File size: 126,566 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
"""Module containing non-deprecated functions borrowed from Numeric.



"""
import functools
import types
import warnings

import numpy as np
from . import multiarray as mu
from . import overrides
from . import umath as um
from . import numerictypes as nt
from .multiarray import asarray, array, asanyarray, concatenate
from . import _methods

_dt_ = nt.sctype2char

# functions that are methods
__all__ = [
    'alen', 'all', 'alltrue', 'amax', 'amin', 'any', 'argmax',
    'argmin', 'argpartition', 'argsort', 'around', 'choose', 'clip',
    'compress', 'cumprod', 'cumproduct', 'cumsum', 'diagonal', 'mean',
    'ndim', 'nonzero', 'partition', 'prod', 'product', 'ptp', 'put',
    'ravel', 'repeat', 'reshape', 'resize', 'round_',
    'searchsorted', 'shape', 'size', 'sometrue', 'sort', 'squeeze',
    'std', 'sum', 'swapaxes', 'take', 'trace', 'transpose', 'var',
]

_gentype = types.GeneratorType
# save away Python sum
_sum_ = sum

array_function_dispatch = functools.partial(
    overrides.array_function_dispatch, module='numpy')


# functions that are now methods
def _wrapit(obj, method, *args, **kwds):
    try:
        wrap = obj.__array_wrap__
    except AttributeError:
        wrap = None
    result = getattr(asarray(obj), method)(*args, **kwds)
    if wrap:
        if not isinstance(result, mu.ndarray):
            result = asarray(result)
        result = wrap(result)
    return result


def _wrapfunc(obj, method, *args, **kwds):
    bound = getattr(obj, method, None)
    if bound is None:
        return _wrapit(obj, method, *args, **kwds)

    try:
        return bound(*args, **kwds)
    except TypeError:
        # A TypeError occurs if the object does have such a method in its
        # class, but its signature is not identical to that of NumPy's. This
        # situation has occurred in the case of a downstream library like
        # 'pandas'.
        #
        # Call _wrapit from within the except clause to ensure a potential
        # exception has a traceback chain.
        return _wrapit(obj, method, *args, **kwds)


def _wrapreduction(obj, ufunc, method, axis, dtype, out, **kwargs):
    passkwargs = {k: v for k, v in kwargs.items()
                  if v is not np._NoValue}

    if type(obj) is not mu.ndarray:
        try:
            reduction = getattr(obj, method)
        except AttributeError:
            pass
        else:
            # This branch is needed for reductions like any which don't
            # support a dtype.
            if dtype is not None:
                return reduction(axis=axis, dtype=dtype, out=out, **passkwargs)
            else:
                return reduction(axis=axis, out=out, **passkwargs)

    return ufunc.reduce(obj, axis, dtype, out, **passkwargs)


def _take_dispatcher(a, indices, axis=None, out=None, mode=None):
    return (a, out)


@array_function_dispatch(_take_dispatcher)
def take(a, indices, axis=None, out=None, mode='raise'):
    """

    Take elements from an array along an axis.



    When axis is not None, this function does the same thing as "fancy"

    indexing (indexing arrays using arrays); however, it can be easier to use

    if you need elements along a given axis. A call such as

    ``np.take(arr, indices, axis=3)`` is equivalent to

    ``arr[:,:,:,indices,...]``.



    Explained without fancy indexing, this is equivalent to the following use

    of `ndindex`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of

    indices::



        Ni, Nk = a.shape[:axis], a.shape[axis+1:]

        Nj = indices.shape

        for ii in ndindex(Ni):

            for jj in ndindex(Nj):

                for kk in ndindex(Nk):

                    out[ii + jj + kk] = a[ii + (indices[jj],) + kk]



    Parameters

    ----------

    a : array_like (Ni..., M, Nk...)

        The source array.

    indices : array_like (Nj...)

        The indices of the values to extract.



        .. versionadded:: 1.8.0



        Also allow scalars for indices.

    axis : int, optional

        The axis over which to select values. By default, the flattened

        input array is used.

    out : ndarray, optional (Ni..., Nj..., Nk...)

        If provided, the result will be placed in this array. It should

        be of the appropriate shape and dtype. Note that `out` is always

        buffered if `mode='raise'`; use other modes for better performance.

    mode : {'raise', 'wrap', 'clip'}, optional

        Specifies how out-of-bounds indices will behave.



        * 'raise' -- raise an error (default)

        * 'wrap' -- wrap around

        * 'clip' -- clip to the range



        'clip' mode means that all indices that are too large are replaced

        by the index that addresses the last element along that axis. Note

        that this disables indexing with negative numbers.



    Returns

    -------

    out : ndarray (Ni..., Nj..., Nk...)

        The returned array has the same type as `a`.



    See Also

    --------

    compress : Take elements using a boolean mask

    ndarray.take : equivalent method

    take_along_axis : Take elements by matching the array and the index arrays



    Notes

    -----



    By eliminating the inner loop in the description above, and using `s_` to

    build simple slice objects, `take` can be expressed  in terms of applying

    fancy indexing to each 1-d slice::



        Ni, Nk = a.shape[:axis], a.shape[axis+1:]

        for ii in ndindex(Ni):

            for kk in ndindex(Nj):

                out[ii + s_[...,] + kk] = a[ii + s_[:,] + kk][indices]



    For this reason, it is equivalent to (but faster than) the following use

    of `apply_along_axis`::



        out = np.apply_along_axis(lambda a_1d: a_1d[indices], axis, a)



    Examples

    --------

    >>> a = [4, 3, 5, 7, 6, 8]

    >>> indices = [0, 1, 4]

    >>> np.take(a, indices)

    array([4, 3, 6])



    In this example if `a` is an ndarray, "fancy" indexing can be used.



    >>> a = np.array(a)

    >>> a[indices]

    array([4, 3, 6])



    If `indices` is not one dimensional, the output also has these dimensions.



    >>> np.take(a, [[0, 1], [2, 3]])

    array([[4, 3],

           [5, 7]])

    """
    return _wrapfunc(a, 'take', indices, axis=axis, out=out, mode=mode)


def _reshape_dispatcher(a, newshape, order=None):
    return (a,)


# not deprecated --- copy if necessary, view otherwise
@array_function_dispatch(_reshape_dispatcher)
def reshape(a, newshape, order='C'):
    """

    Gives a new shape to an array without changing its data.



    Parameters

    ----------

    a : array_like

        Array to be reshaped.

    newshape : int or tuple of ints

        The new shape should be compatible with the original shape. If

        an integer, then the result will be a 1-D array of that length.

        One shape dimension can be -1. In this case, the value is

        inferred from the length of the array and remaining dimensions.

    order : {'C', 'F', 'A'}, optional

        Read the elements of `a` using this index order, and place the

        elements into the reshaped array using this index order.  'C'

        means to read / write the elements using C-like index order,

        with the last axis index changing fastest, back to the first

        axis index changing slowest. 'F' means to read / write the

        elements using Fortran-like index order, with the first index

        changing fastest, and the last index changing slowest. Note that

        the 'C' and 'F' options take no account of the memory layout of

        the underlying array, and only refer to the order of indexing.

        'A' means to read / write the elements in Fortran-like index

        order if `a` is Fortran *contiguous* in memory, C-like order

        otherwise.



    Returns

    -------

    reshaped_array : ndarray

        This will be a new view object if possible; otherwise, it will

        be a copy.  Note there is no guarantee of the *memory layout* (C- or

        Fortran- contiguous) of the returned array.



    See Also

    --------

    ndarray.reshape : Equivalent method.



    Notes

    -----

    It is not always possible to change the shape of an array without

    copying the data. If you want an error to be raised when the data is copied,

    you should assign the new shape to the shape attribute of the array::



     >>> a = np.zeros((10, 2))



     # A transpose makes the array non-contiguous

     >>> b = a.T



     # Taking a view makes it possible to modify the shape without modifying

     # the initial object.

     >>> c = b.view()

     >>> c.shape = (20)

     Traceback (most recent call last):

        ...

     AttributeError: Incompatible shape for in-place modification. Use

     `.reshape()` to make a copy with the desired shape.



    The `order` keyword gives the index ordering both for *fetching* the values

    from `a`, and then *placing* the values into the output array.

    For example, let's say you have an array:



    >>> a = np.arange(6).reshape((3, 2))

    >>> a

    array([[0, 1],

           [2, 3],

           [4, 5]])



    You can think of reshaping as first raveling the array (using the given

    index order), then inserting the elements from the raveled array into the

    new array using the same kind of index ordering as was used for the

    raveling.



    >>> np.reshape(a, (2, 3)) # C-like index ordering

    array([[0, 1, 2],

           [3, 4, 5]])

    >>> np.reshape(np.ravel(a), (2, 3)) # equivalent to C ravel then C reshape

    array([[0, 1, 2],

           [3, 4, 5]])

    >>> np.reshape(a, (2, 3), order='F') # Fortran-like index ordering

    array([[0, 4, 3],

           [2, 1, 5]])

    >>> np.reshape(np.ravel(a, order='F'), (2, 3), order='F')

    array([[0, 4, 3],

           [2, 1, 5]])



    Examples

    --------

    >>> a = np.array([[1,2,3], [4,5,6]])

    >>> np.reshape(a, 6)

    array([1, 2, 3, 4, 5, 6])

    >>> np.reshape(a, 6, order='F')

    array([1, 4, 2, 5, 3, 6])



    >>> np.reshape(a, (3,-1))       # the unspecified value is inferred to be 2

    array([[1, 2],

           [3, 4],

           [5, 6]])

    """
    return _wrapfunc(a, 'reshape', newshape, order=order)


def _choose_dispatcher(a, choices, out=None, mode=None):
    yield a
    yield from choices
    yield out


@array_function_dispatch(_choose_dispatcher)
def choose(a, choices, out=None, mode='raise'):
    """

    Construct an array from an index array and a list of arrays to choose from.



    First of all, if confused or uncertain, definitely look at the Examples -

    in its full generality, this function is less simple than it might

    seem from the following code description (below ndi =

    `numpy.lib.index_tricks`):



    ``np.choose(a,c) == np.array([c[a[I]][I] for I in ndi.ndindex(a.shape)])``.



    But this omits some subtleties.  Here is a fully general summary:



    Given an "index" array (`a`) of integers and a sequence of ``n`` arrays

    (`choices`), `a` and each choice array are first broadcast, as necessary,

    to arrays of a common shape; calling these *Ba* and *Bchoices[i], i =

    0,...,n-1* we have that, necessarily, ``Ba.shape == Bchoices[i].shape``

    for each ``i``.  Then, a new array with shape ``Ba.shape`` is created as

    follows:



    * if ``mode='raise'`` (the default), then, first of all, each element of

      ``a`` (and thus ``Ba``) must be in the range ``[0, n-1]``; now, suppose

      that ``i`` (in that range) is the value at the ``(j0, j1, ..., jm)``

      position in ``Ba`` - then the value at the same position in the new array

      is the value in ``Bchoices[i]`` at that same position;



    * if ``mode='wrap'``, values in `a` (and thus `Ba`) may be any (signed)

      integer; modular arithmetic is used to map integers outside the range

      `[0, n-1]` back into that range; and then the new array is constructed

      as above;



    * if ``mode='clip'``, values in `a` (and thus ``Ba``) may be any (signed)

      integer; negative integers are mapped to 0; values greater than ``n-1``

      are mapped to ``n-1``; and then the new array is constructed as above.



    Parameters

    ----------

    a : int array

        This array must contain integers in ``[0, n-1]``, where ``n`` is the

        number of choices, unless ``mode=wrap`` or ``mode=clip``, in which

        cases any integers are permissible.

    choices : sequence of arrays

        Choice arrays. `a` and all of the choices must be broadcastable to the

        same shape.  If `choices` is itself an array (not recommended), then

        its outermost dimension (i.e., the one corresponding to

        ``choices.shape[0]``) is taken as defining the "sequence".

    out : array, optional

        If provided, the result will be inserted into this array. It should

        be of the appropriate shape and dtype. Note that `out` is always

        buffered if ``mode='raise'``; use other modes for better performance.

    mode : {'raise' (default), 'wrap', 'clip'}, optional

        Specifies how indices outside ``[0, n-1]`` will be treated:



          * 'raise' : an exception is raised

          * 'wrap' : value becomes value mod ``n``

          * 'clip' : values < 0 are mapped to 0, values > n-1 are mapped to n-1



    Returns

    -------

    merged_array : array

        The merged result.



    Raises

    ------

    ValueError: shape mismatch

        If `a` and each choice array are not all broadcastable to the same

        shape.



    See Also

    --------

    ndarray.choose : equivalent method

    numpy.take_along_axis : Preferable if `choices` is an array



    Notes

    -----

    To reduce the chance of misinterpretation, even though the following

    "abuse" is nominally supported, `choices` should neither be, nor be

    thought of as, a single array, i.e., the outermost sequence-like container

    should be either a list or a tuple.



    Examples

    --------



    >>> choices = [[0, 1, 2, 3], [10, 11, 12, 13],

    ...   [20, 21, 22, 23], [30, 31, 32, 33]]

    >>> np.choose([2, 3, 1, 0], choices

    ... # the first element of the result will be the first element of the

    ... # third (2+1) "array" in choices, namely, 20; the second element

    ... # will be the second element of the fourth (3+1) choice array, i.e.,

    ... # 31, etc.

    ... )

    array([20, 31, 12,  3])

    >>> np.choose([2, 4, 1, 0], choices, mode='clip') # 4 goes to 3 (4-1)

    array([20, 31, 12,  3])

    >>> # because there are 4 choice arrays

    >>> np.choose([2, 4, 1, 0], choices, mode='wrap') # 4 goes to (4 mod 4)

    array([20,  1, 12,  3])

    >>> # i.e., 0



    A couple examples illustrating how choose broadcasts:



    >>> a = [[1, 0, 1], [0, 1, 0], [1, 0, 1]]

    >>> choices = [-10, 10]

    >>> np.choose(a, choices)

    array([[ 10, -10,  10],

           [-10,  10, -10],

           [ 10, -10,  10]])



    >>> # With thanks to Anne Archibald

    >>> a = np.array([0, 1]).reshape((2,1,1))

    >>> c1 = np.array([1, 2, 3]).reshape((1,3,1))

    >>> c2 = np.array([-1, -2, -3, -4, -5]).reshape((1,1,5))

    >>> np.choose(a, (c1, c2)) # result is 2x3x5, res[0,:,:]=c1, res[1,:,:]=c2

    array([[[ 1,  1,  1,  1,  1],

            [ 2,  2,  2,  2,  2],

            [ 3,  3,  3,  3,  3]],

           [[-1, -2, -3, -4, -5],

            [-1, -2, -3, -4, -5],

            [-1, -2, -3, -4, -5]]])



    """
    return _wrapfunc(a, 'choose', choices, out=out, mode=mode)


def _repeat_dispatcher(a, repeats, axis=None):
    return (a,)


@array_function_dispatch(_repeat_dispatcher)
def repeat(a, repeats, axis=None):
    """

    Repeat elements of an array.



    Parameters

    ----------

    a : array_like

        Input array.

    repeats : int or array of ints

        The number of repetitions for each element.  `repeats` is broadcasted

        to fit the shape of the given axis.

    axis : int, optional

        The axis along which to repeat values.  By default, use the

        flattened input array, and return a flat output array.



    Returns

    -------

    repeated_array : ndarray

        Output array which has the same shape as `a`, except along

        the given axis.



    See Also

    --------

    tile : Tile an array.

    unique : Find the unique elements of an array.



    Examples

    --------

    >>> np.repeat(3, 4)

    array([3, 3, 3, 3])

    >>> x = np.array([[1,2],[3,4]])

    >>> np.repeat(x, 2)

    array([1, 1, 2, 2, 3, 3, 4, 4])

    >>> np.repeat(x, 3, axis=1)

    array([[1, 1, 1, 2, 2, 2],

           [3, 3, 3, 4, 4, 4]])

    >>> np.repeat(x, [1, 2], axis=0)

    array([[1, 2],

           [3, 4],

           [3, 4]])



    """
    return _wrapfunc(a, 'repeat', repeats, axis=axis)


def _put_dispatcher(a, ind, v, mode=None):
    return (a, ind, v)


@array_function_dispatch(_put_dispatcher)
def put(a, ind, v, mode='raise'):
    """

    Replaces specified elements of an array with given values.



    The indexing works on the flattened target array. `put` is roughly

    equivalent to:



    ::



        a.flat[ind] = v



    Parameters

    ----------

    a : ndarray

        Target array.

    ind : array_like

        Target indices, interpreted as integers.

    v : array_like

        Values to place in `a` at target indices. If `v` is shorter than

        `ind` it will be repeated as necessary.

    mode : {'raise', 'wrap', 'clip'}, optional

        Specifies how out-of-bounds indices will behave.



        * 'raise' -- raise an error (default)

        * 'wrap' -- wrap around

        * 'clip' -- clip to the range



        'clip' mode means that all indices that are too large are replaced

        by the index that addresses the last element along that axis. Note

        that this disables indexing with negative numbers. In 'raise' mode,

        if an exception occurs the target array may still be modified.



    See Also

    --------

    putmask, place

    put_along_axis : Put elements by matching the array and the index arrays



    Examples

    --------

    >>> a = np.arange(5)

    >>> np.put(a, [0, 2], [-44, -55])

    >>> a

    array([-44,   1, -55,   3,   4])



    >>> a = np.arange(5)

    >>> np.put(a, 22, -5, mode='clip')

    >>> a

    array([ 0,  1,  2,  3, -5])



    """
    try:
        put = a.put
    except AttributeError as e:
        raise TypeError("argument 1 must be numpy.ndarray, "
                        "not {name}".format(name=type(a).__name__)) from e

    return put(ind, v, mode=mode)


def _swapaxes_dispatcher(a, axis1, axis2):
    return (a,)


@array_function_dispatch(_swapaxes_dispatcher)
def swapaxes(a, axis1, axis2):
    """

    Interchange two axes of an array.



    Parameters

    ----------

    a : array_like

        Input array.

    axis1 : int

        First axis.

    axis2 : int

        Second axis.



    Returns

    -------

    a_swapped : ndarray

        For NumPy >= 1.10.0, if `a` is an ndarray, then a view of `a` is

        returned; otherwise a new array is created. For earlier NumPy

        versions a view of `a` is returned only if the order of the

        axes is changed, otherwise the input array is returned.



    Examples

    --------

    >>> x = np.array([[1,2,3]])

    >>> np.swapaxes(x,0,1)

    array([[1],

           [2],

           [3]])



    >>> x = np.array([[[0,1],[2,3]],[[4,5],[6,7]]])

    >>> x

    array([[[0, 1],

            [2, 3]],

           [[4, 5],

            [6, 7]]])



    >>> np.swapaxes(x,0,2)

    array([[[0, 4],

            [2, 6]],

           [[1, 5],

            [3, 7]]])



    """
    return _wrapfunc(a, 'swapaxes', axis1, axis2)


def _transpose_dispatcher(a, axes=None):
    return (a,)


@array_function_dispatch(_transpose_dispatcher)
def transpose(a, axes=None):
    """

    Reverse or permute the axes of an array; returns the modified array.



    For an array a with two axes, transpose(a) gives the matrix transpose.



    Refer to `numpy.ndarray.transpose` for full documentation.



    Parameters

    ----------

    a : array_like

        Input array.

    axes : tuple or list of ints, optional

        If specified, it must be a tuple or list which contains a permutation of

        [0,1,..,N-1] where N is the number of axes of a.  The i'th axis of the

        returned array will correspond to the axis numbered ``axes[i]`` of the

        input.  If not specified, defaults to ``range(a.ndim)[::-1]``, which

        reverses the order of the axes.



    Returns

    -------

    p : ndarray

        `a` with its axes permuted.  A view is returned whenever

        possible.



    See Also

    --------

    ndarray.transpose : Equivalent method

    moveaxis

    argsort



    Notes

    -----

    Use `transpose(a, argsort(axes))` to invert the transposition of tensors

    when using the `axes` keyword argument.



    Transposing a 1-D array returns an unchanged view of the original array.



    Examples

    --------

    >>> x = np.arange(4).reshape((2,2))

    >>> x

    array([[0, 1],

           [2, 3]])



    >>> np.transpose(x)

    array([[0, 2],

           [1, 3]])



    >>> x = np.ones((1, 2, 3))

    >>> np.transpose(x, (1, 0, 2)).shape

    (2, 1, 3)



    >>> x = np.ones((2, 3, 4, 5))

    >>> np.transpose(x).shape

    (5, 4, 3, 2)



    """
    return _wrapfunc(a, 'transpose', axes)


def _partition_dispatcher(a, kth, axis=None, kind=None, order=None):
    return (a,)


@array_function_dispatch(_partition_dispatcher)
def partition(a, kth, axis=-1, kind='introselect', order=None):
    """

    Return a partitioned copy of an array.



    Creates a copy of the array with its elements rearranged in such a

    way that the value of the element in k-th position is in the

    position it would be in a sorted array. All elements smaller than

    the k-th element are moved before this element and all equal or

    greater are moved behind it. The ordering of the elements in the two

    partitions is undefined.



    .. versionadded:: 1.8.0



    Parameters

    ----------

    a : array_like

        Array to be sorted.

    kth : int or sequence of ints

        Element index to partition by. The k-th value of the element

        will be in its final sorted position and all smaller elements

        will be moved before it and all equal or greater elements behind

        it. The order of all elements in the partitions is undefined. If

        provided with a sequence of k-th it will partition all elements

        indexed by k-th  of them into their sorted position at once.

    axis : int or None, optional

        Axis along which to sort. If None, the array is flattened before

        sorting. The default is -1, which sorts along the last axis.

    kind : {'introselect'}, optional

        Selection algorithm. Default is 'introselect'.

    order : str or list of str, optional

        When `a` is an array with fields defined, this argument

        specifies which fields to compare first, second, etc.  A single

        field can be specified as a string.  Not all fields need be

        specified, but unspecified fields will still be used, in the

        order in which they come up in the dtype, to break ties.



    Returns

    -------

    partitioned_array : ndarray

        Array of the same type and shape as `a`.



    See Also

    --------

    ndarray.partition : Method to sort an array in-place.

    argpartition : Indirect partition.

    sort : Full sorting



    Notes

    -----

    The various selection algorithms are characterized by their average

    speed, worst case performance, work space size, and whether they are

    stable. A stable sort keeps items with the same key in the same

    relative order. The available algorithms have the following

    properties:



    ================= ======= ============= ============ =======

       kind            speed   worst case    work space  stable

    ================= ======= ============= ============ =======

    'introselect'        1        O(n)           0         no

    ================= ======= ============= ============ =======



    All the partition algorithms make temporary copies of the data when

    partitioning along any but the last axis.  Consequently,

    partitioning along the last axis is faster and uses less space than

    partitioning along any other axis.



    The sort order for complex numbers is lexicographic. If both the

    real and imaginary parts are non-nan then the order is determined by

    the real parts except when they are equal, in which case the order

    is determined by the imaginary parts.



    Examples

    --------

    >>> a = np.array([3, 4, 2, 1])

    >>> np.partition(a, 3)

    array([2, 1, 3, 4])



    >>> np.partition(a, (1, 3))

    array([1, 2, 3, 4])



    """
    if axis is None:
        # flatten returns (1, N) for np.matrix, so always use the last axis
        a = asanyarray(a).flatten()
        axis = -1
    else:
        a = asanyarray(a).copy(order="K")
    a.partition(kth, axis=axis, kind=kind, order=order)
    return a


def _argpartition_dispatcher(a, kth, axis=None, kind=None, order=None):
    return (a,)


@array_function_dispatch(_argpartition_dispatcher)
def argpartition(a, kth, axis=-1, kind='introselect', order=None):
    """

    Perform an indirect partition along the given axis using the

    algorithm specified by the `kind` keyword. It returns an array of

    indices of the same shape as `a` that index data along the given

    axis in partitioned order.



    .. versionadded:: 1.8.0



    Parameters

    ----------

    a : array_like

        Array to sort.

    kth : int or sequence of ints

        Element index to partition by. The k-th element will be in its

        final sorted position and all smaller elements will be moved

        before it and all larger elements behind it. The order all

        elements in the partitions is undefined. If provided with a

        sequence of k-th it will partition all of them into their sorted

        position at once.

    axis : int or None, optional

        Axis along which to sort. The default is -1 (the last axis). If

        None, the flattened array is used.

    kind : {'introselect'}, optional

        Selection algorithm. Default is 'introselect'

    order : str or list of str, optional

        When `a` is an array with fields defined, this argument

        specifies which fields to compare first, second, etc. A single

        field can be specified as a string, and not all fields need be

        specified, but unspecified fields will still be used, in the

        order in which they come up in the dtype, to break ties.



    Returns

    -------

    index_array : ndarray, int

        Array of indices that partition `a` along the specified axis.

        If `a` is one-dimensional, ``a[index_array]`` yields a partitioned `a`.

        More generally, ``np.take_along_axis(a, index_array, axis=a)`` always

        yields the partitioned `a`, irrespective of dimensionality.



    See Also

    --------

    partition : Describes partition algorithms used.

    ndarray.partition : Inplace partition.

    argsort : Full indirect sort.

    take_along_axis : Apply ``index_array`` from argpartition

                      to an array as if by calling partition.



    Notes

    -----

    See `partition` for notes on the different selection algorithms.



    Examples

    --------

    One dimensional array:



    >>> x = np.array([3, 4, 2, 1])

    >>> x[np.argpartition(x, 3)]

    array([2, 1, 3, 4])

    >>> x[np.argpartition(x, (1, 3))]

    array([1, 2, 3, 4])



    >>> x = [3, 4, 2, 1]

    >>> np.array(x)[np.argpartition(x, 3)]

    array([2, 1, 3, 4])



    Multi-dimensional array:



    >>> x = np.array([[3, 4, 2], [1, 3, 1]])

    >>> index_array = np.argpartition(x, kth=1, axis=-1)

    >>> np.take_along_axis(x, index_array, axis=-1)  # same as np.partition(x, kth=1)

    array([[2, 3, 4],

           [1, 1, 3]])



    """
    return _wrapfunc(a, 'argpartition', kth, axis=axis, kind=kind, order=order)


def _sort_dispatcher(a, axis=None, kind=None, order=None):
    return (a,)


@array_function_dispatch(_sort_dispatcher)
def sort(a, axis=-1, kind=None, order=None):
    """

    Return a sorted copy of an array.



    Parameters

    ----------

    a : array_like

        Array to be sorted.

    axis : int or None, optional

        Axis along which to sort. If None, the array is flattened before

        sorting. The default is -1, which sorts along the last axis.

    kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional

        Sorting algorithm. The default is 'quicksort'. Note that both 'stable'

        and 'mergesort' use timsort or radix sort under the covers and, in general,

        the actual implementation will vary with data type. The 'mergesort' option

        is retained for backwards compatibility.



        .. versionchanged:: 1.15.0.

           The 'stable' option was added.



    order : str or list of str, optional

        When `a` is an array with fields defined, this argument specifies

        which fields to compare first, second, etc.  A single field can

        be specified as a string, and not all fields need be specified,

        but unspecified fields will still be used, in the order in which

        they come up in the dtype, to break ties.



    Returns

    -------

    sorted_array : ndarray

        Array of the same type and shape as `a`.



    See Also

    --------

    ndarray.sort : Method to sort an array in-place.

    argsort : Indirect sort.

    lexsort : Indirect stable sort on multiple keys.

    searchsorted : Find elements in a sorted array.

    partition : Partial sort.



    Notes

    -----

    The various sorting algorithms are characterized by their average speed,

    worst case performance, work space size, and whether they are stable. A

    stable sort keeps items with the same key in the same relative

    order. The four algorithms implemented in NumPy have the following

    properties:



    =========== ======= ============= ============ ========

       kind      speed   worst case    work space   stable

    =========== ======= ============= ============ ========

    'quicksort'    1     O(n^2)            0          no

    'heapsort'     3     O(n*log(n))       0          no

    'mergesort'    2     O(n*log(n))      ~n/2        yes

    'timsort'      2     O(n*log(n))      ~n/2        yes

    =========== ======= ============= ============ ========



    .. note:: The datatype determines which of 'mergesort' or 'timsort'

       is actually used, even if 'mergesort' is specified. User selection

       at a finer scale is not currently available.



    All the sort algorithms make temporary copies of the data when

    sorting along any but the last axis.  Consequently, sorting along

    the last axis is faster and uses less space than sorting along

    any other axis.



    The sort order for complex numbers is lexicographic. If both the real

    and imaginary parts are non-nan then the order is determined by the

    real parts except when they are equal, in which case the order is

    determined by the imaginary parts.



    Previous to numpy 1.4.0 sorting real and complex arrays containing nan

    values led to undefined behaviour. In numpy versions >= 1.4.0 nan

    values are sorted to the end. The extended sort order is:



      * Real: [R, nan]

      * Complex: [R + Rj, R + nanj, nan + Rj, nan + nanj]



    where R is a non-nan real value. Complex values with the same nan

    placements are sorted according to the non-nan part if it exists.

    Non-nan values are sorted as before.



    .. versionadded:: 1.12.0



    quicksort has been changed to `introsort <https://en.wikipedia.org/wiki/Introsort>`_.

    When sorting does not make enough progress it switches to

    `heapsort <https://en.wikipedia.org/wiki/Heapsort>`_.

    This implementation makes quicksort O(n*log(n)) in the worst case.



    'stable' automatically chooses the best stable sorting algorithm

    for the data type being sorted.

    It, along with 'mergesort' is currently mapped to

    `timsort <https://en.wikipedia.org/wiki/Timsort>`_

    or `radix sort <https://en.wikipedia.org/wiki/Radix_sort>`_

    depending on the data type.

    API forward compatibility currently limits the

    ability to select the implementation and it is hardwired for the different

    data types.



    .. versionadded:: 1.17.0



    Timsort is added for better performance on already or nearly

    sorted data. On random data timsort is almost identical to

    mergesort. It is now used for stable sort while quicksort is still the

    default sort if none is chosen. For timsort details, refer to

    `CPython listsort.txt <https://github.com/python/cpython/blob/3.7/Objects/listsort.txt>`_.

    'mergesort' and 'stable' are mapped to radix sort for integer data types. Radix sort is an

    O(n) sort instead of O(n log n).



    .. versionchanged:: 1.18.0



    NaT now sorts to the end of arrays for consistency with NaN.



    Examples

    --------

    >>> a = np.array([[1,4],[3,1]])

    >>> np.sort(a)                # sort along the last axis

    array([[1, 4],

           [1, 3]])

    >>> np.sort(a, axis=None)     # sort the flattened array

    array([1, 1, 3, 4])

    >>> np.sort(a, axis=0)        # sort along the first axis

    array([[1, 1],

           [3, 4]])



    Use the `order` keyword to specify a field to use when sorting a

    structured array:



    >>> dtype = [('name', 'S10'), ('height', float), ('age', int)]

    >>> values = [('Arthur', 1.8, 41), ('Lancelot', 1.9, 38),

    ...           ('Galahad', 1.7, 38)]

    >>> a = np.array(values, dtype=dtype)       # create a structured array

    >>> np.sort(a, order='height')                        # doctest: +SKIP

    array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41),

           ('Lancelot', 1.8999999999999999, 38)],

          dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])



    Sort by age, then height if ages are equal:



    >>> np.sort(a, order=['age', 'height'])               # doctest: +SKIP

    array([('Galahad', 1.7, 38), ('Lancelot', 1.8999999999999999, 38),

           ('Arthur', 1.8, 41)],

          dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')])



    """
    if axis is None:
        # flatten returns (1, N) for np.matrix, so always use the last axis
        a = asanyarray(a).flatten()
        axis = -1
    else:
        a = asanyarray(a).copy(order="K")
    a.sort(axis=axis, kind=kind, order=order)
    return a


def _argsort_dispatcher(a, axis=None, kind=None, order=None):
    return (a,)


@array_function_dispatch(_argsort_dispatcher)
def argsort(a, axis=-1, kind=None, order=None):
    """

    Returns the indices that would sort an array.



    Perform an indirect sort along the given axis using the algorithm specified

    by the `kind` keyword. It returns an array of indices of the same shape as

    `a` that index data along the given axis in sorted order.



    Parameters

    ----------

    a : array_like

        Array to sort.

    axis : int or None, optional

        Axis along which to sort.  The default is -1 (the last axis). If None,

        the flattened array is used.

    kind : {'quicksort', 'mergesort', 'heapsort', 'stable'}, optional

        Sorting algorithm. The default is 'quicksort'. Note that both 'stable'

        and 'mergesort' use timsort under the covers and, in general, the

        actual implementation will vary with data type. The 'mergesort' option

        is retained for backwards compatibility.



        .. versionchanged:: 1.15.0.

           The 'stable' option was added.

    order : str or list of str, optional

        When `a` is an array with fields defined, this argument specifies

        which fields to compare first, second, etc.  A single field can

        be specified as a string, and not all fields need be specified,

        but unspecified fields will still be used, in the order in which

        they come up in the dtype, to break ties.



    Returns

    -------

    index_array : ndarray, int

        Array of indices that sort `a` along the specified `axis`.

        If `a` is one-dimensional, ``a[index_array]`` yields a sorted `a`.

        More generally, ``np.take_along_axis(a, index_array, axis=axis)``

        always yields the sorted `a`, irrespective of dimensionality.



    See Also

    --------

    sort : Describes sorting algorithms used.

    lexsort : Indirect stable sort with multiple keys.

    ndarray.sort : Inplace sort.

    argpartition : Indirect partial sort.

    take_along_axis : Apply ``index_array`` from argsort

                      to an array as if by calling sort.



    Notes

    -----

    See `sort` for notes on the different sorting algorithms.



    As of NumPy 1.4.0 `argsort` works with real/complex arrays containing

    nan values. The enhanced sort order is documented in `sort`.



    Examples

    --------

    One dimensional array:



    >>> x = np.array([3, 1, 2])

    >>> np.argsort(x)

    array([1, 2, 0])



    Two-dimensional array:



    >>> x = np.array([[0, 3], [2, 2]])

    >>> x

    array([[0, 3],

           [2, 2]])



    >>> ind = np.argsort(x, axis=0)  # sorts along first axis (down)

    >>> ind

    array([[0, 1],

           [1, 0]])

    >>> np.take_along_axis(x, ind, axis=0)  # same as np.sort(x, axis=0)

    array([[0, 2],

           [2, 3]])



    >>> ind = np.argsort(x, axis=1)  # sorts along last axis (across)

    >>> ind

    array([[0, 1],

           [0, 1]])

    >>> np.take_along_axis(x, ind, axis=1)  # same as np.sort(x, axis=1)

    array([[0, 3],

           [2, 2]])



    Indices of the sorted elements of a N-dimensional array:



    >>> ind = np.unravel_index(np.argsort(x, axis=None), x.shape)

    >>> ind

    (array([0, 1, 1, 0]), array([0, 0, 1, 1]))

    >>> x[ind]  # same as np.sort(x, axis=None)

    array([0, 2, 2, 3])



    Sorting with keys:



    >>> x = np.array([(1, 0), (0, 1)], dtype=[('x', '<i4'), ('y', '<i4')])

    >>> x

    array([(1, 0), (0, 1)],

          dtype=[('x', '<i4'), ('y', '<i4')])



    >>> np.argsort(x, order=('x','y'))

    array([1, 0])



    >>> np.argsort(x, order=('y','x'))

    array([0, 1])



    """
    return _wrapfunc(a, 'argsort', axis=axis, kind=kind, order=order)


def _argmax_dispatcher(a, axis=None, out=None):
    return (a, out)


@array_function_dispatch(_argmax_dispatcher)
def argmax(a, axis=None, out=None):
    """

    Returns the indices of the maximum values along an axis.



    Parameters

    ----------

    a : array_like

        Input array.

    axis : int, optional

        By default, the index is into the flattened array, otherwise

        along the specified axis.

    out : array, optional

        If provided, the result will be inserted into this array. It should

        be of the appropriate shape and dtype.



    Returns

    -------

    index_array : ndarray of ints

        Array of indices into the array. It has the same shape as `a.shape`

        with the dimension along `axis` removed.



    See Also

    --------

    ndarray.argmax, argmin

    amax : The maximum value along a given axis.

    unravel_index : Convert a flat index into an index tuple.

    take_along_axis : Apply ``np.expand_dims(index_array, axis)``

                      from argmax to an array as if by calling max.



    Notes

    -----

    In case of multiple occurrences of the maximum values, the indices

    corresponding to the first occurrence are returned.



    Examples

    --------

    >>> a = np.arange(6).reshape(2,3) + 10

    >>> a

    array([[10, 11, 12],

           [13, 14, 15]])

    >>> np.argmax(a)

    5

    >>> np.argmax(a, axis=0)

    array([1, 1, 1])

    >>> np.argmax(a, axis=1)

    array([2, 2])



    Indexes of the maximal elements of a N-dimensional array:



    >>> ind = np.unravel_index(np.argmax(a, axis=None), a.shape)

    >>> ind

    (1, 2)

    >>> a[ind]

    15



    >>> b = np.arange(6)

    >>> b[1] = 5

    >>> b

    array([0, 5, 2, 3, 4, 5])

    >>> np.argmax(b)  # Only the first occurrence is returned.

    1



    >>> x = np.array([[4,2,3], [1,0,3]])

    >>> index_array = np.argmax(x, axis=-1)

    >>> # Same as np.max(x, axis=-1, keepdims=True)

    >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1)

    array([[4],

           [3]])

    >>> # Same as np.max(x, axis=-1)

    >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1).squeeze(axis=-1)

    array([4, 3])



    """
    return _wrapfunc(a, 'argmax', axis=axis, out=out)


def _argmin_dispatcher(a, axis=None, out=None):
    return (a, out)


@array_function_dispatch(_argmin_dispatcher)
def argmin(a, axis=None, out=None):
    """

    Returns the indices of the minimum values along an axis.



    Parameters

    ----------

    a : array_like

        Input array.

    axis : int, optional

        By default, the index is into the flattened array, otherwise

        along the specified axis.

    out : array, optional

        If provided, the result will be inserted into this array. It should

        be of the appropriate shape and dtype.



    Returns

    -------

    index_array : ndarray of ints

        Array of indices into the array. It has the same shape as `a.shape`

        with the dimension along `axis` removed.



    See Also

    --------

    ndarray.argmin, argmax

    amin : The minimum value along a given axis.

    unravel_index : Convert a flat index into an index tuple.

    take_along_axis : Apply ``np.expand_dims(index_array, axis)``

                      from argmin to an array as if by calling min.



    Notes

    -----

    In case of multiple occurrences of the minimum values, the indices

    corresponding to the first occurrence are returned.



    Examples

    --------

    >>> a = np.arange(6).reshape(2,3) + 10

    >>> a

    array([[10, 11, 12],

           [13, 14, 15]])

    >>> np.argmin(a)

    0

    >>> np.argmin(a, axis=0)

    array([0, 0, 0])

    >>> np.argmin(a, axis=1)

    array([0, 0])



    Indices of the minimum elements of a N-dimensional array:



    >>> ind = np.unravel_index(np.argmin(a, axis=None), a.shape)

    >>> ind

    (0, 0)

    >>> a[ind]

    10



    >>> b = np.arange(6) + 10

    >>> b[4] = 10

    >>> b

    array([10, 11, 12, 13, 10, 15])

    >>> np.argmin(b)  # Only the first occurrence is returned.

    0



    >>> x = np.array([[4,2,3], [1,0,3]])

    >>> index_array = np.argmin(x, axis=-1)

    >>> # Same as np.min(x, axis=-1, keepdims=True)

    >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1)

    array([[2],

           [0]])

    >>> # Same as np.max(x, axis=-1)

    >>> np.take_along_axis(x, np.expand_dims(index_array, axis=-1), axis=-1).squeeze(axis=-1)

    array([2, 0])



    """
    return _wrapfunc(a, 'argmin', axis=axis, out=out)


def _searchsorted_dispatcher(a, v, side=None, sorter=None):
    return (a, v, sorter)


@array_function_dispatch(_searchsorted_dispatcher)
def searchsorted(a, v, side='left', sorter=None):
    """

    Find indices where elements should be inserted to maintain order.



    Find the indices into a sorted array `a` such that, if the

    corresponding elements in `v` were inserted before the indices, the

    order of `a` would be preserved.



    Assuming that `a` is sorted:



    ======  ============================

    `side`  returned index `i` satisfies

    ======  ============================

    left    ``a[i-1] < v <= a[i]``

    right   ``a[i-1] <= v < a[i]``

    ======  ============================



    Parameters

    ----------

    a : 1-D array_like

        Input array. If `sorter` is None, then it must be sorted in

        ascending order, otherwise `sorter` must be an array of indices

        that sort it.

    v : array_like

        Values to insert into `a`.

    side : {'left', 'right'}, optional

        If 'left', the index of the first suitable location found is given.

        If 'right', return the last such index.  If there is no suitable

        index, return either 0 or N (where N is the length of `a`).

    sorter : 1-D array_like, optional

        Optional array of integer indices that sort array a into ascending

        order. They are typically the result of argsort.



        .. versionadded:: 1.7.0



    Returns

    -------

    indices : array of ints

        Array of insertion points with the same shape as `v`.



    See Also

    --------

    sort : Return a sorted copy of an array.

    histogram : Produce histogram from 1-D data.



    Notes

    -----

    Binary search is used to find the required insertion points.



    As of NumPy 1.4.0 `searchsorted` works with real/complex arrays containing

    `nan` values. The enhanced sort order is documented in `sort`.



    This function uses the same algorithm as the builtin python `bisect.bisect_left`

    (``side='left'``) and `bisect.bisect_right` (``side='right'``) functions,

    which is also vectorized in the `v` argument.



    Examples

    --------

    >>> np.searchsorted([1,2,3,4,5], 3)

    2

    >>> np.searchsorted([1,2,3,4,5], 3, side='right')

    3

    >>> np.searchsorted([1,2,3,4,5], [-10, 10, 2, 3])

    array([0, 5, 1, 2])



    """
    return _wrapfunc(a, 'searchsorted', v, side=side, sorter=sorter)


def _resize_dispatcher(a, new_shape):
    return (a,)


@array_function_dispatch(_resize_dispatcher)
def resize(a, new_shape):
    """

    Return a new array with the specified shape.



    If the new array is larger than the original array, then the new

    array is filled with repeated copies of `a`.  Note that this behavior

    is different from a.resize(new_shape) which fills with zeros instead

    of repeated copies of `a`.



    Parameters

    ----------

    a : array_like

        Array to be resized.



    new_shape : int or tuple of int

        Shape of resized array.



    Returns

    -------

    reshaped_array : ndarray

        The new array is formed from the data in the old array, repeated

        if necessary to fill out the required number of elements.  The

        data are repeated iterating over the array in C-order.



    See Also

    --------

    np.reshape : Reshape an array without changing the total size.

    np.pad : Enlarge and pad an array.

    np.repeat : Repeat elements of an array.

    ndarray.resize : resize an array in-place.



    Notes

    -----

    When the total size of the array does not change `~numpy.reshape` should

    be used.  In most other cases either indexing (to reduce the size)

    or padding (to increase the size) may be a more appropriate solution.



    Warning: This functionality does **not** consider axes separately,

    i.e. it does not apply interpolation/extrapolation.

    It fills the return array with the required number of elements, iterating

    over `a` in C-order, disregarding axes (and cycling back from the start if

    the new shape is larger).  This functionality is therefore not suitable to

    resize images, or data where each axis represents a separate and distinct

    entity.



    Examples

    --------

    >>> a=np.array([[0,1],[2,3]])

    >>> np.resize(a,(2,3))

    array([[0, 1, 2],

           [3, 0, 1]])

    >>> np.resize(a,(1,4))

    array([[0, 1, 2, 3]])

    >>> np.resize(a,(2,4))

    array([[0, 1, 2, 3],

           [0, 1, 2, 3]])



    """
    if isinstance(new_shape, (int, nt.integer)):
        new_shape = (new_shape,)

    a = ravel(a)

    new_size = 1
    for dim_length in new_shape:
        new_size *= dim_length
        if dim_length < 0:
            raise ValueError('all elements of `new_shape` must be non-negative')

    if a.size == 0 or new_size == 0:
        # First case must zero fill. The second would have repeats == 0.
        return np.zeros_like(a, shape=new_shape)

    repeats = -(-new_size // a.size)  # ceil division
    a = concatenate((a,) * repeats)[:new_size]

    return reshape(a, new_shape)


def _squeeze_dispatcher(a, axis=None):
    return (a,)


@array_function_dispatch(_squeeze_dispatcher)
def squeeze(a, axis=None):
    """

    Remove axes of length one from `a`.



    Parameters

    ----------

    a : array_like

        Input data.

    axis : None or int or tuple of ints, optional

        .. versionadded:: 1.7.0



        Selects a subset of the entries of length one in the

        shape. If an axis is selected with shape entry greater than

        one, an error is raised.



    Returns

    -------

    squeezed : ndarray

        The input array, but with all or a subset of the

        dimensions of length 1 removed. This is always `a` itself

        or a view into `a`. Note that if all axes are squeezed,

        the result is a 0d array and not a scalar.



    Raises

    ------

    ValueError

        If `axis` is not None, and an axis being squeezed is not of length 1



    See Also

    --------

    expand_dims : The inverse operation, adding entries of length one

    reshape : Insert, remove, and combine dimensions, and resize existing ones



    Examples

    --------

    >>> x = np.array([[[0], [1], [2]]])

    >>> x.shape

    (1, 3, 1)

    >>> np.squeeze(x).shape

    (3,)

    >>> np.squeeze(x, axis=0).shape

    (3, 1)

    >>> np.squeeze(x, axis=1).shape

    Traceback (most recent call last):

    ...

    ValueError: cannot select an axis to squeeze out which has size not equal to one

    >>> np.squeeze(x, axis=2).shape

    (1, 3)

    >>> x = np.array([[1234]])

    >>> x.shape

    (1, 1)

    >>> np.squeeze(x)

    array(1234)  # 0d array

    >>> np.squeeze(x).shape

    ()

    >>> np.squeeze(x)[()]

    1234



    """
    try:
        squeeze = a.squeeze
    except AttributeError:
        return _wrapit(a, 'squeeze', axis=axis)
    if axis is None:
        return squeeze()
    else:
        return squeeze(axis=axis)


def _diagonal_dispatcher(a, offset=None, axis1=None, axis2=None):
    return (a,)


@array_function_dispatch(_diagonal_dispatcher)
def diagonal(a, offset=0, axis1=0, axis2=1):
    """

    Return specified diagonals.



    If `a` is 2-D, returns the diagonal of `a` with the given offset,

    i.e., the collection of elements of the form ``a[i, i+offset]``.  If

    `a` has more than two dimensions, then the axes specified by `axis1`

    and `axis2` are used to determine the 2-D sub-array whose diagonal is

    returned.  The shape of the resulting array can be determined by

    removing `axis1` and `axis2` and appending an index to the right equal

    to the size of the resulting diagonals.



    In versions of NumPy prior to 1.7, this function always returned a new,

    independent array containing a copy of the values in the diagonal.



    In NumPy 1.7 and 1.8, it continues to return a copy of the diagonal,

    but depending on this fact is deprecated. Writing to the resulting

    array continues to work as it used to, but a FutureWarning is issued.



    Starting in NumPy 1.9 it returns a read-only view on the original array.

    Attempting to write to the resulting array will produce an error.



    In some future release, it will return a read/write view and writing to

    the returned array will alter your original array.  The returned array

    will have the same type as the input array.



    If you don't write to the array returned by this function, then you can

    just ignore all of the above.



    If you depend on the current behavior, then we suggest copying the

    returned array explicitly, i.e., use ``np.diagonal(a).copy()`` instead

    of just ``np.diagonal(a)``. This will work with both past and future

    versions of NumPy.



    Parameters

    ----------

    a : array_like

        Array from which the diagonals are taken.

    offset : int, optional

        Offset of the diagonal from the main diagonal.  Can be positive or

        negative.  Defaults to main diagonal (0).

    axis1 : int, optional

        Axis to be used as the first axis of the 2-D sub-arrays from which

        the diagonals should be taken.  Defaults to first axis (0).

    axis2 : int, optional

        Axis to be used as the second axis of the 2-D sub-arrays from

        which the diagonals should be taken. Defaults to second axis (1).



    Returns

    -------

    array_of_diagonals : ndarray

        If `a` is 2-D, then a 1-D array containing the diagonal and of the

        same type as `a` is returned unless `a` is a `matrix`, in which case

        a 1-D array rather than a (2-D) `matrix` is returned in order to

        maintain backward compatibility.



        If ``a.ndim > 2``, then the dimensions specified by `axis1` and `axis2`

        are removed, and a new axis inserted at the end corresponding to the

        diagonal.



    Raises

    ------

    ValueError

        If the dimension of `a` is less than 2.



    See Also

    --------

    diag : MATLAB work-a-like for 1-D and 2-D arrays.

    diagflat : Create diagonal arrays.

    trace : Sum along diagonals.



    Examples

    --------

    >>> a = np.arange(4).reshape(2,2)

    >>> a

    array([[0, 1],

           [2, 3]])

    >>> a.diagonal()

    array([0, 3])

    >>> a.diagonal(1)

    array([1])



    A 3-D example:



    >>> a = np.arange(8).reshape(2,2,2); a

    array([[[0, 1],

            [2, 3]],

           [[4, 5],

            [6, 7]]])

    >>> a.diagonal(0,  # Main diagonals of two arrays created by skipping

    ...            0,  # across the outer(left)-most axis last and

    ...            1)  # the "middle" (row) axis first.

    array([[0, 6],

           [1, 7]])



    The sub-arrays whose main diagonals we just obtained; note that each

    corresponds to fixing the right-most (column) axis, and that the

    diagonals are "packed" in rows.



    >>> a[:,:,0]  # main diagonal is [0 6]

    array([[0, 2],

           [4, 6]])

    >>> a[:,:,1]  # main diagonal is [1 7]

    array([[1, 3],

           [5, 7]])



    The anti-diagonal can be obtained by reversing the order of elements

    using either `numpy.flipud` or `numpy.fliplr`.



    >>> a = np.arange(9).reshape(3, 3)

    >>> a

    array([[0, 1, 2],

           [3, 4, 5],

           [6, 7, 8]])

    >>> np.fliplr(a).diagonal()  # Horizontal flip

    array([2, 4, 6])

    >>> np.flipud(a).diagonal()  # Vertical flip

    array([6, 4, 2])



    Note that the order in which the diagonal is retrieved varies depending

    on the flip function.

    """
    if isinstance(a, np.matrix):
        # Make diagonal of matrix 1-D to preserve backward compatibility.
        return asarray(a).diagonal(offset=offset, axis1=axis1, axis2=axis2)
    else:
        return asanyarray(a).diagonal(offset=offset, axis1=axis1, axis2=axis2)


def _trace_dispatcher(

        a, offset=None, axis1=None, axis2=None, dtype=None, out=None):
    return (a, out)


@array_function_dispatch(_trace_dispatcher)
def trace(a, offset=0, axis1=0, axis2=1, dtype=None, out=None):
    """

    Return the sum along diagonals of the array.



    If `a` is 2-D, the sum along its diagonal with the given offset

    is returned, i.e., the sum of elements ``a[i,i+offset]`` for all i.



    If `a` has more than two dimensions, then the axes specified by axis1 and

    axis2 are used to determine the 2-D sub-arrays whose traces are returned.

    The shape of the resulting array is the same as that of `a` with `axis1`

    and `axis2` removed.



    Parameters

    ----------

    a : array_like

        Input array, from which the diagonals are taken.

    offset : int, optional

        Offset of the diagonal from the main diagonal. Can be both positive

        and negative. Defaults to 0.

    axis1, axis2 : int, optional

        Axes to be used as the first and second axis of the 2-D sub-arrays

        from which the diagonals should be taken. Defaults are the first two

        axes of `a`.

    dtype : dtype, optional

        Determines the data-type of the returned array and of the accumulator

        where the elements are summed. If dtype has the value None and `a` is

        of integer type of precision less than the default integer

        precision, then the default integer precision is used. Otherwise,

        the precision is the same as that of `a`.

    out : ndarray, optional

        Array into which the output is placed. Its type is preserved and

        it must be of the right shape to hold the output.



    Returns

    -------

    sum_along_diagonals : ndarray

        If `a` is 2-D, the sum along the diagonal is returned.  If `a` has

        larger dimensions, then an array of sums along diagonals is returned.



    See Also

    --------

    diag, diagonal, diagflat



    Examples

    --------

    >>> np.trace(np.eye(3))

    3.0

    >>> a = np.arange(8).reshape((2,2,2))

    >>> np.trace(a)

    array([6, 8])



    >>> a = np.arange(24).reshape((2,2,2,3))

    >>> np.trace(a).shape

    (2, 3)



    """
    if isinstance(a, np.matrix):
        # Get trace of matrix via an array to preserve backward compatibility.
        return asarray(a).trace(offset=offset, axis1=axis1, axis2=axis2, dtype=dtype, out=out)
    else:
        return asanyarray(a).trace(offset=offset, axis1=axis1, axis2=axis2, dtype=dtype, out=out)


def _ravel_dispatcher(a, order=None):
    return (a,)


@array_function_dispatch(_ravel_dispatcher)
def ravel(a, order='C'):
    """Return a contiguous flattened array.



    A 1-D array, containing the elements of the input, is returned.  A copy is

    made only if needed.



    As of NumPy 1.10, the returned array will have the same type as the input

    array. (for example, a masked array will be returned for a masked array

    input)



    Parameters

    ----------

    a : array_like

        Input array.  The elements in `a` are read in the order specified by

        `order`, and packed as a 1-D array.

    order : {'C','F', 'A', 'K'}, optional



        The elements of `a` are read using this index order. 'C' means

        to index the elements in row-major, C-style order,

        with the last axis index changing fastest, back to the first

        axis index changing slowest.  'F' means to index the elements

        in column-major, Fortran-style order, with the

        first index changing fastest, and the last index changing

        slowest. Note that the 'C' and 'F' options take no account of

        the memory layout of the underlying array, and only refer to

        the order of axis indexing.  'A' means to read the elements in

        Fortran-like index order if `a` is Fortran *contiguous* in

        memory, C-like order otherwise.  'K' means to read the

        elements in the order they occur in memory, except for

        reversing the data when strides are negative.  By default, 'C'

        index order is used.



    Returns

    -------

    y : array_like

        y is an array of the same subtype as `a`, with shape ``(a.size,)``.

        Note that matrices are special cased for backward compatibility, if `a`

        is a matrix, then y is a 1-D ndarray.



    See Also

    --------

    ndarray.flat : 1-D iterator over an array.

    ndarray.flatten : 1-D array copy of the elements of an array

                      in row-major order.

    ndarray.reshape : Change the shape of an array without changing its data.



    Notes

    -----

    In row-major, C-style order, in two dimensions, the row index

    varies the slowest, and the column index the quickest.  This can

    be generalized to multiple dimensions, where row-major order

    implies that the index along the first axis varies slowest, and

    the index along the last quickest.  The opposite holds for

    column-major, Fortran-style index ordering.



    When a view is desired in as many cases as possible, ``arr.reshape(-1)``

    may be preferable.



    Examples

    --------

    It is equivalent to ``reshape(-1, order=order)``.



    >>> x = np.array([[1, 2, 3], [4, 5, 6]])

    >>> np.ravel(x)

    array([1, 2, 3, 4, 5, 6])



    >>> x.reshape(-1)

    array([1, 2, 3, 4, 5, 6])



    >>> np.ravel(x, order='F')

    array([1, 4, 2, 5, 3, 6])



    When ``order`` is 'A', it will preserve the array's 'C' or 'F' ordering:



    >>> np.ravel(x.T)

    array([1, 4, 2, 5, 3, 6])

    >>> np.ravel(x.T, order='A')

    array([1, 2, 3, 4, 5, 6])



    When ``order`` is 'K', it will preserve orderings that are neither 'C'

    nor 'F', but won't reverse axes:



    >>> a = np.arange(3)[::-1]; a

    array([2, 1, 0])

    >>> a.ravel(order='C')

    array([2, 1, 0])

    >>> a.ravel(order='K')

    array([2, 1, 0])



    >>> a = np.arange(12).reshape(2,3,2).swapaxes(1,2); a

    array([[[ 0,  2,  4],

            [ 1,  3,  5]],

           [[ 6,  8, 10],

            [ 7,  9, 11]]])

    >>> a.ravel(order='C')

    array([ 0,  2,  4,  1,  3,  5,  6,  8, 10,  7,  9, 11])

    >>> a.ravel(order='K')

    array([ 0,  1,  2,  3,  4,  5,  6,  7,  8,  9, 10, 11])



    """
    if isinstance(a, np.matrix):
        return asarray(a).ravel(order=order)
    else:
        return asanyarray(a).ravel(order=order)


def _nonzero_dispatcher(a):
    return (a,)


@array_function_dispatch(_nonzero_dispatcher)
def nonzero(a):
    """

    Return the indices of the elements that are non-zero.



    Returns a tuple of arrays, one for each dimension of `a`,

    containing the indices of the non-zero elements in that

    dimension. The values in `a` are always tested and returned in

    row-major, C-style order.



    To group the indices by element, rather than dimension, use `argwhere`,

    which returns a row for each non-zero element.



    .. note::



       When called on a zero-d array or scalar, ``nonzero(a)`` is treated

       as ``nonzero(atleast_1d(a))``.



       .. deprecated:: 1.17.0



          Use `atleast_1d` explicitly if this behavior is deliberate.



    Parameters

    ----------

    a : array_like

        Input array.



    Returns

    -------

    tuple_of_arrays : tuple

        Indices of elements that are non-zero.



    See Also

    --------

    flatnonzero :

        Return indices that are non-zero in the flattened version of the input

        array.

    ndarray.nonzero :

        Equivalent ndarray method.

    count_nonzero :

        Counts the number of non-zero elements in the input array.



    Notes

    -----

    While the nonzero values can be obtained with ``a[nonzero(a)]``, it is

    recommended to use ``x[x.astype(bool)]`` or ``x[x != 0]`` instead, which

    will correctly handle 0-d arrays.



    Examples

    --------

    >>> x = np.array([[3, 0, 0], [0, 4, 0], [5, 6, 0]])

    >>> x

    array([[3, 0, 0],

           [0, 4, 0],

           [5, 6, 0]])

    >>> np.nonzero(x)

    (array([0, 1, 2, 2]), array([0, 1, 0, 1]))



    >>> x[np.nonzero(x)]

    array([3, 4, 5, 6])

    >>> np.transpose(np.nonzero(x))

    array([[0, 0],

           [1, 1],

           [2, 0],

           [2, 1]])



    A common use for ``nonzero`` is to find the indices of an array, where

    a condition is True.  Given an array `a`, the condition `a` > 3 is a

    boolean array and since False is interpreted as 0, np.nonzero(a > 3)

    yields the indices of the `a` where the condition is true.



    >>> a = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

    >>> a > 3

    array([[False, False, False],

           [ True,  True,  True],

           [ True,  True,  True]])

    >>> np.nonzero(a > 3)

    (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))



    Using this result to index `a` is equivalent to using the mask directly:



    >>> a[np.nonzero(a > 3)]

    array([4, 5, 6, 7, 8, 9])

    >>> a[a > 3]  # prefer this spelling

    array([4, 5, 6, 7, 8, 9])



    ``nonzero`` can also be called as a method of the array.



    >>> (a > 3).nonzero()

    (array([1, 1, 1, 2, 2, 2]), array([0, 1, 2, 0, 1, 2]))



    """
    return _wrapfunc(a, 'nonzero')


def _shape_dispatcher(a):
    return (a,)


@array_function_dispatch(_shape_dispatcher)
def shape(a):
    """

    Return the shape of an array.



    Parameters

    ----------

    a : array_like

        Input array.



    Returns

    -------

    shape : tuple of ints

        The elements of the shape tuple give the lengths of the

        corresponding array dimensions.



    See Also

    --------

    len

    ndarray.shape : Equivalent array method.



    Examples

    --------

    >>> np.shape(np.eye(3))

    (3, 3)

    >>> np.shape([[1, 2]])

    (1, 2)

    >>> np.shape([0])

    (1,)

    >>> np.shape(0)

    ()



    >>> a = np.array([(1, 2), (3, 4)], dtype=[('x', 'i4'), ('y', 'i4')])

    >>> np.shape(a)

    (2,)

    >>> a.shape

    (2,)



    """
    try:
        result = a.shape
    except AttributeError:
        result = asarray(a).shape
    return result


def _compress_dispatcher(condition, a, axis=None, out=None):
    return (condition, a, out)


@array_function_dispatch(_compress_dispatcher)
def compress(condition, a, axis=None, out=None):
    """

    Return selected slices of an array along given axis.



    When working along a given axis, a slice along that axis is returned in

    `output` for each index where `condition` evaluates to True. When

    working on a 1-D array, `compress` is equivalent to `extract`.



    Parameters

    ----------

    condition : 1-D array of bools

        Array that selects which entries to return. If len(condition)

        is less than the size of `a` along the given axis, then output is

        truncated to the length of the condition array.

    a : array_like

        Array from which to extract a part.

    axis : int, optional

        Axis along which to take slices. If None (default), work on the

        flattened array.

    out : ndarray, optional

        Output array.  Its type is preserved and it must be of the right

        shape to hold the output.



    Returns

    -------

    compressed_array : ndarray

        A copy of `a` without the slices along axis for which `condition`

        is false.



    See Also

    --------

    take, choose, diag, diagonal, select

    ndarray.compress : Equivalent method in ndarray

    extract : Equivalent method when working on 1-D arrays

    :ref:`ufuncs-output-type`



    Examples

    --------

    >>> a = np.array([[1, 2], [3, 4], [5, 6]])

    >>> a

    array([[1, 2],

           [3, 4],

           [5, 6]])

    >>> np.compress([0, 1], a, axis=0)

    array([[3, 4]])

    >>> np.compress([False, True, True], a, axis=0)

    array([[3, 4],

           [5, 6]])

    >>> np.compress([False, True], a, axis=1)

    array([[2],

           [4],

           [6]])



    Working on the flattened array does not return slices along an axis but

    selects elements.



    >>> np.compress([False, True], a)

    array([2])



    """
    return _wrapfunc(a, 'compress', condition, axis=axis, out=out)


def _clip_dispatcher(a, a_min, a_max, out=None, **kwargs):
    return (a, a_min, a_max)


@array_function_dispatch(_clip_dispatcher)
def clip(a, a_min, a_max, out=None, **kwargs):
    """

    Clip (limit) the values in an array.



    Given an interval, values outside the interval are clipped to

    the interval edges.  For example, if an interval of ``[0, 1]``

    is specified, values smaller than 0 become 0, and values larger

    than 1 become 1.



    Equivalent to but faster than ``np.minimum(a_max, np.maximum(a, a_min))``.



    No check is performed to ensure ``a_min < a_max``.



    Parameters

    ----------

    a : array_like

        Array containing elements to clip.

    a_min, a_max : array_like or None

        Minimum and maximum value. If ``None``, clipping is not performed on

        the corresponding edge. Only one of `a_min` and `a_max` may be

        ``None``. Both are broadcast against `a`.

    out : ndarray, optional

        The results will be placed in this array. It may be the input

        array for in-place clipping.  `out` must be of the right shape

        to hold the output.  Its type is preserved.

    **kwargs

        For other keyword-only arguments, see the

        :ref:`ufunc docs <ufuncs.kwargs>`.



        .. versionadded:: 1.17.0



    Returns

    -------

    clipped_array : ndarray

        An array with the elements of `a`, but where values

        < `a_min` are replaced with `a_min`, and those > `a_max`

        with `a_max`.



    See Also

    --------

    :ref:`ufuncs-output-type`



    Notes

    -----

    When `a_min` is greater than `a_max`, `clip` returns an 

    array in which all values are equal to `a_max`, 

    as shown in the second example.  



    Examples

    --------

    >>> a = np.arange(10)

    >>> a

    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

    >>> np.clip(a, 1, 8)

    array([1, 1, 2, 3, 4, 5, 6, 7, 8, 8])

    >>> np.clip(a, 8, 1)

    array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1])

    >>> np.clip(a, 3, 6, out=a)

    array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])

    >>> a

    array([3, 3, 3, 3, 4, 5, 6, 6, 6, 6])

    >>> a = np.arange(10)

    >>> a

    array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

    >>> np.clip(a, [3, 4, 1, 1, 1, 4, 4, 4, 4, 4], 8)

    array([3, 4, 2, 3, 4, 5, 6, 7, 8, 8])



    """
    return _wrapfunc(a, 'clip', a_min, a_max, out=out, **kwargs)


def _sum_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None,

                    initial=None, where=None):
    return (a, out)


@array_function_dispatch(_sum_dispatcher)
def sum(a, axis=None, dtype=None, out=None, keepdims=np._NoValue,

        initial=np._NoValue, where=np._NoValue):
    """

    Sum of array elements over a given axis.



    Parameters

    ----------

    a : array_like

        Elements to sum.

    axis : None or int or tuple of ints, optional

        Axis or axes along which a sum is performed.  The default,

        axis=None, will sum all of the elements of the input array.  If

        axis is negative it counts from the last to the first axis.



        .. versionadded:: 1.7.0



        If axis is a tuple of ints, a sum is performed on all of the axes

        specified in the tuple instead of a single axis or all the axes as

        before.

    dtype : dtype, optional

        The type of the returned array and of the accumulator in which the

        elements are summed.  The dtype of `a` is used by default unless `a`

        has an integer dtype of less precision than the default platform

        integer.  In that case, if `a` is signed then the platform integer

        is used while if `a` is unsigned then an unsigned integer of the

        same precision as the platform integer is used.

    out : ndarray, optional

        Alternative output array in which to place the result. It must have

        the same shape as the expected output, but the type of the output

        values will be cast if necessary.

    keepdims : bool, optional

        If this is set to True, the axes which are reduced are left

        in the result as dimensions with size one. With this option,

        the result will broadcast correctly against the input array.



        If the default value is passed, then `keepdims` will not be

        passed through to the `sum` method of sub-classes of

        `ndarray`, however any non-default value will be.  If the

        sub-class' method does not implement `keepdims` any

        exceptions will be raised.

    initial : scalar, optional

        Starting value for the sum. See `~numpy.ufunc.reduce` for details.



        .. versionadded:: 1.15.0



    where : array_like of bool, optional

        Elements to include in the sum. See `~numpy.ufunc.reduce` for details.



        .. versionadded:: 1.17.0



    Returns

    -------

    sum_along_axis : ndarray

        An array with the same shape as `a`, with the specified

        axis removed.   If `a` is a 0-d array, or if `axis` is None, a scalar

        is returned.  If an output array is specified, a reference to

        `out` is returned.



    See Also

    --------

    ndarray.sum : Equivalent method.



    add.reduce : Equivalent functionality of `add`.



    cumsum : Cumulative sum of array elements.



    trapz : Integration of array values using the composite trapezoidal rule.



    mean, average



    Notes

    -----

    Arithmetic is modular when using integer types, and no error is

    raised on overflow.



    The sum of an empty array is the neutral element 0:



    >>> np.sum([])

    0.0



    For floating point numbers the numerical precision of sum (and

    ``np.add.reduce``) is in general limited by directly adding each number

    individually to the result causing rounding errors in every step.

    However, often numpy will use a  numerically better approach (partial

    pairwise summation) leading to improved precision in many use-cases.

    This improved precision is always provided when no ``axis`` is given.

    When ``axis`` is given, it will depend on which axis is summed.

    Technically, to provide the best speed possible, the improved precision

    is only used when the summation is along the fast axis in memory.

    Note that the exact precision may vary depending on other parameters.

    In contrast to NumPy, Python's ``math.fsum`` function uses a slower but

    more precise approach to summation.

    Especially when summing a large number of lower precision floating point

    numbers, such as ``float32``, numerical errors can become significant.

    In such cases it can be advisable to use `dtype="float64"` to use a higher

    precision for the output.



    Examples

    --------

    >>> np.sum([0.5, 1.5])

    2.0

    >>> np.sum([0.5, 0.7, 0.2, 1.5], dtype=np.int32)

    1

    >>> np.sum([[0, 1], [0, 5]])

    6

    >>> np.sum([[0, 1], [0, 5]], axis=0)

    array([0, 6])

    >>> np.sum([[0, 1], [0, 5]], axis=1)

    array([1, 5])

    >>> np.sum([[0, 1], [np.nan, 5]], where=[False, True], axis=1)

    array([1., 5.])



    If the accumulator is too small, overflow occurs:



    >>> np.ones(128, dtype=np.int8).sum(dtype=np.int8)

    -128



    You can also start the sum with a value other than zero:



    >>> np.sum([10], initial=5)

    15

    """
    if isinstance(a, _gentype):
        # 2018-02-25, 1.15.0
        warnings.warn(
            "Calling np.sum(generator) is deprecated, and in the future will give a different result. "
            "Use np.sum(np.fromiter(generator)) or the python sum builtin instead.",
            DeprecationWarning, stacklevel=3)

        res = _sum_(a)
        if out is not None:
            out[...] = res
            return out
        return res

    return _wrapreduction(a, np.add, 'sum', axis, dtype, out, keepdims=keepdims,
                          initial=initial, where=where)


def _any_dispatcher(a, axis=None, out=None, keepdims=None, *,

                    where=np._NoValue):
    return (a, where, out)


@array_function_dispatch(_any_dispatcher)
def any(a, axis=None, out=None, keepdims=np._NoValue, *, where=np._NoValue):
    """

    Test whether any array element along a given axis evaluates to True.



    Returns single boolean unless `axis` is not ``None``



    Parameters

    ----------

    a : array_like

        Input array or object that can be converted to an array.

    axis : None or int or tuple of ints, optional

        Axis or axes along which a logical OR reduction is performed.

        The default (``axis=None``) is to perform a logical OR over all

        the dimensions of the input array. `axis` may be negative, in

        which case it counts from the last to the first axis.



        .. versionadded:: 1.7.0



        If this is a tuple of ints, a reduction is performed on multiple

        axes, instead of a single axis or all the axes as before.

    out : ndarray, optional

        Alternate output array in which to place the result.  It must have

        the same shape as the expected output and its type is preserved

        (e.g., if it is of type float, then it will remain so, returning

        1.0 for True and 0.0 for False, regardless of the type of `a`).

        See :ref:`ufuncs-output-type` for more details.



    keepdims : bool, optional

        If this is set to True, the axes which are reduced are left

        in the result as dimensions with size one. With this option,

        the result will broadcast correctly against the input array.



        If the default value is passed, then `keepdims` will not be

        passed through to the `any` method of sub-classes of

        `ndarray`, however any non-default value will be.  If the

        sub-class' method does not implement `keepdims` any

        exceptions will be raised.



    where : array_like of bool, optional

        Elements to include in checking for any `True` values.

        See `~numpy.ufunc.reduce` for details.



        .. versionadded:: 1.20.0



    Returns

    -------

    any : bool or ndarray

        A new boolean or `ndarray` is returned unless `out` is specified,

        in which case a reference to `out` is returned.



    See Also

    --------

    ndarray.any : equivalent method



    all : Test whether all elements along a given axis evaluate to True.



    Notes

    -----

    Not a Number (NaN), positive infinity and negative infinity evaluate

    to `True` because these are not equal to zero.



    Examples

    --------

    >>> np.any([[True, False], [True, True]])

    True



    >>> np.any([[True, False], [False, False]], axis=0)

    array([ True, False])



    >>> np.any([-1, 0, 5])

    True



    >>> np.any(np.nan)

    True



    >>> np.any([[True, False], [False, False]], where=[[False], [True]])

    False



    >>> o=np.array(False)

    >>> z=np.any([-1, 4, 5], out=o)

    >>> z, o

    (array(True), array(True))

    >>> # Check now that z is a reference to o

    >>> z is o

    True

    >>> id(z), id(o) # identity of z and o              # doctest: +SKIP

    (191614240, 191614240)



    """
    return _wrapreduction(a, np.logical_or, 'any', axis, None, out,
                          keepdims=keepdims, where=where)


def _all_dispatcher(a, axis=None, out=None, keepdims=None, *,

                    where=None):
    return (a, where, out)


@array_function_dispatch(_all_dispatcher)
def all(a, axis=None, out=None, keepdims=np._NoValue, *, where=np._NoValue):
    """

    Test whether all array elements along a given axis evaluate to True.



    Parameters

    ----------

    a : array_like

        Input array or object that can be converted to an array.

    axis : None or int or tuple of ints, optional

        Axis or axes along which a logical AND reduction is performed.

        The default (``axis=None``) is to perform a logical AND over all

        the dimensions of the input array. `axis` may be negative, in

        which case it counts from the last to the first axis.



        .. versionadded:: 1.7.0



        If this is a tuple of ints, a reduction is performed on multiple

        axes, instead of a single axis or all the axes as before.

    out : ndarray, optional

        Alternate output array in which to place the result.

        It must have the same shape as the expected output and its

        type is preserved (e.g., if ``dtype(out)`` is float, the result

        will consist of 0.0's and 1.0's). See :ref:`ufuncs-output-type` for more

        details.



    keepdims : bool, optional

        If this is set to True, the axes which are reduced are left

        in the result as dimensions with size one. With this option,

        the result will broadcast correctly against the input array.



        If the default value is passed, then `keepdims` will not be

        passed through to the `all` method of sub-classes of

        `ndarray`, however any non-default value will be.  If the

        sub-class' method does not implement `keepdims` any

        exceptions will be raised.



    where : array_like of bool, optional

        Elements to include in checking for all `True` values.

        See `~numpy.ufunc.reduce` for details.



        .. versionadded:: 1.20.0



    Returns

    -------

    all : ndarray, bool

        A new boolean or array is returned unless `out` is specified,

        in which case a reference to `out` is returned.



    See Also

    --------

    ndarray.all : equivalent method



    any : Test whether any element along a given axis evaluates to True.



    Notes

    -----

    Not a Number (NaN), positive infinity and negative infinity

    evaluate to `True` because these are not equal to zero.



    Examples

    --------

    >>> np.all([[True,False],[True,True]])

    False



    >>> np.all([[True,False],[True,True]], axis=0)

    array([ True, False])



    >>> np.all([-1, 4, 5])

    True



    >>> np.all([1.0, np.nan])

    True



    >>> np.all([[True, True], [False, True]], where=[[True], [False]])

    True



    >>> o=np.array(False)

    >>> z=np.all([-1, 4, 5], out=o)

    >>> id(z), id(o), z

    (28293632, 28293632, array(True)) # may vary



    """
    return _wrapreduction(a, np.logical_and, 'all', axis, None, out,
                          keepdims=keepdims, where=where)


def _cumsum_dispatcher(a, axis=None, dtype=None, out=None):
    return (a, out)


@array_function_dispatch(_cumsum_dispatcher)
def cumsum(a, axis=None, dtype=None, out=None):
    """

    Return the cumulative sum of the elements along a given axis.



    Parameters

    ----------

    a : array_like

        Input array.

    axis : int, optional

        Axis along which the cumulative sum is computed. The default

        (None) is to compute the cumsum over the flattened array.

    dtype : dtype, optional

        Type of the returned array and of the accumulator in which the

        elements are summed.  If `dtype` is not specified, it defaults

        to the dtype of `a`, unless `a` has an integer dtype with a

        precision less than that of the default platform integer.  In

        that case, the default platform integer is used.

    out : ndarray, optional

        Alternative output array in which to place the result. It must

        have the same shape and buffer length as the expected output

        but the type will be cast if necessary. See :ref:`ufuncs-output-type` for

        more details.



    Returns

    -------

    cumsum_along_axis : ndarray.

        A new array holding the result is returned unless `out` is

        specified, in which case a reference to `out` is returned. The

        result has the same size as `a`, and the same shape as `a` if

        `axis` is not None or `a` is a 1-d array.



    See Also

    --------

    sum : Sum array elements.

    trapz : Integration of array values using the composite trapezoidal rule.

    diff : Calculate the n-th discrete difference along given axis.



    Notes

    -----

    Arithmetic is modular when using integer types, and no error is

    raised on overflow.



    ``cumsum(a)[-1]`` may not be equal to ``sum(a)`` for floating-point

    values since ``sum`` may use a pairwise summation routine, reducing

    the roundoff-error. See `sum` for more information.



    Examples

    --------

    >>> a = np.array([[1,2,3], [4,5,6]])

    >>> a

    array([[1, 2, 3],

           [4, 5, 6]])

    >>> np.cumsum(a)

    array([ 1,  3,  6, 10, 15, 21])

    >>> np.cumsum(a, dtype=float)     # specifies type of output value(s)

    array([  1.,   3.,   6.,  10.,  15.,  21.])



    >>> np.cumsum(a,axis=0)      # sum over rows for each of the 3 columns

    array([[1, 2, 3],

           [5, 7, 9]])

    >>> np.cumsum(a,axis=1)      # sum over columns for each of the 2 rows

    array([[ 1,  3,  6],

           [ 4,  9, 15]])



    ``cumsum(b)[-1]`` may not be equal to ``sum(b)``



    >>> b = np.array([1, 2e-9, 3e-9] * 1000000)

    >>> b.cumsum()[-1]

    1000000.0050045159

    >>> b.sum()                    

    1000000.0050000029



    """
    return _wrapfunc(a, 'cumsum', axis=axis, dtype=dtype, out=out)


def _ptp_dispatcher(a, axis=None, out=None, keepdims=None):
    return (a, out)


@array_function_dispatch(_ptp_dispatcher)
def ptp(a, axis=None, out=None, keepdims=np._NoValue):
    """

    Range of values (maximum - minimum) along an axis.



    The name of the function comes from the acronym for 'peak to peak'.



    .. warning::

        `ptp` preserves the data type of the array. This means the

        return value for an input of signed integers with n bits

        (e.g. `np.int8`, `np.int16`, etc) is also a signed integer

        with n bits.  In that case, peak-to-peak values greater than

        ``2**(n-1)-1`` will be returned as negative values. An example

        with a work-around is shown below.



    Parameters

    ----------

    a : array_like

        Input values.

    axis : None or int or tuple of ints, optional

        Axis along which to find the peaks.  By default, flatten the

        array.  `axis` may be negative, in

        which case it counts from the last to the first axis.



        .. versionadded:: 1.15.0



        If this is a tuple of ints, a reduction is performed on multiple

        axes, instead of a single axis or all the axes as before.

    out : array_like

        Alternative output array in which to place the result. It must

        have the same shape and buffer length as the expected output,

        but the type of the output values will be cast if necessary.



    keepdims : bool, optional

        If this is set to True, the axes which are reduced are left

        in the result as dimensions with size one. With this option,

        the result will broadcast correctly against the input array.



        If the default value is passed, then `keepdims` will not be

        passed through to the `ptp` method of sub-classes of

        `ndarray`, however any non-default value will be.  If the

        sub-class' method does not implement `keepdims` any

        exceptions will be raised.



    Returns

    -------

    ptp : ndarray

        A new array holding the result, unless `out` was

        specified, in which case a reference to `out` is returned.



    Examples

    --------

    >>> x = np.array([[4, 9, 2, 10],

    ...               [6, 9, 7, 12]])



    >>> np.ptp(x, axis=1)

    array([8, 6])



    >>> np.ptp(x, axis=0)

    array([2, 0, 5, 2])



    >>> np.ptp(x)

    10



    This example shows that a negative value can be returned when

    the input is an array of signed integers.



    >>> y = np.array([[1, 127],

    ...               [0, 127],

    ...               [-1, 127],

    ...               [-2, 127]], dtype=np.int8)

    >>> np.ptp(y, axis=1)

    array([ 126,  127, -128, -127], dtype=int8)



    A work-around is to use the `view()` method to view the result as

    unsigned integers with the same bit width:



    >>> np.ptp(y, axis=1).view(np.uint8)

    array([126, 127, 128, 129], dtype=uint8)



    """
    kwargs = {}
    if keepdims is not np._NoValue:
        kwargs['keepdims'] = keepdims
    if type(a) is not mu.ndarray:
        try:
            ptp = a.ptp
        except AttributeError:
            pass
        else:
            return ptp(axis=axis, out=out, **kwargs)
    return _methods._ptp(a, axis=axis, out=out, **kwargs)


def _amax_dispatcher(a, axis=None, out=None, keepdims=None, initial=None,

                     where=None):
    return (a, out)


@array_function_dispatch(_amax_dispatcher)
def amax(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue,

         where=np._NoValue):
    """

    Return the maximum of an array or maximum along an axis.



    Parameters

    ----------

    a : array_like

        Input data.

    axis : None or int or tuple of ints, optional

        Axis or axes along which to operate.  By default, flattened input is

        used.



        .. versionadded:: 1.7.0



        If this is a tuple of ints, the maximum is selected over multiple axes,

        instead of a single axis or all the axes as before.

    out : ndarray, optional

        Alternative output array in which to place the result.  Must

        be of the same shape and buffer length as the expected output.

        See :ref:`ufuncs-output-type` for more details.



    keepdims : bool, optional

        If this is set to True, the axes which are reduced are left

        in the result as dimensions with size one. With this option,

        the result will broadcast correctly against the input array.



        If the default value is passed, then `keepdims` will not be

        passed through to the `amax` method of sub-classes of

        `ndarray`, however any non-default value will be.  If the

        sub-class' method does not implement `keepdims` any

        exceptions will be raised.



    initial : scalar, optional

        The minimum value of an output element. Must be present to allow

        computation on empty slice. See `~numpy.ufunc.reduce` for details.



        .. versionadded:: 1.15.0



    where : array_like of bool, optional

        Elements to compare for the maximum. See `~numpy.ufunc.reduce`

        for details.



        .. versionadded:: 1.17.0



    Returns

    -------

    amax : ndarray or scalar

        Maximum of `a`. If `axis` is None, the result is a scalar value.

        If `axis` is given, the result is an array of dimension

        ``a.ndim - 1``.



    See Also

    --------

    amin :

        The minimum value of an array along a given axis, propagating any NaNs.

    nanmax :

        The maximum value of an array along a given axis, ignoring any NaNs.

    maximum :

        Element-wise maximum of two arrays, propagating any NaNs.

    fmax :

        Element-wise maximum of two arrays, ignoring any NaNs.

    argmax :

        Return the indices of the maximum values.



    nanmin, minimum, fmin



    Notes

    -----

    NaN values are propagated, that is if at least one item is NaN, the

    corresponding max value will be NaN as well. To ignore NaN values

    (MATLAB behavior), please use nanmax.



    Don't use `amax` for element-wise comparison of 2 arrays; when

    ``a.shape[0]`` is 2, ``maximum(a[0], a[1])`` is faster than

    ``amax(a, axis=0)``.



    Examples

    --------

    >>> a = np.arange(4).reshape((2,2))

    >>> a

    array([[0, 1],

           [2, 3]])

    >>> np.amax(a)           # Maximum of the flattened array

    3

    >>> np.amax(a, axis=0)   # Maxima along the first axis

    array([2, 3])

    >>> np.amax(a, axis=1)   # Maxima along the second axis

    array([1, 3])

    >>> np.amax(a, where=[False, True], initial=-1, axis=0)

    array([-1,  3])

    >>> b = np.arange(5, dtype=float)

    >>> b[2] = np.NaN

    >>> np.amax(b)

    nan

    >>> np.amax(b, where=~np.isnan(b), initial=-1)

    4.0

    >>> np.nanmax(b)

    4.0



    You can use an initial value to compute the maximum of an empty slice, or

    to initialize it to a different value:



    >>> np.max([[-50], [10]], axis=-1, initial=0)

    array([ 0, 10])



    Notice that the initial value is used as one of the elements for which the

    maximum is determined, unlike for the default argument Python's max

    function, which is only used for empty iterables.



    >>> np.max([5], initial=6)

    6

    >>> max([5], default=6)

    5

    """
    return _wrapreduction(a, np.maximum, 'max', axis, None, out,
                          keepdims=keepdims, initial=initial, where=where)


def _amin_dispatcher(a, axis=None, out=None, keepdims=None, initial=None,

                     where=None):
    return (a, out)


@array_function_dispatch(_amin_dispatcher)
def amin(a, axis=None, out=None, keepdims=np._NoValue, initial=np._NoValue,

         where=np._NoValue):
    """

    Return the minimum of an array or minimum along an axis.



    Parameters

    ----------

    a : array_like

        Input data.

    axis : None or int or tuple of ints, optional

        Axis or axes along which to operate.  By default, flattened input is

        used.



        .. versionadded:: 1.7.0



        If this is a tuple of ints, the minimum is selected over multiple axes,

        instead of a single axis or all the axes as before.

    out : ndarray, optional

        Alternative output array in which to place the result.  Must

        be of the same shape and buffer length as the expected output.

        See :ref:`ufuncs-output-type` for more details.



    keepdims : bool, optional

        If this is set to True, the axes which are reduced are left

        in the result as dimensions with size one. With this option,

        the result will broadcast correctly against the input array.



        If the default value is passed, then `keepdims` will not be

        passed through to the `amin` method of sub-classes of

        `ndarray`, however any non-default value will be.  If the

        sub-class' method does not implement `keepdims` any

        exceptions will be raised.



    initial : scalar, optional

        The maximum value of an output element. Must be present to allow

        computation on empty slice. See `~numpy.ufunc.reduce` for details.



        .. versionadded:: 1.15.0



    where : array_like of bool, optional

        Elements to compare for the minimum. See `~numpy.ufunc.reduce`

        for details.



        .. versionadded:: 1.17.0



    Returns

    -------

    amin : ndarray or scalar

        Minimum of `a`. If `axis` is None, the result is a scalar value.

        If `axis` is given, the result is an array of dimension

        ``a.ndim - 1``.



    See Also

    --------

    amax :

        The maximum value of an array along a given axis, propagating any NaNs.

    nanmin :

        The minimum value of an array along a given axis, ignoring any NaNs.

    minimum :

        Element-wise minimum of two arrays, propagating any NaNs.

    fmin :

        Element-wise minimum of two arrays, ignoring any NaNs.

    argmin :

        Return the indices of the minimum values.



    nanmax, maximum, fmax



    Notes

    -----

    NaN values are propagated, that is if at least one item is NaN, the

    corresponding min value will be NaN as well. To ignore NaN values

    (MATLAB behavior), please use nanmin.



    Don't use `amin` for element-wise comparison of 2 arrays; when

    ``a.shape[0]`` is 2, ``minimum(a[0], a[1])`` is faster than

    ``amin(a, axis=0)``.



    Examples

    --------

    >>> a = np.arange(4).reshape((2,2))

    >>> a

    array([[0, 1],

           [2, 3]])

    >>> np.amin(a)           # Minimum of the flattened array

    0

    >>> np.amin(a, axis=0)   # Minima along the first axis

    array([0, 1])

    >>> np.amin(a, axis=1)   # Minima along the second axis

    array([0, 2])

    >>> np.amin(a, where=[False, True], initial=10, axis=0)

    array([10,  1])



    >>> b = np.arange(5, dtype=float)

    >>> b[2] = np.NaN

    >>> np.amin(b)

    nan

    >>> np.amin(b, where=~np.isnan(b), initial=10)

    0.0

    >>> np.nanmin(b)

    0.0



    >>> np.min([[-50], [10]], axis=-1, initial=0)

    array([-50,   0])



    Notice that the initial value is used as one of the elements for which the

    minimum is determined, unlike for the default argument Python's max

    function, which is only used for empty iterables.



    Notice that this isn't the same as Python's ``default`` argument.



    >>> np.min([6], initial=5)

    5

    >>> min([6], default=5)

    6

    """
    return _wrapreduction(a, np.minimum, 'min', axis, None, out,
                          keepdims=keepdims, initial=initial, where=where)


def _alen_dispathcer(a):
    return (a,)


@array_function_dispatch(_alen_dispathcer)
def alen(a):
    """

    Return the length of the first dimension of the input array.



    .. deprecated:: 1.18

       `numpy.alen` is deprecated, use `len` instead.



    Parameters

    ----------

    a : array_like

       Input array.



    Returns

    -------

    alen : int

       Length of the first dimension of `a`.



    See Also

    --------

    shape, size



    Examples

    --------

    >>> a = np.zeros((7,4,5))

    >>> a.shape[0]

    7

    >>> np.alen(a)

    7



    """
    # NumPy 1.18.0, 2019-08-02
    warnings.warn(
        "`np.alen` is deprecated, use `len` instead",
        DeprecationWarning, stacklevel=2)
    try:
        return len(a)
    except TypeError:
        return len(array(a, ndmin=1))


def _prod_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None,

                     initial=None, where=None):
    return (a, out)


@array_function_dispatch(_prod_dispatcher)
def prod(a, axis=None, dtype=None, out=None, keepdims=np._NoValue,

         initial=np._NoValue, where=np._NoValue):
    """

    Return the product of array elements over a given axis.



    Parameters

    ----------

    a : array_like

        Input data.

    axis : None or int or tuple of ints, optional

        Axis or axes along which a product is performed.  The default,

        axis=None, will calculate the product of all the elements in the

        input array. If axis is negative it counts from the last to the

        first axis.



        .. versionadded:: 1.7.0



        If axis is a tuple of ints, a product is performed on all of the

        axes specified in the tuple instead of a single axis or all the

        axes as before.

    dtype : dtype, optional

        The type of the returned array, as well as of the accumulator in

        which the elements are multiplied.  The dtype of `a` is used by

        default unless `a` has an integer dtype of less precision than the

        default platform integer.  In that case, if `a` is signed then the

        platform integer is used while if `a` is unsigned then an unsigned

        integer of the same precision as the platform integer is used.

    out : ndarray, optional

        Alternative output array in which to place the result. It must have

        the same shape as the expected output, but the type of the output

        values will be cast if necessary.

    keepdims : bool, optional

        If this is set to True, the axes which are reduced are left in the

        result as dimensions with size one. With this option, the result

        will broadcast correctly against the input array.



        If the default value is passed, then `keepdims` will not be

        passed through to the `prod` method of sub-classes of

        `ndarray`, however any non-default value will be.  If the

        sub-class' method does not implement `keepdims` any

        exceptions will be raised.

    initial : scalar, optional

        The starting value for this product. See `~numpy.ufunc.reduce` for details.



        .. versionadded:: 1.15.0



    where : array_like of bool, optional

        Elements to include in the product. See `~numpy.ufunc.reduce` for details.



        .. versionadded:: 1.17.0



    Returns

    -------

    product_along_axis : ndarray, see `dtype` parameter above.

        An array shaped as `a` but with the specified axis removed.

        Returns a reference to `out` if specified.



    See Also

    --------

    ndarray.prod : equivalent method

    :ref:`ufuncs-output-type`



    Notes

    -----

    Arithmetic is modular when using integer types, and no error is

    raised on overflow.  That means that, on a 32-bit platform:



    >>> x = np.array([536870910, 536870910, 536870910, 536870910])

    >>> np.prod(x)

    16 # may vary



    The product of an empty array is the neutral element 1:



    >>> np.prod([])

    1.0



    Examples

    --------

    By default, calculate the product of all elements:



    >>> np.prod([1.,2.])

    2.0



    Even when the input array is two-dimensional:



    >>> np.prod([[1.,2.],[3.,4.]])

    24.0



    But we can also specify the axis over which to multiply:



    >>> np.prod([[1.,2.],[3.,4.]], axis=1)

    array([  2.,  12.])



    Or select specific elements to include:



    >>> np.prod([1., np.nan, 3.], where=[True, False, True])

    3.0



    If the type of `x` is unsigned, then the output type is

    the unsigned platform integer:



    >>> x = np.array([1, 2, 3], dtype=np.uint8)

    >>> np.prod(x).dtype == np.uint

    True



    If `x` is of a signed integer type, then the output type

    is the default platform integer:



    >>> x = np.array([1, 2, 3], dtype=np.int8)

    >>> np.prod(x).dtype == int

    True



    You can also start the product with a value other than one:



    >>> np.prod([1, 2], initial=5)

    10

    """
    return _wrapreduction(a, np.multiply, 'prod', axis, dtype, out,
                          keepdims=keepdims, initial=initial, where=where)


def _cumprod_dispatcher(a, axis=None, dtype=None, out=None):
    return (a, out)


@array_function_dispatch(_cumprod_dispatcher)
def cumprod(a, axis=None, dtype=None, out=None):
    """

    Return the cumulative product of elements along a given axis.



    Parameters

    ----------

    a : array_like

        Input array.

    axis : int, optional

        Axis along which the cumulative product is computed.  By default

        the input is flattened.

    dtype : dtype, optional

        Type of the returned array, as well as of the accumulator in which

        the elements are multiplied.  If *dtype* is not specified, it

        defaults to the dtype of `a`, unless `a` has an integer dtype with

        a precision less than that of the default platform integer.  In

        that case, the default platform integer is used instead.

    out : ndarray, optional

        Alternative output array in which to place the result. It must

        have the same shape and buffer length as the expected output

        but the type of the resulting values will be cast if necessary.



    Returns

    -------

    cumprod : ndarray

        A new array holding the result is returned unless `out` is

        specified, in which case a reference to out is returned.



    See Also

    --------

    :ref:`ufuncs-output-type`



    Notes

    -----

    Arithmetic is modular when using integer types, and no error is

    raised on overflow.



    Examples

    --------

    >>> a = np.array([1,2,3])

    >>> np.cumprod(a) # intermediate results 1, 1*2

    ...               # total product 1*2*3 = 6

    array([1, 2, 6])

    >>> a = np.array([[1, 2, 3], [4, 5, 6]])

    >>> np.cumprod(a, dtype=float) # specify type of output

    array([   1.,    2.,    6.,   24.,  120.,  720.])



    The cumulative product for each column (i.e., over the rows) of `a`:



    >>> np.cumprod(a, axis=0)

    array([[ 1,  2,  3],

           [ 4, 10, 18]])



    The cumulative product for each row (i.e. over the columns) of `a`:



    >>> np.cumprod(a,axis=1)

    array([[  1,   2,   6],

           [  4,  20, 120]])



    """
    return _wrapfunc(a, 'cumprod', axis=axis, dtype=dtype, out=out)


def _ndim_dispatcher(a):
    return (a,)


@array_function_dispatch(_ndim_dispatcher)
def ndim(a):
    """

    Return the number of dimensions of an array.



    Parameters

    ----------

    a : array_like

        Input array.  If it is not already an ndarray, a conversion is

        attempted.



    Returns

    -------

    number_of_dimensions : int

        The number of dimensions in `a`.  Scalars are zero-dimensional.



    See Also

    --------

    ndarray.ndim : equivalent method

    shape : dimensions of array

    ndarray.shape : dimensions of array



    Examples

    --------

    >>> np.ndim([[1,2,3],[4,5,6]])

    2

    >>> np.ndim(np.array([[1,2,3],[4,5,6]]))

    2

    >>> np.ndim(1)

    0



    """
    try:
        return a.ndim
    except AttributeError:
        return asarray(a).ndim


def _size_dispatcher(a, axis=None):
    return (a,)


@array_function_dispatch(_size_dispatcher)
def size(a, axis=None):
    """

    Return the number of elements along a given axis.



    Parameters

    ----------

    a : array_like

        Input data.

    axis : int, optional

        Axis along which the elements are counted.  By default, give

        the total number of elements.



    Returns

    -------

    element_count : int

        Number of elements along the specified axis.



    See Also

    --------

    shape : dimensions of array

    ndarray.shape : dimensions of array

    ndarray.size : number of elements in array



    Examples

    --------

    >>> a = np.array([[1,2,3],[4,5,6]])

    >>> np.size(a)

    6

    >>> np.size(a,1)

    3

    >>> np.size(a,0)

    2



    """
    if axis is None:
        try:
            return a.size
        except AttributeError:
            return asarray(a).size
    else:
        try:
            return a.shape[axis]
        except AttributeError:
            return asarray(a).shape[axis]


def _around_dispatcher(a, decimals=None, out=None):
    return (a, out)


@array_function_dispatch(_around_dispatcher)
def around(a, decimals=0, out=None):
    """

    Evenly round to the given number of decimals.



    Parameters

    ----------

    a : array_like

        Input data.

    decimals : int, optional

        Number of decimal places to round to (default: 0).  If

        decimals is negative, it specifies the number of positions to

        the left of the decimal point.

    out : ndarray, optional

        Alternative output array in which to place the result. It must have

        the same shape as the expected output, but the type of the output

        values will be cast if necessary. See :ref:`ufuncs-output-type` for more

        details.



    Returns

    -------

    rounded_array : ndarray

        An array of the same type as `a`, containing the rounded values.

        Unless `out` was specified, a new array is created.  A reference to

        the result is returned.



        The real and imaginary parts of complex numbers are rounded

        separately.  The result of rounding a float is a float.



    See Also

    --------

    ndarray.round : equivalent method



    ceil, fix, floor, rint, trunc





    Notes

    -----

    For values exactly halfway between rounded decimal values, NumPy

    rounds to the nearest even value. Thus 1.5 and 2.5 round to 2.0,

    -0.5 and 0.5 round to 0.0, etc.



    ``np.around`` uses a fast but sometimes inexact algorithm to round

    floating-point datatypes. For positive `decimals` it is equivalent to

    ``np.true_divide(np.rint(a * 10**decimals), 10**decimals)``, which has

    error due to the inexact representation of decimal fractions in the IEEE

    floating point standard [1]_ and errors introduced when scaling by powers

    of ten. For instance, note the extra "1" in the following:



        >>> np.round(56294995342131.5, 3)

        56294995342131.51



    If your goal is to print such values with a fixed number of decimals, it is

    preferable to use numpy's float printing routines to limit the number of

    printed decimals:



        >>> np.format_float_positional(56294995342131.5, precision=3)

        '56294995342131.5'



    The float printing routines use an accurate but much more computationally

    demanding algorithm to compute the number of digits after the decimal

    point.



    Alternatively, Python's builtin `round` function uses a more accurate

    but slower algorithm for 64-bit floating point values:



        >>> round(56294995342131.5, 3)

        56294995342131.5

        >>> np.round(16.055, 2), round(16.055, 2)  # equals 16.0549999999999997

        (16.06, 16.05)





    References

    ----------

    .. [1] "Lecture Notes on the Status of IEEE 754", William Kahan,

           https://people.eecs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF

    .. [2] "How Futile are Mindless Assessments of

           Roundoff in Floating-Point Computation?", William Kahan,

           https://people.eecs.berkeley.edu/~wkahan/Mindless.pdf



    Examples

    --------

    >>> np.around([0.37, 1.64])

    array([0.,  2.])

    >>> np.around([0.37, 1.64], decimals=1)

    array([0.4,  1.6])

    >>> np.around([.5, 1.5, 2.5, 3.5, 4.5]) # rounds to nearest even value

    array([0.,  2.,  2.,  4.,  4.])

    >>> np.around([1,2,3,11], decimals=1) # ndarray of ints is returned

    array([ 1,  2,  3, 11])

    >>> np.around([1,2,3,11], decimals=-1)

    array([ 0,  0,  0, 10])



    """
    return _wrapfunc(a, 'round', decimals=decimals, out=out)


def _mean_dispatcher(a, axis=None, dtype=None, out=None, keepdims=None, *,

                     where=None):
    return (a, where, out)


@array_function_dispatch(_mean_dispatcher)
def mean(a, axis=None, dtype=None, out=None, keepdims=np._NoValue, *,

         where=np._NoValue):
    """

    Compute the arithmetic mean along the specified axis.



    Returns the average of the array elements.  The average is taken over

    the flattened array by default, otherwise over the specified axis.

    `float64` intermediate and return values are used for integer inputs.



    Parameters

    ----------

    a : array_like

        Array containing numbers whose mean is desired. If `a` is not an

        array, a conversion is attempted.

    axis : None or int or tuple of ints, optional

        Axis or axes along which the means are computed. The default is to

        compute the mean of the flattened array.



        .. versionadded:: 1.7.0



        If this is a tuple of ints, a mean is performed over multiple axes,

        instead of a single axis or all the axes as before.

    dtype : data-type, optional

        Type to use in computing the mean.  For integer inputs, the default

        is `float64`; for floating point inputs, it is the same as the

        input dtype.

    out : ndarray, optional

        Alternate output array in which to place the result.  The default

        is ``None``; if provided, it must have the same shape as the

        expected output, but the type will be cast if necessary.

        See :ref:`ufuncs-output-type` for more details.



    keepdims : bool, optional

        If this is set to True, the axes which are reduced are left

        in the result as dimensions with size one. With this option,

        the result will broadcast correctly against the input array.



        If the default value is passed, then `keepdims` will not be

        passed through to the `mean` method of sub-classes of

        `ndarray`, however any non-default value will be.  If the

        sub-class' method does not implement `keepdims` any

        exceptions will be raised.



    where : array_like of bool, optional

        Elements to include in the mean. See `~numpy.ufunc.reduce` for details.



        .. versionadded:: 1.20.0



    Returns

    -------

    m : ndarray, see dtype parameter above

        If `out=None`, returns a new array containing the mean values,

        otherwise a reference to the output array is returned.



    See Also

    --------

    average : Weighted average

    std, var, nanmean, nanstd, nanvar



    Notes

    -----

    The arithmetic mean is the sum of the elements along the axis divided

    by the number of elements.



    Note that for floating-point input, the mean is computed using the

    same precision the input has.  Depending on the input data, this can

    cause the results to be inaccurate, especially for `float32` (see

    example below).  Specifying a higher-precision accumulator using the

    `dtype` keyword can alleviate this issue.



    By default, `float16` results are computed using `float32` intermediates

    for extra precision.



    Examples

    --------

    >>> a = np.array([[1, 2], [3, 4]])

    >>> np.mean(a)

    2.5

    >>> np.mean(a, axis=0)

    array([2., 3.])

    >>> np.mean(a, axis=1)

    array([1.5, 3.5])



    In single precision, `mean` can be inaccurate:



    >>> a = np.zeros((2, 512*512), dtype=np.float32)

    >>> a[0, :] = 1.0

    >>> a[1, :] = 0.1

    >>> np.mean(a)

    0.54999924



    Computing the mean in float64 is more accurate:



    >>> np.mean(a, dtype=np.float64)

    0.55000000074505806 # may vary



    Specifying a where argument:

    >>> a = np.array([[5, 9, 13], [14, 10, 12], [11, 15, 19]])

    >>> np.mean(a)

    12.0

    >>> np.mean(a, where=[[True], [False], [False]])

    9.0



    """
    kwargs = {}
    if keepdims is not np._NoValue:
        kwargs['keepdims'] = keepdims
    if where is not np._NoValue:
        kwargs['where'] = where
    if type(a) is not mu.ndarray:
        try:
            mean = a.mean
        except AttributeError:
            pass
        else:
            return mean(axis=axis, dtype=dtype, out=out, **kwargs)

    return _methods._mean(a, axis=axis, dtype=dtype,
                          out=out, **kwargs)


def _std_dispatcher(a, axis=None, dtype=None, out=None, ddof=None,

                    keepdims=None, *, where=None):
    return (a, where, out)


@array_function_dispatch(_std_dispatcher)
def std(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, *,

        where=np._NoValue):
    """

    Compute the standard deviation along the specified axis.



    Returns the standard deviation, a measure of the spread of a distribution,

    of the array elements. The standard deviation is computed for the

    flattened array by default, otherwise over the specified axis.



    Parameters

    ----------

    a : array_like

        Calculate the standard deviation of these values.

    axis : None or int or tuple of ints, optional

        Axis or axes along which the standard deviation is computed. The

        default is to compute the standard deviation of the flattened array.



        .. versionadded:: 1.7.0



        If this is a tuple of ints, a standard deviation is performed over

        multiple axes, instead of a single axis or all the axes as before.

    dtype : dtype, optional

        Type to use in computing the standard deviation. For arrays of

        integer type the default is float64, for arrays of float types it is

        the same as the array type.

    out : ndarray, optional

        Alternative output array in which to place the result. It must have

        the same shape as the expected output but the type (of the calculated

        values) will be cast if necessary.

    ddof : int, optional

        Means Delta Degrees of Freedom.  The divisor used in calculations

        is ``N - ddof``, where ``N`` represents the number of elements.

        By default `ddof` is zero.

    keepdims : bool, optional

        If this is set to True, the axes which are reduced are left

        in the result as dimensions with size one. With this option,

        the result will broadcast correctly against the input array.



        If the default value is passed, then `keepdims` will not be

        passed through to the `std` method of sub-classes of

        `ndarray`, however any non-default value will be.  If the

        sub-class' method does not implement `keepdims` any

        exceptions will be raised.



    where : array_like of bool, optional

        Elements to include in the standard deviation.

        See `~numpy.ufunc.reduce` for details.



        .. versionadded:: 1.20.0



    Returns

    -------

    standard_deviation : ndarray, see dtype parameter above.

        If `out` is None, return a new array containing the standard deviation,

        otherwise return a reference to the output array.



    See Also

    --------

    var, mean, nanmean, nanstd, nanvar

    :ref:`ufuncs-output-type`



    Notes

    -----

    The standard deviation is the square root of the average of the squared

    deviations from the mean, i.e., ``std = sqrt(mean(x))``, where

    ``x = abs(a - a.mean())**2``.



    The average squared deviation is typically calculated as ``x.sum() / N``,

    where ``N = len(x)``. If, however, `ddof` is specified, the divisor

    ``N - ddof`` is used instead. In standard statistical practice, ``ddof=1``

    provides an unbiased estimator of the variance of the infinite population.

    ``ddof=0`` provides a maximum likelihood estimate of the variance for

    normally distributed variables. The standard deviation computed in this

    function is the square root of the estimated variance, so even with

    ``ddof=1``, it will not be an unbiased estimate of the standard deviation

    per se.



    Note that, for complex numbers, `std` takes the absolute

    value before squaring, so that the result is always real and nonnegative.



    For floating-point input, the *std* is computed using the same

    precision the input has. Depending on the input data, this can cause

    the results to be inaccurate, especially for float32 (see example below).

    Specifying a higher-accuracy accumulator using the `dtype` keyword can

    alleviate this issue.



    Examples

    --------

    >>> a = np.array([[1, 2], [3, 4]])

    >>> np.std(a)

    1.1180339887498949 # may vary

    >>> np.std(a, axis=0)

    array([1.,  1.])

    >>> np.std(a, axis=1)

    array([0.5,  0.5])



    In single precision, std() can be inaccurate:



    >>> a = np.zeros((2, 512*512), dtype=np.float32)

    >>> a[0, :] = 1.0

    >>> a[1, :] = 0.1

    >>> np.std(a)

    0.45000005



    Computing the standard deviation in float64 is more accurate:



    >>> np.std(a, dtype=np.float64)

    0.44999999925494177 # may vary



    Specifying a where argument:



    >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])

    >>> np.std(a)

    2.614064523559687 # may vary

    >>> np.std(a, where=[[True], [True], [False]])

    2.0



    """
    kwargs = {}
    if keepdims is not np._NoValue:
        kwargs['keepdims'] = keepdims
    if where is not np._NoValue:
        kwargs['where'] = where
    if type(a) is not mu.ndarray:
        try:
            std = a.std
        except AttributeError:
            pass
        else:
            return std(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs)

    return _methods._std(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
                         **kwargs)


def _var_dispatcher(a, axis=None, dtype=None, out=None, ddof=None,

                    keepdims=None, *, where=None):
    return (a, where, out)


@array_function_dispatch(_var_dispatcher)
def var(a, axis=None, dtype=None, out=None, ddof=0, keepdims=np._NoValue, *,

        where=np._NoValue):
    """

    Compute the variance along the specified axis.



    Returns the variance of the array elements, a measure of the spread of a

    distribution.  The variance is computed for the flattened array by

    default, otherwise over the specified axis.



    Parameters

    ----------

    a : array_like

        Array containing numbers whose variance is desired.  If `a` is not an

        array, a conversion is attempted.

    axis : None or int or tuple of ints, optional

        Axis or axes along which the variance is computed.  The default is to

        compute the variance of the flattened array.



        .. versionadded:: 1.7.0



        If this is a tuple of ints, a variance is performed over multiple axes,

        instead of a single axis or all the axes as before.

    dtype : data-type, optional

        Type to use in computing the variance.  For arrays of integer type

        the default is `float64`; for arrays of float types it is the same as

        the array type.

    out : ndarray, optional

        Alternate output array in which to place the result.  It must have

        the same shape as the expected output, but the type is cast if

        necessary.

    ddof : int, optional

        "Delta Degrees of Freedom": the divisor used in the calculation is

        ``N - ddof``, where ``N`` represents the number of elements. By

        default `ddof` is zero.

    keepdims : bool, optional

        If this is set to True, the axes which are reduced are left

        in the result as dimensions with size one. With this option,

        the result will broadcast correctly against the input array.



        If the default value is passed, then `keepdims` will not be

        passed through to the `var` method of sub-classes of

        `ndarray`, however any non-default value will be.  If the

        sub-class' method does not implement `keepdims` any

        exceptions will be raised.



    where : array_like of bool, optional

        Elements to include in the variance. See `~numpy.ufunc.reduce` for

        details.



        .. versionadded:: 1.20.0



    Returns

    -------

    variance : ndarray, see dtype parameter above

        If ``out=None``, returns a new array containing the variance;

        otherwise, a reference to the output array is returned.



    See Also

    --------

    std, mean, nanmean, nanstd, nanvar

    :ref:`ufuncs-output-type`



    Notes

    -----

    The variance is the average of the squared deviations from the mean,

    i.e.,  ``var = mean(x)``, where ``x = abs(a - a.mean())**2``.



    The mean is typically calculated as ``x.sum() / N``, where ``N = len(x)``.

    If, however, `ddof` is specified, the divisor ``N - ddof`` is used

    instead.  In standard statistical practice, ``ddof=1`` provides an

    unbiased estimator of the variance of a hypothetical infinite population.

    ``ddof=0`` provides a maximum likelihood estimate of the variance for

    normally distributed variables.



    Note that for complex numbers, the absolute value is taken before

    squaring, so that the result is always real and nonnegative.



    For floating-point input, the variance is computed using the same

    precision the input has.  Depending on the input data, this can cause

    the results to be inaccurate, especially for `float32` (see example

    below).  Specifying a higher-accuracy accumulator using the ``dtype``

    keyword can alleviate this issue.



    Examples

    --------

    >>> a = np.array([[1, 2], [3, 4]])

    >>> np.var(a)

    1.25

    >>> np.var(a, axis=0)

    array([1.,  1.])

    >>> np.var(a, axis=1)

    array([0.25,  0.25])



    In single precision, var() can be inaccurate:



    >>> a = np.zeros((2, 512*512), dtype=np.float32)

    >>> a[0, :] = 1.0

    >>> a[1, :] = 0.1

    >>> np.var(a)

    0.20250003



    Computing the variance in float64 is more accurate:



    >>> np.var(a, dtype=np.float64)

    0.20249999932944759 # may vary

    >>> ((1-0.55)**2 + (0.1-0.55)**2)/2

    0.2025



    Specifying a where argument:



    >>> a = np.array([[14, 8, 11, 10], [7, 9, 10, 11], [10, 15, 5, 10]])

    >>> np.var(a)

    6.833333333333333 # may vary

    >>> np.var(a, where=[[True], [True], [False]])

    4.0



    """
    kwargs = {}
    if keepdims is not np._NoValue:
        kwargs['keepdims'] = keepdims
    if where is not np._NoValue:
        kwargs['where'] = where

    if type(a) is not mu.ndarray:
        try:
            var = a.var

        except AttributeError:
            pass
        else:
            return var(axis=axis, dtype=dtype, out=out, ddof=ddof, **kwargs)

    return _methods._var(a, axis=axis, dtype=dtype, out=out, ddof=ddof,
                         **kwargs)


# Aliases of other functions. These have their own definitions only so that
# they can have unique docstrings.

@array_function_dispatch(_around_dispatcher)
def round_(a, decimals=0, out=None):
    """

    Round an array to the given number of decimals.



    See Also

    --------

    around : equivalent function; see for details.

    """
    return around(a, decimals=decimals, out=out)


@array_function_dispatch(_prod_dispatcher, verify=False)
def product(*args, **kwargs):
    """

    Return the product of array elements over a given axis.



    See Also

    --------

    prod : equivalent function; see for details.

    """
    return prod(*args, **kwargs)


@array_function_dispatch(_cumprod_dispatcher, verify=False)
def cumproduct(*args, **kwargs):
    """

    Return the cumulative product over the given axis.



    See Also

    --------

    cumprod : equivalent function; see for details.

    """
    return cumprod(*args, **kwargs)


@array_function_dispatch(_any_dispatcher, verify=False)
def sometrue(*args, **kwargs):
    """

    Check whether some values are true.



    Refer to `any` for full documentation.



    See Also

    --------

    any : equivalent function; see for details.

    """
    return any(*args, **kwargs)


@array_function_dispatch(_all_dispatcher, verify=False)
def alltrue(*args, **kwargs):
    """

    Check if all elements of input array are true.



    See Also

    --------

    numpy.all : Equivalent function; see for details.

    """
    return all(*args, **kwargs)