer_settings | |
# Take an existing trainer config (e.g. trainer_config.yaml) and turn it into the new format. | |
def convert_behaviors(old_trainer_config: Dict[str, Any]) -> Dict[str, Any]: | |
all_behavior_config_dict = {} | |
default_config = old_trainer_config.get("default", {}) | |
for behavior_name, config in old_trainer_config.items(): | |
if behavior_name != "default": | |
config = default_config.copy() | |
config.update(old_trainer_config[behavior_name]) | |
# Convert to split TrainerSettings, Hyperparameters, NetworkSettings | |
# Set trainer_type and get appropriate hyperparameter settings | |
try: | |
trainer_type = config["trainer"] | |
except KeyError: | |
raise TrainerConfigError( | |
"Config doesn't specify a trainer type. " | |
"Please specify trainer: in your config." | |
) | |
new_config = {} | |
new_config["trainer_type"] = trainer_type | |
hyperparam_cls = all_trainer_settings[trainer_type] | |
# Try to absorb as much as possible into the hyperparam_cls | |
new_config["hyperparameters"] = cattr.structure(config, hyperparam_cls) | |
# Try to absorb as much as possible into the network settings | |
new_config["network_settings"] = cattr.structure(config, NetworkSettings) | |
# Deal with recurrent | |
try: | |
if config["use_recurrent"]: | |
new_config[ | |
"network_settings" | |
].memory = NetworkSettings.MemorySettings( | |
sequence_length=config["sequence_length"], | |
memory_size=config["memory_size"], | |
) | |
except KeyError: | |
raise TrainerConfigError( | |
"Config doesn't specify use_recurrent. " | |
"Please specify true or false for use_recurrent in your config." | |
) | |
# Absorb the rest into the base TrainerSettings | |
for key, val in config.items(): | |
if key in attr.fields_dict(TrainerSettings): | |
new_config[key] = val | |
# Structure the whole thing | |
all_behavior_config_dict[behavior_name] = cattr.structure( | |
new_config, TrainerSettings | |
) | |
return all_behavior_config_dict | |
def write_to_yaml_file(unstructed_config: Dict[str, Any], output_config: str) -> None: | |
with open(output_config, "w") as f: | |
try: | |
yaml.dump(unstructed_config, f, sort_keys=False) | |
except TypeError: # Older versions of pyyaml don't support sort_keys | |
yaml.dump(unstructed_config, f) | |
def remove_nones(config: Dict[Any, Any]) -> Dict[str, Any]: | |
new_config = {} | |
for key, val in config.items(): | |
if isinstance(val, dict): | |
new_config[key] = remove_nones(val) | |
elif val is not None: | |
new_config[key] = val | |
return new_config | |
# Take a sampler from the old format and convert to new sampler structure | |
def convert_samplers(old_sampler_config: Dict[str, Any]) -> Dict[str, Any]: | |
new_sampler_config: Dict[str, Any] = {} | |
for parameter, parameter_config in old_sampler_config.items(): | |
if parameter == "resampling-interval": | |
print( | |
"resampling-interval is no longer necessary for parameter randomization and is being ignored." | |
) | |
continue | |
new_sampler_config[parameter] = {} | |
new_sampler_config[parameter]["sampler_type"] = parameter_config["sampler-type"] | |
new_samp_parameters = dict(parameter_config) # Copy dict | |
new_samp_parameters.pop("sampler-type") | |
new_sampler_config[parameter]["sampler_parameters"] = new_samp_parameters | |
return new_sampler_config | |
def convert_samplers_and_curriculum( | |
parameter_dict: Dict[str, Any], curriculum: Dict[str, Any] | |
) -> Dict[str, Any]: | |
for key, sampler in parameter_dict.items(): | |
if "sampler_parameters" not in sampler: | |
parameter_dict[key]["sampler_parameters"] = {} | |
for argument in [ | |
"seed", | |
"min_value", | |
"max_value", | |
"mean", | |
"st_dev", | |
"intervals", | |
]: | |
if argument in sampler: | |
parameter_dict[key]["sampler_parameters"][argument] = sampler[argument] | |
parameter_dict[key].pop(argument) | |
param_set = set(parameter_dict.keys()) | |
for behavior_name, behavior_dict in curriculum.items(): | |
measure = behavior_dict["measure"] | |
min_lesson_length = behavior_dict.get("min_lesson_length", 1) | |
signal_smoothing = behavior_dict.get("signal_smoothing", False) | |
thresholds = behavior_dict["thresholds"] | |
num_lessons = len(thresholds) + 1 | |
parameters = behavior_dict["parameters"] | |
for param_name in parameters.keys(): | |
if param_name in param_set: | |
print( | |
f"The parameter {param_name} has both a sampler and a curriculum. Will ignore curriculum" | |
) | |
else: | |
param_set.add(param_name) | |
parameter_dict[param_name] = {"curriculum": []} | |
for lesson_index in range(num_lessons - 1): | |
parameter_dict[param_name]["curriculum"].append( | |
{ | |
f"Lesson{lesson_index}": { | |
"completion_criteria": { | |
"measure": measure, | |
"behavior": behavior_name, | |
"signal_smoothing": signal_smoothing, | |
"min_lesson_length": min_lesson_length, | |
"threshold": thresholds[lesson_index], | |
}, | |
"value": parameters[param_name][lesson_index], | |
} | |
} | |
) | |
lesson_index += 1 # This is the last lesson | |
parameter_dict[param_name]["curriculum"].append( | |
{ | |
f"Lesson{lesson_index}": { | |
"value": parameters[param_name][lesson_index] | |
} | |
} | |
) | |
return parameter_dict | |
def parse_args(): | |
argparser = argparse.ArgumentParser( | |
formatter_class=argparse.ArgumentDefaultsHelpFormatter | |
) | |
argparser.add_argument( | |
"trainer_config_path", | |
help="Path to old format (<=0.18.X) trainer configuration YAML.", | |
) | |
argparser.add_argument( | |
"--curriculum", | |
help="Path to old format (<=0.16.X) curriculum configuration YAML.", | |
default=None, | |
) | |
argparser.add_argument( | |
"--sampler", | |
help="Path to old format (<=0.16.X) parameter randomization configuration YAML.", | |
default=None, | |
) | |
argparser.add_argument( | |
"output_config_path", help="Path to write converted YAML file." | |
) | |
args = argparser.parse_args() | |
return args | |
def convert( | |
config: Dict[str, Any], | |
old_curriculum: Optional[Dict[str, Any]], | |
old_param_random: Optional[Dict[str, Any]], | |
) -> Dict[str, Any]: | |
if "behaviors" not in config: | |
print("Config file format version : version <= 0.16.X") | |
behavior_config_dict = convert_behaviors(config) | |
full_config = {"behaviors": behavior_config_dict} | |
# Convert curriculum and sampler. note that we don't validate these; if it was correct | |
# before it should be correct now. | |
if old_curriculum is not None: | |
full_config["curriculum"] = old_curriculum | |
if old_param_random is not None: | |
sampler_config_dict = convert_samplers(old_param_random) | |
full_config["parameter_randomization"] = sampler_config_dict | |
# Convert config to dict | |
config = cattr.unstructure(full_config) | |
if "curriculum" in config or "parameter_randomization" in config: | |
print("Config file format version : 0.16.X < version <= 0.18.X") | |
full_config = {"behaviors": config["behaviors"]} | |
param_randomization = config.get("parameter_randomization", {}) | |
if "resampling-interval" in param_randomization: | |
param_randomization.pop("resampling-interval") | |
if len(param_randomization) > 0: | |
# check if we use the old format sampler-type vs sampler_type | |
if ( | |
"sampler-type" | |
in param_randomization[list(param_randomization.keys())[0]] | |
): | |
param_randomization = convert_samplers(param_randomization) | |
full_config["environment_parameters"] = convert_samplers_and_curriculum( | |
param_randomization, config.get("curriculum", {}) | |
) | |
# Convert config to dict | |
config = cattr.unstructure(full_config) | |
return config | |
def main() -> None: | |
args = parse_args() | |
print( | |
f"Converting {args.trainer_config_path} and saving to {args.output_config_path}." | |
) | |
old_config = load_config(args.trainer_config_path) | |
curriculum_config_dict = None | |
old_sampler_config_dict = None | |
if args.curriculum is not None: | |
curriculum_config_dict = load_config(args.curriculum) | |
if args.sampler is not None: | |
old_sampler_config_dict = load_config(args.sampler) | |
new_config = convert(old_config, curriculum_config_dict, old_sampler_config_dict) | |
unstructed_config = remove_nones(new_config) | |
write_to_yaml_file(unstructed_config, args.output_config_path) | |
if __name__ == "__main__": | |
main() | |