File size: 5,222 Bytes
dc2106c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import sys
from typing import (
    Any,
    Tuple,
    TypeVar,
    Generic,
    overload,
    List,
    Union,
    Sequence,
)

from numpy import (
    # Circumvent a naming conflict with `AxisConcatenator.matrix`
    matrix as _Matrix,
    ndenumerate as ndenumerate,
    ndindex as ndindex,
    ndarray,
    dtype,
    integer,
    str_,
    bytes_,
    bool_,
    int_,
    float_,
    complex_,
    intp,
    _OrderCF,
    _ModeKind,
)
from numpy.typing import (
    # Arrays
    ArrayLike,
    _NestedSequence,
    _RecursiveSequence,
    NDArray,
    _ArrayLikeInt,

    # DTypes
    DTypeLike,
    _SupportsDType,

    # Shapes
    _ShapeLike,
)

if sys.version_info >= (3, 8):
    from typing import Literal, SupportsIndex
else:
    from typing_extensions import Literal, SupportsIndex

_T = TypeVar("_T")
_DType = TypeVar("_DType", bound=dtype[Any])
_BoolType = TypeVar("_BoolType", Literal[True], Literal[False])
_TupType = TypeVar("_TupType", bound=Tuple[Any, ...])
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])

__all__: List[str]

@overload
def unravel_index(  # type: ignore[misc]

    indices: Union[int, integer[Any]],

    shape: _ShapeLike,

    order: _OrderCF = ...

) -> Tuple[intp, ...]: ...
@overload
def unravel_index(

    indices: _ArrayLikeInt,

    shape: _ShapeLike,

    order: _OrderCF = ...

) -> Tuple[NDArray[intp], ...]: ...

@overload
def ravel_multi_index(  # type: ignore[misc]

    multi_index: Sequence[Union[int, integer[Any]]],

    dims: _ShapeLike,

    mode: Union[_ModeKind, Tuple[_ModeKind, ...]] = ...,

    order: _OrderCF = ...

) -> intp: ...
@overload
def ravel_multi_index(

    multi_index: Sequence[_ArrayLikeInt],

    dims: _ShapeLike,

    mode: Union[_ModeKind, Tuple[_ModeKind, ...]] = ...,

    order: _OrderCF = ...

) -> NDArray[intp]: ...

@overload
def ix_(*args: _NestedSequence[_SupportsDType[_DType]]) -> Tuple[ndarray[Any, _DType], ...]: ...
@overload
def ix_(*args: _NestedSequence[str]) -> Tuple[NDArray[str_], ...]: ...
@overload
def ix_(*args: _NestedSequence[bytes]) -> Tuple[NDArray[bytes_], ...]: ...
@overload
def ix_(*args: _NestedSequence[bool]) -> Tuple[NDArray[bool_], ...]: ...
@overload
def ix_(*args: _NestedSequence[int]) -> Tuple[NDArray[int_], ...]: ...
@overload
def ix_(*args: _NestedSequence[float]) -> Tuple[NDArray[float_], ...]: ...
@overload
def ix_(*args: _NestedSequence[complex]) -> Tuple[NDArray[complex_], ...]: ...
@overload
def ix_(*args: _RecursiveSequence) -> Tuple[NDArray[Any], ...]: ...

class nd_grid(Generic[_BoolType]):
    sparse: _BoolType
    def __init__(self, sparse: _BoolType = ...) -> None: ...
    @overload
    def __getitem__(

        self: nd_grid[Literal[False]],

        key: Union[slice, Sequence[slice]],

    ) -> NDArray[Any]: ...
    @overload
    def __getitem__(

        self: nd_grid[Literal[True]],

        key: Union[slice, Sequence[slice]],

    ) -> List[NDArray[Any]]: ...

class MGridClass(nd_grid[Literal[False]]):
    def __init__(self) -> None: ...

mgrid: MGridClass

class OGridClass(nd_grid[Literal[True]]):
    def __init__(self) -> None: ...

ogrid: OGridClass

class AxisConcatenator:
    axis: int
    matrix: bool
    ndmin: int
    trans1d: int
    def __init__(

        self,

        axis: int = ...,

        matrix: bool = ...,

        ndmin: int = ...,

        trans1d: int = ...,

    ) -> None: ...
    @staticmethod
    @overload
    def concatenate(  # type: ignore[misc]

        *a: ArrayLike, axis: SupportsIndex = ..., out: None = ...

    ) -> NDArray[Any]: ...
    @staticmethod
    @overload
    def concatenate(

        *a: ArrayLike, axis: SupportsIndex = ..., out: _ArrayType = ...

    ) -> _ArrayType: ...
    @staticmethod
    def makemat(

        data: ArrayLike, dtype: DTypeLike = ..., copy: bool = ...

    ) -> _Matrix: ...

    # TODO: Sort out this `__getitem__` method
    def __getitem__(self, key: Any) -> Any: ...

class RClass(AxisConcatenator):
    axis: Literal[0]
    matrix: Literal[False]
    ndmin: Literal[1]
    trans1d: Literal[-1]
    def __init__(self) -> None: ...

r_: RClass

class CClass(AxisConcatenator):
    axis: Literal[-1]
    matrix: Literal[False]
    ndmin: Literal[2]
    trans1d: Literal[0]
    def __init__(self) -> None: ...

c_: CClass

class IndexExpression(Generic[_BoolType]):
    maketuple: _BoolType
    def __init__(self, maketuple: _BoolType) -> None: ...
    @overload
    def __getitem__(self, item: _TupType) -> _TupType: ...  # type: ignore[misc]
    @overload
    def __getitem__(self: IndexExpression[Literal[True]], item: _T) -> Tuple[_T]: ...
    @overload
    def __getitem__(self: IndexExpression[Literal[False]], item: _T) -> _T: ...

index_exp: IndexExpression[Literal[True]]
s_: IndexExpression[Literal[False]]

def fill_diagonal(a: ndarray[Any, Any], val: Any, wrap: bool = ...) -> None: ...
def diag_indices(n: int, ndim: int = ...) -> Tuple[NDArray[int_], ...]: ...
def diag_indices_from(arr: ArrayLike) -> Tuple[NDArray[int_], ...]: ...

# NOTE: see `numpy/__init__.pyi` for `ndenumerate` and `ndindex`