Spaces:
Paused
Paused
File size: 39,631 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 |
import functools
import numpy.core.numeric as _nx
from numpy.core.numeric import (
asarray, zeros, outer, concatenate, array, asanyarray
)
from numpy.core.fromnumeric import reshape, transpose
from numpy.core.multiarray import normalize_axis_index
from numpy.core import overrides
from numpy.core import vstack, atleast_3d
from numpy.core.numeric import normalize_axis_tuple
from numpy.core.shape_base import _arrays_for_stack_dispatcher
from numpy.lib.index_tricks import ndindex
from numpy.matrixlib.defmatrix import matrix # this raises all the right alarm bells
__all__ = [
'column_stack', 'row_stack', 'dstack', 'array_split', 'split',
'hsplit', 'vsplit', 'dsplit', 'apply_over_axes', 'expand_dims',
'apply_along_axis', 'kron', 'tile', 'get_array_wrap', 'take_along_axis',
'put_along_axis'
]
array_function_dispatch = functools.partial(
overrides.array_function_dispatch, module='numpy')
def _make_along_axis_idx(arr_shape, indices, axis):
# compute dimensions to iterate over
if not _nx.issubdtype(indices.dtype, _nx.integer):
raise IndexError('`indices` must be an integer array')
if len(arr_shape) != indices.ndim:
raise ValueError(
"`indices` and `arr` must have the same number of dimensions")
shape_ones = (1,) * indices.ndim
dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))
# build a fancy index, consisting of orthogonal aranges, with the
# requested index inserted at the right location
fancy_index = []
for dim, n in zip(dest_dims, arr_shape):
if dim is None:
fancy_index.append(indices)
else:
ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
fancy_index.append(_nx.arange(n).reshape(ind_shape))
return tuple(fancy_index)
def _take_along_axis_dispatcher(arr, indices, axis):
return (arr, indices)
@array_function_dispatch(_take_along_axis_dispatcher)
def take_along_axis(arr, indices, axis):
"""
Take values from the input array by matching 1d index and data slices.
This iterates over matching 1d slices oriented along the specified axis in
the index and data arrays, and uses the former to look up values in the
latter. These slices can be different lengths.
Functions returning an index along an axis, like `argsort` and
`argpartition`, produce suitable indices for this function.
.. versionadded:: 1.15.0
Parameters
----------
arr : ndarray (Ni..., M, Nk...)
Source array
indices : ndarray (Ni..., J, Nk...)
Indices to take along each 1d slice of `arr`. This must match the
dimension of arr, but dimensions Ni and Nj only need to broadcast
against `arr`.
axis : int
The axis to take 1d slices along. If axis is None, the input array is
treated as if it had first been flattened to 1d, for consistency with
`sort` and `argsort`.
Returns
-------
out: ndarray (Ni..., J, Nk...)
The indexed result.
Notes
-----
This is equivalent to (but faster than) the following use of `ndindex` and
`s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices::
Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
J = indices.shape[axis] # Need not equal M
out = np.empty(Ni + (J,) + Nk)
for ii in ndindex(Ni):
for kk in ndindex(Nk):
a_1d = a [ii + s_[:,] + kk]
indices_1d = indices[ii + s_[:,] + kk]
out_1d = out [ii + s_[:,] + kk]
for j in range(J):
out_1d[j] = a_1d[indices_1d[j]]
Equivalently, eliminating the inner loop, the last two lines would be::
out_1d[:] = a_1d[indices_1d]
See Also
--------
take : Take along an axis, using the same indices for every 1d slice
put_along_axis :
Put values into the destination array by matching 1d index and data slices
Examples
--------
For this sample array
>>> a = np.array([[10, 30, 20], [60, 40, 50]])
We can sort either by using sort directly, or argsort and this function
>>> np.sort(a, axis=1)
array([[10, 20, 30],
[40, 50, 60]])
>>> ai = np.argsort(a, axis=1); ai
array([[0, 2, 1],
[1, 2, 0]])
>>> np.take_along_axis(a, ai, axis=1)
array([[10, 20, 30],
[40, 50, 60]])
The same works for max and min, if you expand the dimensions:
>>> np.expand_dims(np.max(a, axis=1), axis=1)
array([[30],
[60]])
>>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1)
>>> ai
array([[1],
[0]])
>>> np.take_along_axis(a, ai, axis=1)
array([[30],
[60]])
If we want to get the max and min at the same time, we can stack the
indices first
>>> ai_min = np.expand_dims(np.argmin(a, axis=1), axis=1)
>>> ai_max = np.expand_dims(np.argmax(a, axis=1), axis=1)
>>> ai = np.concatenate([ai_min, ai_max], axis=1)
>>> ai
array([[0, 1],
[1, 0]])
>>> np.take_along_axis(a, ai, axis=1)
array([[10, 30],
[40, 60]])
"""
# normalize inputs
if axis is None:
arr = arr.flat
arr_shape = (len(arr),) # flatiter has no .shape
axis = 0
else:
axis = normalize_axis_index(axis, arr.ndim)
arr_shape = arr.shape
# use the fancy index
return arr[_make_along_axis_idx(arr_shape, indices, axis)]
def _put_along_axis_dispatcher(arr, indices, values, axis):
return (arr, indices, values)
@array_function_dispatch(_put_along_axis_dispatcher)
def put_along_axis(arr, indices, values, axis):
"""
Put values into the destination array by matching 1d index and data slices.
This iterates over matching 1d slices oriented along the specified axis in
the index and data arrays, and uses the former to place values into the
latter. These slices can be different lengths.
Functions returning an index along an axis, like `argsort` and
`argpartition`, produce suitable indices for this function.
.. versionadded:: 1.15.0
Parameters
----------
arr : ndarray (Ni..., M, Nk...)
Destination array.
indices : ndarray (Ni..., J, Nk...)
Indices to change along each 1d slice of `arr`. This must match the
dimension of arr, but dimensions in Ni and Nj may be 1 to broadcast
against `arr`.
values : array_like (Ni..., J, Nk...)
values to insert at those indices. Its shape and dimension are
broadcast to match that of `indices`.
axis : int
The axis to take 1d slices along. If axis is None, the destination
array is treated as if a flattened 1d view had been created of it.
Notes
-----
This is equivalent to (but faster than) the following use of `ndindex` and
`s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices::
Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
J = indices.shape[axis] # Need not equal M
for ii in ndindex(Ni):
for kk in ndindex(Nk):
a_1d = a [ii + s_[:,] + kk]
indices_1d = indices[ii + s_[:,] + kk]
values_1d = values [ii + s_[:,] + kk]
for j in range(J):
a_1d[indices_1d[j]] = values_1d[j]
Equivalently, eliminating the inner loop, the last two lines would be::
a_1d[indices_1d] = values_1d
See Also
--------
take_along_axis :
Take values from the input array by matching 1d index and data slices
Examples
--------
For this sample array
>>> a = np.array([[10, 30, 20], [60, 40, 50]])
We can replace the maximum values with:
>>> ai = np.expand_dims(np.argmax(a, axis=1), axis=1)
>>> ai
array([[1],
[0]])
>>> np.put_along_axis(a, ai, 99, axis=1)
>>> a
array([[10, 99, 20],
[99, 40, 50]])
"""
# normalize inputs
if axis is None:
arr = arr.flat
axis = 0
arr_shape = (len(arr),) # flatiter has no .shape
else:
axis = normalize_axis_index(axis, arr.ndim)
arr_shape = arr.shape
# use the fancy index
arr[_make_along_axis_idx(arr_shape, indices, axis)] = values
def _apply_along_axis_dispatcher(func1d, axis, arr, *args, **kwargs):
return (arr,)
@array_function_dispatch(_apply_along_axis_dispatcher)
def apply_along_axis(func1d, axis, arr, *args, **kwargs):
"""
Apply a function to 1-D slices along the given axis.
Execute `func1d(a, *args, **kwargs)` where `func1d` operates on 1-D arrays
and `a` is a 1-D slice of `arr` along `axis`.
This is equivalent to (but faster than) the following use of `ndindex` and
`s_`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of indices::
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):
for kk in ndindex(Nk):
f = func1d(arr[ii + s_[:,] + kk])
Nj = f.shape
for jj in ndindex(Nj):
out[ii + jj + kk] = f[jj]
Equivalently, eliminating the inner loop, this can be expressed as::
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
for ii in ndindex(Ni):
for kk in ndindex(Nk):
out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])
Parameters
----------
func1d : function (M,) -> (Nj...)
This function should accept 1-D arrays. It is applied to 1-D
slices of `arr` along the specified axis.
axis : integer
Axis along which `arr` is sliced.
arr : ndarray (Ni..., M, Nk...)
Input array.
args : any
Additional arguments to `func1d`.
kwargs : any
Additional named arguments to `func1d`.
.. versionadded:: 1.9.0
Returns
-------
out : ndarray (Ni..., Nj..., Nk...)
The output array. The shape of `out` is identical to the shape of
`arr`, except along the `axis` dimension. This axis is removed, and
replaced with new dimensions equal to the shape of the return value
of `func1d`. So if `func1d` returns a scalar `out` will have one
fewer dimensions than `arr`.
See Also
--------
apply_over_axes : Apply a function repeatedly over multiple axes.
Examples
--------
>>> def my_func(a):
... \"\"\"Average first and last element of a 1-D array\"\"\"
... return (a[0] + a[-1]) * 0.5
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(my_func, 0, b)
array([4., 5., 6.])
>>> np.apply_along_axis(my_func, 1, b)
array([2., 5., 8.])
For a function that returns a 1D array, the number of dimensions in
`outarr` is the same as `arr`.
>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
>>> np.apply_along_axis(sorted, 1, b)
array([[1, 7, 8],
[3, 4, 9],
[2, 5, 6]])
For a function that returns a higher dimensional array, those dimensions
are inserted in place of the `axis` dimension.
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
>>> np.apply_along_axis(np.diag, -1, b)
array([[[1, 0, 0],
[0, 2, 0],
[0, 0, 3]],
[[4, 0, 0],
[0, 5, 0],
[0, 0, 6]],
[[7, 0, 0],
[0, 8, 0],
[0, 0, 9]]])
"""
# handle negative axes
arr = asanyarray(arr)
nd = arr.ndim
axis = normalize_axis_index(axis, nd)
# arr, with the iteration axis at the end
in_dims = list(range(nd))
inarr_view = transpose(arr, in_dims[:axis] + in_dims[axis+1:] + [axis])
# compute indices for the iteration axes, and append a trailing ellipsis to
# prevent 0d arrays decaying to scalars, which fixes gh-8642
inds = ndindex(inarr_view.shape[:-1])
inds = (ind + (Ellipsis,) for ind in inds)
# invoke the function on the first item
try:
ind0 = next(inds)
except StopIteration as e:
raise ValueError(
'Cannot apply_along_axis when any iteration dimensions are 0'
) from None
res = asanyarray(func1d(inarr_view[ind0], *args, **kwargs))
# build a buffer for storing evaluations of func1d.
# remove the requested axis, and add the new ones on the end.
# laid out so that each write is contiguous.
# for a tuple index inds, buff[inds] = func1d(inarr_view[inds])
buff = zeros(inarr_view.shape[:-1] + res.shape, res.dtype)
# permutation of axes such that out = buff.transpose(buff_permute)
buff_dims = list(range(buff.ndim))
buff_permute = (
buff_dims[0 : axis] +
buff_dims[buff.ndim-res.ndim : buff.ndim] +
buff_dims[axis : buff.ndim-res.ndim]
)
# matrices have a nasty __array_prepare__ and __array_wrap__
if not isinstance(res, matrix):
buff = res.__array_prepare__(buff)
# save the first result, then compute and save all remaining results
buff[ind0] = res
for ind in inds:
buff[ind] = asanyarray(func1d(inarr_view[ind], *args, **kwargs))
if not isinstance(res, matrix):
# wrap the array, to preserve subclasses
buff = res.__array_wrap__(buff)
# finally, rotate the inserted axes back to where they belong
return transpose(buff, buff_permute)
else:
# matrices have to be transposed first, because they collapse dimensions!
out_arr = transpose(buff, buff_permute)
return res.__array_wrap__(out_arr)
def _apply_over_axes_dispatcher(func, a, axes):
return (a,)
@array_function_dispatch(_apply_over_axes_dispatcher)
def apply_over_axes(func, a, axes):
"""
Apply a function repeatedly over multiple axes.
`func` is called as `res = func(a, axis)`, where `axis` is the first
element of `axes`. The result `res` of the function call must have
either the same dimensions as `a` or one less dimension. If `res`
has one less dimension than `a`, a dimension is inserted before
`axis`. The call to `func` is then repeated for each axis in `axes`,
with `res` as the first argument.
Parameters
----------
func : function
This function must take two arguments, `func(a, axis)`.
a : array_like
Input array.
axes : array_like
Axes over which `func` is applied; the elements must be integers.
Returns
-------
apply_over_axis : ndarray
The output array. The number of dimensions is the same as `a`,
but the shape can be different. This depends on whether `func`
changes the shape of its output with respect to its input.
See Also
--------
apply_along_axis :
Apply a function to 1-D slices of an array along the given axis.
Notes
-----
This function is equivalent to tuple axis arguments to reorderable ufuncs
with keepdims=True. Tuple axis arguments to ufuncs have been available since
version 1.7.0.
Examples
--------
>>> a = np.arange(24).reshape(2,3,4)
>>> a
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11]],
[[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23]]])
Sum over axes 0 and 2. The result has same number of dimensions
as the original array:
>>> np.apply_over_axes(np.sum, a, [0,2])
array([[[ 60],
[ 92],
[124]]])
Tuple axis arguments to ufuncs are equivalent:
>>> np.sum(a, axis=(0,2), keepdims=True)
array([[[ 60],
[ 92],
[124]]])
"""
val = asarray(a)
N = a.ndim
if array(axes).ndim == 0:
axes = (axes,)
for axis in axes:
if axis < 0:
axis = N + axis
args = (val, axis)
res = func(*args)
if res.ndim == val.ndim:
val = res
else:
res = expand_dims(res, axis)
if res.ndim == val.ndim:
val = res
else:
raise ValueError("function is not returning "
"an array of the correct shape")
return val
def _expand_dims_dispatcher(a, axis):
return (a,)
@array_function_dispatch(_expand_dims_dispatcher)
def expand_dims(a, axis):
"""
Expand the shape of an array.
Insert a new axis that will appear at the `axis` position in the expanded
array shape.
Parameters
----------
a : array_like
Input array.
axis : int or tuple of ints
Position in the expanded axes where the new axis (or axes) is placed.
.. deprecated:: 1.13.0
Passing an axis where ``axis > a.ndim`` will be treated as
``axis == a.ndim``, and passing ``axis < -a.ndim - 1`` will
be treated as ``axis == 0``. This behavior is deprecated.
.. versionchanged:: 1.18.0
A tuple of axes is now supported. Out of range axes as
described above are now forbidden and raise an `AxisError`.
Returns
-------
result : ndarray
View of `a` with the number of dimensions increased.
See Also
--------
squeeze : The inverse operation, removing singleton dimensions
reshape : Insert, remove, and combine dimensions, and resize existing ones
doc.indexing, atleast_1d, atleast_2d, atleast_3d
Examples
--------
>>> x = np.array([1, 2])
>>> x.shape
(2,)
The following is equivalent to ``x[np.newaxis, :]`` or ``x[np.newaxis]``:
>>> y = np.expand_dims(x, axis=0)
>>> y
array([[1, 2]])
>>> y.shape
(1, 2)
The following is equivalent to ``x[:, np.newaxis]``:
>>> y = np.expand_dims(x, axis=1)
>>> y
array([[1],
[2]])
>>> y.shape
(2, 1)
``axis`` may also be a tuple:
>>> y = np.expand_dims(x, axis=(0, 1))
>>> y
array([[[1, 2]]])
>>> y = np.expand_dims(x, axis=(2, 0))
>>> y
array([[[1],
[2]]])
Note that some examples may use ``None`` instead of ``np.newaxis``. These
are the same objects:
>>> np.newaxis is None
True
"""
if isinstance(a, matrix):
a = asarray(a)
else:
a = asanyarray(a)
if type(axis) not in (tuple, list):
axis = (axis,)
out_ndim = len(axis) + a.ndim
axis = normalize_axis_tuple(axis, out_ndim)
shape_it = iter(a.shape)
shape = [1 if ax in axis else next(shape_it) for ax in range(out_ndim)]
return a.reshape(shape)
row_stack = vstack
def _column_stack_dispatcher(tup):
return _arrays_for_stack_dispatcher(tup)
@array_function_dispatch(_column_stack_dispatcher)
def column_stack(tup):
"""
Stack 1-D arrays as columns into a 2-D array.
Take a sequence of 1-D arrays and stack them as columns
to make a single 2-D array. 2-D arrays are stacked as-is,
just like with `hstack`. 1-D arrays are turned into 2-D columns
first.
Parameters
----------
tup : sequence of 1-D or 2-D arrays.
Arrays to stack. All of them must have the same first dimension.
Returns
-------
stacked : 2-D array
The array formed by stacking the given arrays.
See Also
--------
stack, hstack, vstack, concatenate
Examples
--------
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.column_stack((a,b))
array([[1, 2],
[2, 3],
[3, 4]])
"""
if not overrides.ARRAY_FUNCTION_ENABLED:
# raise warning if necessary
_arrays_for_stack_dispatcher(tup, stacklevel=2)
arrays = []
for v in tup:
arr = asanyarray(v)
if arr.ndim < 2:
arr = array(arr, copy=False, subok=True, ndmin=2).T
arrays.append(arr)
return _nx.concatenate(arrays, 1)
def _dstack_dispatcher(tup):
return _arrays_for_stack_dispatcher(tup)
@array_function_dispatch(_dstack_dispatcher)
def dstack(tup):
"""
Stack arrays in sequence depth wise (along third axis).
This is equivalent to concatenation along the third axis after 2-D arrays
of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape
`(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by
`dsplit`.
This function makes most sense for arrays with up to 3 dimensions. For
instance, for pixel-data with a height (first axis), width (second axis),
and r/g/b channels (third axis). The functions `concatenate`, `stack` and
`block` provide more general stacking and concatenation operations.
Parameters
----------
tup : sequence of arrays
The arrays must have the same shape along all but the third axis.
1-D or 2-D arrays must have the same shape.
Returns
-------
stacked : ndarray
The array formed by stacking the given arrays, will be at least 3-D.
See Also
--------
concatenate : Join a sequence of arrays along an existing axis.
stack : Join a sequence of arrays along a new axis.
block : Assemble an nd-array from nested lists of blocks.
vstack : Stack arrays in sequence vertically (row wise).
hstack : Stack arrays in sequence horizontally (column wise).
column_stack : Stack 1-D arrays as columns into a 2-D array.
dsplit : Split array along third axis.
Examples
--------
>>> a = np.array((1,2,3))
>>> b = np.array((2,3,4))
>>> np.dstack((a,b))
array([[[1, 2],
[2, 3],
[3, 4]]])
>>> a = np.array([[1],[2],[3]])
>>> b = np.array([[2],[3],[4]])
>>> np.dstack((a,b))
array([[[1, 2]],
[[2, 3]],
[[3, 4]]])
"""
if not overrides.ARRAY_FUNCTION_ENABLED:
# raise warning if necessary
_arrays_for_stack_dispatcher(tup, stacklevel=2)
arrs = atleast_3d(*tup)
if not isinstance(arrs, list):
arrs = [arrs]
return _nx.concatenate(arrs, 2)
def _replace_zero_by_x_arrays(sub_arys):
for i in range(len(sub_arys)):
if _nx.ndim(sub_arys[i]) == 0:
sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]), 0)):
sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
return sub_arys
def _array_split_dispatcher(ary, indices_or_sections, axis=None):
return (ary, indices_or_sections)
@array_function_dispatch(_array_split_dispatcher)
def array_split(ary, indices_or_sections, axis=0):
"""
Split an array into multiple sub-arrays.
Please refer to the ``split`` documentation. The only difference
between these functions is that ``array_split`` allows
`indices_or_sections` to be an integer that does *not* equally
divide the axis. For an array of length l that should be split
into n sections, it returns l % n sub-arrays of size l//n + 1
and the rest of size l//n.
See Also
--------
split : Split array into multiple sub-arrays of equal size.
Examples
--------
>>> x = np.arange(8.0)
>>> np.array_split(x, 3)
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])]
>>> x = np.arange(9)
>>> np.array_split(x, 4)
[array([0, 1, 2]), array([3, 4]), array([5, 6]), array([7, 8])]
"""
try:
Ntotal = ary.shape[axis]
except AttributeError:
Ntotal = len(ary)
try:
# handle array case.
Nsections = len(indices_or_sections) + 1
div_points = [0] + list(indices_or_sections) + [Ntotal]
except TypeError:
# indices_or_sections is a scalar, not an array.
Nsections = int(indices_or_sections)
if Nsections <= 0:
raise ValueError('number sections must be larger than 0.') from None
Neach_section, extras = divmod(Ntotal, Nsections)
section_sizes = ([0] +
extras * [Neach_section+1] +
(Nsections-extras) * [Neach_section])
div_points = _nx.array(section_sizes, dtype=_nx.intp).cumsum()
sub_arys = []
sary = _nx.swapaxes(ary, axis, 0)
for i in range(Nsections):
st = div_points[i]
end = div_points[i + 1]
sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))
return sub_arys
def _split_dispatcher(ary, indices_or_sections, axis=None):
return (ary, indices_or_sections)
@array_function_dispatch(_split_dispatcher)
def split(ary, indices_or_sections, axis=0):
"""
Split an array into multiple sub-arrays as views into `ary`.
Parameters
----------
ary : ndarray
Array to be divided into sub-arrays.
indices_or_sections : int or 1-D array
If `indices_or_sections` is an integer, N, the array will be divided
into N equal arrays along `axis`. If such a split is not possible,
an error is raised.
If `indices_or_sections` is a 1-D array of sorted integers, the entries
indicate where along `axis` the array is split. For example,
``[2, 3]`` would, for ``axis=0``, result in
- ary[:2]
- ary[2:3]
- ary[3:]
If an index exceeds the dimension of the array along `axis`,
an empty sub-array is returned correspondingly.
axis : int, optional
The axis along which to split, default is 0.
Returns
-------
sub-arrays : list of ndarrays
A list of sub-arrays as views into `ary`.
Raises
------
ValueError
If `indices_or_sections` is given as an integer, but
a split does not result in equal division.
See Also
--------
array_split : Split an array into multiple sub-arrays of equal or
near-equal size. Does not raise an exception if
an equal division cannot be made.
hsplit : Split array into multiple sub-arrays horizontally (column-wise).
vsplit : Split array into multiple sub-arrays vertically (row wise).
dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
concatenate : Join a sequence of arrays along an existing axis.
stack : Join a sequence of arrays along a new axis.
hstack : Stack arrays in sequence horizontally (column wise).
vstack : Stack arrays in sequence vertically (row wise).
dstack : Stack arrays in sequence depth wise (along third dimension).
Examples
--------
>>> x = np.arange(9.0)
>>> np.split(x, 3)
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]
>>> x = np.arange(8.0)
>>> np.split(x, [3, 5, 6, 10])
[array([0., 1., 2.]),
array([3., 4.]),
array([5.]),
array([6., 7.]),
array([], dtype=float64)]
"""
try:
len(indices_or_sections)
except TypeError:
sections = indices_or_sections
N = ary.shape[axis]
if N % sections:
raise ValueError(
'array split does not result in an equal division') from None
return array_split(ary, indices_or_sections, axis)
def _hvdsplit_dispatcher(ary, indices_or_sections):
return (ary, indices_or_sections)
@array_function_dispatch(_hvdsplit_dispatcher)
def hsplit(ary, indices_or_sections):
"""
Split an array into multiple sub-arrays horizontally (column-wise).
Please refer to the `split` documentation. `hsplit` is equivalent
to `split` with ``axis=1``, the array is always split along the second
axis regardless of the array dimension.
See Also
--------
split : Split an array into multiple sub-arrays of equal size.
Examples
--------
>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]])
>>> np.hsplit(x, 2)
[array([[ 0., 1.],
[ 4., 5.],
[ 8., 9.],
[12., 13.]]),
array([[ 2., 3.],
[ 6., 7.],
[10., 11.],
[14., 15.]])]
>>> np.hsplit(x, np.array([3, 6]))
[array([[ 0., 1., 2.],
[ 4., 5., 6.],
[ 8., 9., 10.],
[12., 13., 14.]]),
array([[ 3.],
[ 7.],
[11.],
[15.]]),
array([], shape=(4, 0), dtype=float64)]
With a higher dimensional array the split is still along the second axis.
>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0., 1.],
[2., 3.]],
[[4., 5.],
[6., 7.]]])
>>> np.hsplit(x, 2)
[array([[[0., 1.]],
[[4., 5.]]]),
array([[[2., 3.]],
[[6., 7.]]])]
"""
if _nx.ndim(ary) == 0:
raise ValueError('hsplit only works on arrays of 1 or more dimensions')
if ary.ndim > 1:
return split(ary, indices_or_sections, 1)
else:
return split(ary, indices_or_sections, 0)
@array_function_dispatch(_hvdsplit_dispatcher)
def vsplit(ary, indices_or_sections):
"""
Split an array into multiple sub-arrays vertically (row-wise).
Please refer to the ``split`` documentation. ``vsplit`` is equivalent
to ``split`` with `axis=0` (default), the array is always split along the
first axis regardless of the array dimension.
See Also
--------
split : Split an array into multiple sub-arrays of equal size.
Examples
--------
>>> x = np.arange(16.0).reshape(4, 4)
>>> x
array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.],
[12., 13., 14., 15.]])
>>> np.vsplit(x, 2)
[array([[0., 1., 2., 3.],
[4., 5., 6., 7.]]), array([[ 8., 9., 10., 11.],
[12., 13., 14., 15.]])]
>>> np.vsplit(x, np.array([3, 6]))
[array([[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.],
[ 8., 9., 10., 11.]]), array([[12., 13., 14., 15.]]), array([], shape=(0, 4), dtype=float64)]
With a higher dimensional array the split is still along the first axis.
>>> x = np.arange(8.0).reshape(2, 2, 2)
>>> x
array([[[0., 1.],
[2., 3.]],
[[4., 5.],
[6., 7.]]])
>>> np.vsplit(x, 2)
[array([[[0., 1.],
[2., 3.]]]), array([[[4., 5.],
[6., 7.]]])]
"""
if _nx.ndim(ary) < 2:
raise ValueError('vsplit only works on arrays of 2 or more dimensions')
return split(ary, indices_or_sections, 0)
@array_function_dispatch(_hvdsplit_dispatcher)
def dsplit(ary, indices_or_sections):
"""
Split array into multiple sub-arrays along the 3rd axis (depth).
Please refer to the `split` documentation. `dsplit` is equivalent
to `split` with ``axis=2``, the array is always split along the third
axis provided the array dimension is greater than or equal to 3.
See Also
--------
split : Split an array into multiple sub-arrays of equal size.
Examples
--------
>>> x = np.arange(16.0).reshape(2, 2, 4)
>>> x
array([[[ 0., 1., 2., 3.],
[ 4., 5., 6., 7.]],
[[ 8., 9., 10., 11.],
[12., 13., 14., 15.]]])
>>> np.dsplit(x, 2)
[array([[[ 0., 1.],
[ 4., 5.]],
[[ 8., 9.],
[12., 13.]]]), array([[[ 2., 3.],
[ 6., 7.]],
[[10., 11.],
[14., 15.]]])]
>>> np.dsplit(x, np.array([3, 6]))
[array([[[ 0., 1., 2.],
[ 4., 5., 6.]],
[[ 8., 9., 10.],
[12., 13., 14.]]]),
array([[[ 3.],
[ 7.]],
[[11.],
[15.]]]),
array([], shape=(2, 2, 0), dtype=float64)]
"""
if _nx.ndim(ary) < 3:
raise ValueError('dsplit only works on arrays of 3 or more dimensions')
return split(ary, indices_or_sections, 2)
def get_array_prepare(*args):
"""Find the wrapper for the array with the highest priority.
In case of ties, leftmost wins. If no wrapper is found, return None
"""
wrappers = sorted((getattr(x, '__array_priority__', 0), -i,
x.__array_prepare__) for i, x in enumerate(args)
if hasattr(x, '__array_prepare__'))
if wrappers:
return wrappers[-1][-1]
return None
def get_array_wrap(*args):
"""Find the wrapper for the array with the highest priority.
In case of ties, leftmost wins. If no wrapper is found, return None
"""
wrappers = sorted((getattr(x, '__array_priority__', 0), -i,
x.__array_wrap__) for i, x in enumerate(args)
if hasattr(x, '__array_wrap__'))
if wrappers:
return wrappers[-1][-1]
return None
def _kron_dispatcher(a, b):
return (a, b)
@array_function_dispatch(_kron_dispatcher)
def kron(a, b):
"""
Kronecker product of two arrays.
Computes the Kronecker product, a composite array made of blocks of the
second array scaled by the first.
Parameters
----------
a, b : array_like
Returns
-------
out : ndarray
See Also
--------
outer : The outer product
Notes
-----
The function assumes that the number of dimensions of `a` and `b`
are the same, if necessary prepending the smallest with ones.
If ``a.shape = (r0,r1,..,rN)`` and ``b.shape = (s0,s1,...,sN)``,
the Kronecker product has shape ``(r0*s0, r1*s1, ..., rN*SN)``.
The elements are products of elements from `a` and `b`, organized
explicitly by::
kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]
where::
kt = it * st + jt, t = 0,...,N
In the common 2-D case (N=1), the block structure can be visualized::
[[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ],
[ ... ... ],
[ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]]
Examples
--------
>>> np.kron([1,10,100], [5,6,7])
array([ 5, 6, 7, ..., 500, 600, 700])
>>> np.kron([5,6,7], [1,10,100])
array([ 5, 50, 500, ..., 7, 70, 700])
>>> np.kron(np.eye(2), np.ones((2,2)))
array([[1., 1., 0., 0.],
[1., 1., 0., 0.],
[0., 0., 1., 1.],
[0., 0., 1., 1.]])
>>> a = np.arange(100).reshape((2,5,2,5))
>>> b = np.arange(24).reshape((2,3,4))
>>> c = np.kron(a,b)
>>> c.shape
(2, 10, 6, 20)
>>> I = (1,3,0,2)
>>> J = (0,2,1)
>>> J1 = (0,) + J # extend to ndim=4
>>> S1 = (1,) + b.shape
>>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
>>> c[K] == a[I]*b[J]
True
"""
b = asanyarray(b)
a = array(a, copy=False, subok=True, ndmin=b.ndim)
ndb, nda = b.ndim, a.ndim
if (nda == 0 or ndb == 0):
return _nx.multiply(a, b)
as_ = a.shape
bs = b.shape
if not a.flags.contiguous:
a = reshape(a, as_)
if not b.flags.contiguous:
b = reshape(b, bs)
nd = ndb
if (ndb != nda):
if (ndb > nda):
as_ = (1,)*(ndb-nda) + as_
else:
bs = (1,)*(nda-ndb) + bs
nd = nda
result = outer(a, b).reshape(as_+bs)
axis = nd-1
for _ in range(nd):
result = concatenate(result, axis=axis)
wrapper = get_array_prepare(a, b)
if wrapper is not None:
result = wrapper(result)
wrapper = get_array_wrap(a, b)
if wrapper is not None:
result = wrapper(result)
return result
def _tile_dispatcher(A, reps):
return (A, reps)
@array_function_dispatch(_tile_dispatcher)
def tile(A, reps):
"""
Construct an array by repeating A the number of times given by reps.
If `reps` has length ``d``, the result will have dimension of
``max(d, A.ndim)``.
If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new
axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication,
or shape (1, 1, 3) for 3-D replication. If this is not the desired
behavior, promote `A` to d-dimensions manually before calling this
function.
If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it.
Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as
(1, 1, 2, 2).
Note : Although tile may be used for broadcasting, it is strongly
recommended to use numpy's broadcasting operations and functions.
Parameters
----------
A : array_like
The input array.
reps : array_like
The number of repetitions of `A` along each axis.
Returns
-------
c : ndarray
The tiled output array.
See Also
--------
repeat : Repeat elements of an array.
broadcast_to : Broadcast an array to a new shape
Examples
--------
>>> a = np.array([0, 1, 2])
>>> np.tile(a, 2)
array([0, 1, 2, 0, 1, 2])
>>> np.tile(a, (2, 2))
array([[0, 1, 2, 0, 1, 2],
[0, 1, 2, 0, 1, 2]])
>>> np.tile(a, (2, 1, 2))
array([[[0, 1, 2, 0, 1, 2]],
[[0, 1, 2, 0, 1, 2]]])
>>> b = np.array([[1, 2], [3, 4]])
>>> np.tile(b, 2)
array([[1, 2, 1, 2],
[3, 4, 3, 4]])
>>> np.tile(b, (2, 1))
array([[1, 2],
[3, 4],
[1, 2],
[3, 4]])
>>> c = np.array([1,2,3,4])
>>> np.tile(c,(4,1))
array([[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4],
[1, 2, 3, 4]])
"""
try:
tup = tuple(reps)
except TypeError:
tup = (reps,)
d = len(tup)
if all(x == 1 for x in tup) and isinstance(A, _nx.ndarray):
# Fixes the problem that the function does not make a copy if A is a
# numpy array and the repetitions are 1 in all dimensions
return _nx.array(A, copy=True, subok=True, ndmin=d)
else:
# Note that no copy of zero-sized arrays is made. However since they
# have no data there is no risk of an inadvertent overwrite.
c = _nx.array(A, copy=False, subok=True, ndmin=d)
if (d < c.ndim):
tup = (1,)*(c.ndim-d) + tup
shape_out = tuple(s*t for s, t in zip(c.shape, tup))
n = c.size
if n > 0:
for dim_in, nrep in zip(c.shape, tup):
if nrep != 1:
c = c.reshape(-1, n).repeat(nrep, 0)
n //= dim_in
return c.reshape(shape_out)
|