Spaces:
Paused
Paused
File size: 5,222 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
import sys
from typing import (
Any,
Tuple,
TypeVar,
Generic,
overload,
List,
Union,
Sequence,
)
from numpy import (
# Circumvent a naming conflict with `AxisConcatenator.matrix`
matrix as _Matrix,
ndenumerate as ndenumerate,
ndindex as ndindex,
ndarray,
dtype,
integer,
str_,
bytes_,
bool_,
int_,
float_,
complex_,
intp,
_OrderCF,
_ModeKind,
)
from numpy.typing import (
# Arrays
ArrayLike,
_NestedSequence,
_RecursiveSequence,
NDArray,
_ArrayLikeInt,
# DTypes
DTypeLike,
_SupportsDType,
# Shapes
_ShapeLike,
)
if sys.version_info >= (3, 8):
from typing import Literal, SupportsIndex
else:
from typing_extensions import Literal, SupportsIndex
_T = TypeVar("_T")
_DType = TypeVar("_DType", bound=dtype[Any])
_BoolType = TypeVar("_BoolType", Literal[True], Literal[False])
_TupType = TypeVar("_TupType", bound=Tuple[Any, ...])
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
__all__: List[str]
@overload
def unravel_index( # type: ignore[misc]
indices: Union[int, integer[Any]],
shape: _ShapeLike,
order: _OrderCF = ...
) -> Tuple[intp, ...]: ...
@overload
def unravel_index(
indices: _ArrayLikeInt,
shape: _ShapeLike,
order: _OrderCF = ...
) -> Tuple[NDArray[intp], ...]: ...
@overload
def ravel_multi_index( # type: ignore[misc]
multi_index: Sequence[Union[int, integer[Any]]],
dims: _ShapeLike,
mode: Union[_ModeKind, Tuple[_ModeKind, ...]] = ...,
order: _OrderCF = ...
) -> intp: ...
@overload
def ravel_multi_index(
multi_index: Sequence[_ArrayLikeInt],
dims: _ShapeLike,
mode: Union[_ModeKind, Tuple[_ModeKind, ...]] = ...,
order: _OrderCF = ...
) -> NDArray[intp]: ...
@overload
def ix_(*args: _NestedSequence[_SupportsDType[_DType]]) -> Tuple[ndarray[Any, _DType], ...]: ...
@overload
def ix_(*args: _NestedSequence[str]) -> Tuple[NDArray[str_], ...]: ...
@overload
def ix_(*args: _NestedSequence[bytes]) -> Tuple[NDArray[bytes_], ...]: ...
@overload
def ix_(*args: _NestedSequence[bool]) -> Tuple[NDArray[bool_], ...]: ...
@overload
def ix_(*args: _NestedSequence[int]) -> Tuple[NDArray[int_], ...]: ...
@overload
def ix_(*args: _NestedSequence[float]) -> Tuple[NDArray[float_], ...]: ...
@overload
def ix_(*args: _NestedSequence[complex]) -> Tuple[NDArray[complex_], ...]: ...
@overload
def ix_(*args: _RecursiveSequence) -> Tuple[NDArray[Any], ...]: ...
class nd_grid(Generic[_BoolType]):
sparse: _BoolType
def __init__(self, sparse: _BoolType = ...) -> None: ...
@overload
def __getitem__(
self: nd_grid[Literal[False]],
key: Union[slice, Sequence[slice]],
) -> NDArray[Any]: ...
@overload
def __getitem__(
self: nd_grid[Literal[True]],
key: Union[slice, Sequence[slice]],
) -> List[NDArray[Any]]: ...
class MGridClass(nd_grid[Literal[False]]):
def __init__(self) -> None: ...
mgrid: MGridClass
class OGridClass(nd_grid[Literal[True]]):
def __init__(self) -> None: ...
ogrid: OGridClass
class AxisConcatenator:
axis: int
matrix: bool
ndmin: int
trans1d: int
def __init__(
self,
axis: int = ...,
matrix: bool = ...,
ndmin: int = ...,
trans1d: int = ...,
) -> None: ...
@staticmethod
@overload
def concatenate( # type: ignore[misc]
*a: ArrayLike, axis: SupportsIndex = ..., out: None = ...
) -> NDArray[Any]: ...
@staticmethod
@overload
def concatenate(
*a: ArrayLike, axis: SupportsIndex = ..., out: _ArrayType = ...
) -> _ArrayType: ...
@staticmethod
def makemat(
data: ArrayLike, dtype: DTypeLike = ..., copy: bool = ...
) -> _Matrix: ...
# TODO: Sort out this `__getitem__` method
def __getitem__(self, key: Any) -> Any: ...
class RClass(AxisConcatenator):
axis: Literal[0]
matrix: Literal[False]
ndmin: Literal[1]
trans1d: Literal[-1]
def __init__(self) -> None: ...
r_: RClass
class CClass(AxisConcatenator):
axis: Literal[-1]
matrix: Literal[False]
ndmin: Literal[2]
trans1d: Literal[0]
def __init__(self) -> None: ...
c_: CClass
class IndexExpression(Generic[_BoolType]):
maketuple: _BoolType
def __init__(self, maketuple: _BoolType) -> None: ...
@overload
def __getitem__(self, item: _TupType) -> _TupType: ... # type: ignore[misc]
@overload
def __getitem__(self: IndexExpression[Literal[True]], item: _T) -> Tuple[_T]: ...
@overload
def __getitem__(self: IndexExpression[Literal[False]], item: _T) -> _T: ...
index_exp: IndexExpression[Literal[True]]
s_: IndexExpression[Literal[False]]
def fill_diagonal(a: ndarray[Any, Any], val: Any, wrap: bool = ...) -> None: ...
def diag_indices(n: int, ndim: int = ...) -> Tuple[NDArray[int_], ...]: ...
def diag_indices_from(arr: ArrayLike) -> Tuple[NDArray[int_], ...]: ...
# NOTE: see `numpy/__init__.pyi` for `ndenumerate` and `ndindex`
|