Spaces:
Paused
Paused
File size: 8,247 Bytes
375a1cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
from __future__ import annotations
import functools
from typing import Callable, Dict, List, Sequence, Tuple, Union
import torch
from functorch._C import dim as _C
from ._parsing import (
_ellipsis,
AnonymousAxis,
comma_separate,
parse_pattern,
validate_rearrange_expressions,
)
__all__ = ["rearrange"]
dims = _C.dims
@functools.lru_cache(256)
def _create_rearrange_callable(
tensor_ndim: int, pattern: str, **axes_lengths: int
) -> Callable[[torch.Tensor], torch.Tensor]:
r"""Translate an `einops`-style pattern into a callable that performs the rearrange using first-class dimensions.
Since the an equivalent result is computed for tensors with the same number of dimensions, with the same pattern and
specified axes lengths, this function can be memoized.
Args:
tensor_ndim (int): the number of dimensions in the tensor to rearrange
pattern (str): the `einops`-style rearrangement pattern
axes_lengths (int): any additional length specifications for dimensions
Returns:
Callable[[torch.Tensor], torch.Tensor]: a callable that performs the rearrangement
"""
left, right = parse_pattern(pattern, axes_lengths)
validate_rearrange_expressions(left, right, axes_lengths)
n_anon_dims = sum(not dim for dim in left.composition)
if left.has_ellipsis:
n_ellipsis_dims = tensor_ndim - (len(left.composition) - 1)
n_named_dims = len(left.identifiers) - 1
if (pattern_ndim := n_anon_dims + n_named_dims) > tensor_ndim:
raise ValueError(
f"Number of dimensions in pattern ({pattern_ndim}) must be less than or equal to the number of "
f"dimensions in the tensor ({tensor_ndim})"
)
else:
n_ellipsis_dims = 0
n_named_dims = len(left.identifiers)
if (pattern_ndim := len(left.composition)) != tensor_ndim:
raise ValueError(
f"Number of dimensions in pattern ({pattern_ndim}) must be equal to the number of dimensions in "
f"the tensor ({tensor_ndim})"
)
n_dims = n_named_dims + n_ellipsis_dims + n_anon_dims
if n_dims == 0:
# an identity rearrangement on a 0-dimension tensor
return lambda tensor: tensor
first_class_dims: Tuple[str, ...] = tuple(f"d{i}" for i in range(n_dims))
identifier_dim_map: Dict[Union[str, AnonymousAxis], Tuple[str, ...]] = {}
anon_axes: List[AnonymousAxis] = []
# map the left-hand side identifiers to strings representing first class dims
dims_i = 0
for dimension in left.composition:
if isinstance(dimension, list):
for identifier in dimension:
# non-unitary anon axes are not allowed in rearrange & unitary anon axes are represented as empty lists
assert isinstance(identifier, str)
identifier_dim_map[identifier] = (first_class_dims[dims_i],)
dims_i += 1
if not dimension:
# unitary anonymous axis
anon_axis = AnonymousAxis("1")
identifier_dim_map[anon_axis] = (first_class_dims[dims_i],)
anon_axes.append(anon_axis)
dimension.append(anon_axis)
dims_i += 1
elif dimension == _ellipsis:
identifier = _ellipsis
identifier_dim_map[identifier] = tuple(
first_class_dims[dims_i + j] for j in range(n_ellipsis_dims)
)
dims_i += n_ellipsis_dims
else:
raise ValueError(f"Unexpected dimension: {dimension}")
def composition_to_dims(
composition: Sequence[Union[List[Union[str, AnonymousAxis]], str]]
) -> List[Union[str, Tuple[str, ...]]]:
"""Convert a `ParsedExpression.composition` into a `Tensor.__getitem__` index of strings representing first
class dims."""
dim_composition: List[Union[str, Tuple[str, ...]]] = []
for dimension in composition:
if isinstance(dimension, list):
dim_composition.append(
tuple(
dim
for identifier in dimension
for dim in identifier_dim_map[identifier]
)
)
elif dimension == _ellipsis:
dim_composition.extend(identifier_dim_map[_ellipsis])
else:
raise ValueError(f"Unexpected dimension: {dimension}")
return dim_composition
left_dims = composition_to_dims(left.composition)
right_dims = composition_to_dims(right.composition)
anon_dims = tuple(identifier_dim_map[axis][0] for axis in anon_axes)
specified_lengths = tuple(
(identifier_dim_map[axis][0], length) for axis, length in axes_lengths.items()
)
custom_rearrange_callable_name = "do_rearrange"
custom_rearrange_callable_code = (
(
f"def {custom_rearrange_callable_name}(tensor):\n"
f" {comma_separate(first_class_dims)} = dims({n_dims})\n"
)
+ (
"".join(
f" {dim}.size = {length}\n" for (dim, length) in specified_lengths
)
if specified_lengths
else ""
)
+ f" tensor = tensor[{comma_separate(left_dims)}].order({comma_separate(right_dims)})\n"
+ (
f" return tensor.sum({comma_separate([anon_dims])}, keepdim=False)\n"
if anon_dims
else " return tensor\n"
)
)
exec(custom_rearrange_callable_code)
return locals()[custom_rearrange_callable_name]
def rearrange(
tensor: Union[torch.Tensor, List[torch.Tensor], Tuple[torch.Tensor, ...]],
pattern: str,
**axes_lengths: int,
) -> torch.Tensor:
r"""A native implementation of `einops.rearrange`, a reader-friendly smart element reordering for multidimensional
tensors. This operation includes functionality of transpose (axes permutation), reshape (view), squeeze, unsqueeze,
stack, concatenate and other operations.
See: https://einops.rocks/api/rearrange/
Args:
tensor (Tensor or sequence of Tensor): the tensor(s) to rearrange
pattern (str): the rearrangement pattern
axes_lengths (int): any additional length specifications for dimensions
Returns:
Tensor: the rearranged tensor
Examples:
>>> # suppose we have a set of 32 images in "h w c" format (height-width-channel)
>>> images = torch.randn((32, 30, 40, 3))
>>> # stack along first (batch) axis, output is a single array
>>> rearrange(images, 'b h w c -> b h w c').shape
torch.Size([32, 30, 40, 3])
>>> # concatenate images along height (vertical axis), 960 = 32 * 30
>>> rearrange(images, 'b h w c -> (b h) w c').shape
torch.Size([960, 40, 3])
>>> # concatenated images along horizontal axis, 1280 = 32 * 40
>>> rearrange(images, 'b h w c -> h (b w) c').shape
torch.Size([30, 1280, 3])
>>> # reordered axes to "b c h w" format for deep learning
>>> rearrange(images, 'b h w c -> b c h w').shape
torch.Size([32, 3, 30, 40])
>>> # flattened each image into a vector, 3600 = 30 * 40 * 3
>>> rearrange(images, 'b h w c -> b (c h w)').shape
torch.Size([32, 3600])
>>> # split each image into 4 smaller (top-left, top-right, bottom-left, bottom-right), 128 = 32 * 2 * 2
>>> rearrange(images, 'b (h1 h) (w1 w) c -> (b h1 w1) h w c', h1=2, w1=2).shape
torch.Size([128, 15, 20, 3])
>>> # space-to-depth operation
>>> rearrange(images, 'b (h h1) (w w1) c -> b h w (c h1 w1)', h1=2, w1=2).shape
torch.Size([32, 15, 20, 12])
"""
if not isinstance(tensor, torch.Tensor):
tensor = torch.stack(tensor)
rearrange_callable = _create_rearrange_callable(
tensor.ndim, pattern, **axes_lengths
)
return rearrange_callable(tensor)
|