Spaces:
Paused
Paused
File size: 50,108 Bytes
dc2106c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 |
"""
=================================================
Power Series (:mod:`numpy.polynomial.polynomial`)
=================================================
This module provides a number of objects (mostly functions) useful for
dealing with polynomials, including a `Polynomial` class that
encapsulates the usual arithmetic operations. (General information
on how this module represents and works with polynomial objects is in
the docstring for its "parent" sub-package, `numpy.polynomial`).
Classes
-------
.. autosummary::
:toctree: generated/
Polynomial
Constants
---------
.. autosummary::
:toctree: generated/
polydomain
polyzero
polyone
polyx
Arithmetic
----------
.. autosummary::
:toctree: generated/
polyadd
polysub
polymulx
polymul
polydiv
polypow
polyval
polyval2d
polyval3d
polygrid2d
polygrid3d
Calculus
--------
.. autosummary::
:toctree: generated/
polyder
polyint
Misc Functions
--------------
.. autosummary::
:toctree: generated/
polyfromroots
polyroots
polyvalfromroots
polyvander
polyvander2d
polyvander3d
polycompanion
polyfit
polytrim
polyline
See Also
--------
`numpy.polynomial`
"""
__all__ = [
'polyzero', 'polyone', 'polyx', 'polydomain', 'polyline', 'polyadd',
'polysub', 'polymulx', 'polymul', 'polydiv', 'polypow', 'polyval',
'polyvalfromroots', 'polyder', 'polyint', 'polyfromroots', 'polyvander',
'polyfit', 'polytrim', 'polyroots', 'Polynomial', 'polyval2d', 'polyval3d',
'polygrid2d', 'polygrid3d', 'polyvander2d', 'polyvander3d']
import numpy as np
import numpy.linalg as la
from numpy.core.multiarray import normalize_axis_index
from . import polyutils as pu
from ._polybase import ABCPolyBase
polytrim = pu.trimcoef
#
# These are constant arrays are of integer type so as to be compatible
# with the widest range of other types, such as Decimal.
#
# Polynomial default domain.
polydomain = np.array([-1, 1])
# Polynomial coefficients representing zero.
polyzero = np.array([0])
# Polynomial coefficients representing one.
polyone = np.array([1])
# Polynomial coefficients representing the identity x.
polyx = np.array([0, 1])
#
# Polynomial series functions
#
def polyline(off, scl):
"""
Returns an array representing a linear polynomial.
Parameters
----------
off, scl : scalars
The "y-intercept" and "slope" of the line, respectively.
Returns
-------
y : ndarray
This module's representation of the linear polynomial ``off +
scl*x``.
See Also
--------
numpy.polynomial.chebyshev.chebline
numpy.polynomial.legendre.legline
numpy.polynomial.laguerre.lagline
numpy.polynomial.hermite.hermline
numpy.polynomial.hermite_e.hermeline
Examples
--------
>>> from numpy.polynomial import polynomial as P
>>> P.polyline(1,-1)
array([ 1, -1])
>>> P.polyval(1, P.polyline(1,-1)) # should be 0
0.0
"""
if scl != 0:
return np.array([off, scl])
else:
return np.array([off])
def polyfromroots(roots):
"""
Generate a monic polynomial with given roots.
Return the coefficients of the polynomial
.. math:: p(x) = (x - r_0) * (x - r_1) * ... * (x - r_n),
where the ``r_n`` are the roots specified in `roots`. If a zero has
multiplicity n, then it must appear in `roots` n times. For instance,
if 2 is a root of multiplicity three and 3 is a root of multiplicity 2,
then `roots` looks something like [2, 2, 2, 3, 3]. The roots can appear
in any order.
If the returned coefficients are `c`, then
.. math:: p(x) = c_0 + c_1 * x + ... + x^n
The coefficient of the last term is 1 for monic polynomials in this
form.
Parameters
----------
roots : array_like
Sequence containing the roots.
Returns
-------
out : ndarray
1-D array of the polynomial's coefficients If all the roots are
real, then `out` is also real, otherwise it is complex. (see
Examples below).
See Also
--------
numpy.polynomial.chebyshev.chebfromroots
numpy.polynomial.legendre.legfromroots
numpy.polynomial.laguerre.lagfromroots
numpy.polynomial.hermite.hermfromroots
numpy.polynomial.hermite_e.hermefromroots
Notes
-----
The coefficients are determined by multiplying together linear factors
of the form ``(x - r_i)``, i.e.
.. math:: p(x) = (x - r_0) (x - r_1) ... (x - r_n)
where ``n == len(roots) - 1``; note that this implies that ``1`` is always
returned for :math:`a_n`.
Examples
--------
>>> from numpy.polynomial import polynomial as P
>>> P.polyfromroots((-1,0,1)) # x(x - 1)(x + 1) = x^3 - x
array([ 0., -1., 0., 1.])
>>> j = complex(0,1)
>>> P.polyfromroots((-j,j)) # complex returned, though values are real
array([1.+0.j, 0.+0.j, 1.+0.j])
"""
return pu._fromroots(polyline, polymul, roots)
def polyadd(c1, c2):
"""
Add one polynomial to another.
Returns the sum of two polynomials `c1` + `c2`. The arguments are
sequences of coefficients from lowest order term to highest, i.e.,
[1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``.
Parameters
----------
c1, c2 : array_like
1-D arrays of polynomial coefficients ordered from low to high.
Returns
-------
out : ndarray
The coefficient array representing their sum.
See Also
--------
polysub, polymulx, polymul, polydiv, polypow
Examples
--------
>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> sum = P.polyadd(c1,c2); sum
array([4., 4., 4.])
>>> P.polyval(2, sum) # 4 + 4(2) + 4(2**2)
28.0
"""
return pu._add(c1, c2)
def polysub(c1, c2):
"""
Subtract one polynomial from another.
Returns the difference of two polynomials `c1` - `c2`. The arguments
are sequences of coefficients from lowest order term to highest, i.e.,
[1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``.
Parameters
----------
c1, c2 : array_like
1-D arrays of polynomial coefficients ordered from low to
high.
Returns
-------
out : ndarray
Of coefficients representing their difference.
See Also
--------
polyadd, polymulx, polymul, polydiv, polypow
Examples
--------
>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polysub(c1,c2)
array([-2., 0., 2.])
>>> P.polysub(c2,c1) # -P.polysub(c1,c2)
array([ 2., 0., -2.])
"""
return pu._sub(c1, c2)
def polymulx(c):
"""Multiply a polynomial by x.
Multiply the polynomial `c` by x, where x is the independent
variable.
Parameters
----------
c : array_like
1-D array of polynomial coefficients ordered from low to
high.
Returns
-------
out : ndarray
Array representing the result of the multiplication.
See Also
--------
polyadd, polysub, polymul, polydiv, polypow
Notes
-----
.. versionadded:: 1.5.0
"""
# c is a trimmed copy
[c] = pu.as_series([c])
# The zero series needs special treatment
if len(c) == 1 and c[0] == 0:
return c
prd = np.empty(len(c) + 1, dtype=c.dtype)
prd[0] = c[0]*0
prd[1:] = c
return prd
def polymul(c1, c2):
"""
Multiply one polynomial by another.
Returns the product of two polynomials `c1` * `c2`. The arguments are
sequences of coefficients, from lowest order term to highest, e.g.,
[1,2,3] represents the polynomial ``1 + 2*x + 3*x**2.``
Parameters
----------
c1, c2 : array_like
1-D arrays of coefficients representing a polynomial, relative to the
"standard" basis, and ordered from lowest order term to highest.
Returns
-------
out : ndarray
Of the coefficients of their product.
See Also
--------
polyadd, polysub, polymulx, polydiv, polypow
Examples
--------
>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polymul(c1,c2)
array([ 3., 8., 14., 8., 3.])
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
ret = np.convolve(c1, c2)
return pu.trimseq(ret)
def polydiv(c1, c2):
"""
Divide one polynomial by another.
Returns the quotient-with-remainder of two polynomials `c1` / `c2`.
The arguments are sequences of coefficients, from lowest order term
to highest, e.g., [1,2,3] represents ``1 + 2*x + 3*x**2``.
Parameters
----------
c1, c2 : array_like
1-D arrays of polynomial coefficients ordered from low to high.
Returns
-------
[quo, rem] : ndarrays
Of coefficient series representing the quotient and remainder.
See Also
--------
polyadd, polysub, polymulx, polymul, polypow
Examples
--------
>>> from numpy.polynomial import polynomial as P
>>> c1 = (1,2,3)
>>> c2 = (3,2,1)
>>> P.polydiv(c1,c2)
(array([3.]), array([-8., -4.]))
>>> P.polydiv(c2,c1)
(array([ 0.33333333]), array([ 2.66666667, 1.33333333])) # may vary
"""
# c1, c2 are trimmed copies
[c1, c2] = pu.as_series([c1, c2])
if c2[-1] == 0:
raise ZeroDivisionError()
# note: this is more efficient than `pu._div(polymul, c1, c2)`
lc1 = len(c1)
lc2 = len(c2)
if lc1 < lc2:
return c1[:1]*0, c1
elif lc2 == 1:
return c1/c2[-1], c1[:1]*0
else:
dlen = lc1 - lc2
scl = c2[-1]
c2 = c2[:-1]/scl
i = dlen
j = lc1 - 1
while i >= 0:
c1[i:j] -= c2*c1[j]
i -= 1
j -= 1
return c1[j+1:]/scl, pu.trimseq(c1[:j+1])
def polypow(c, pow, maxpower=None):
"""Raise a polynomial to a power.
Returns the polynomial `c` raised to the power `pow`. The argument
`c` is a sequence of coefficients ordered from low to high. i.e.,
[1,2,3] is the series ``1 + 2*x + 3*x**2.``
Parameters
----------
c : array_like
1-D array of array of series coefficients ordered from low to
high degree.
pow : integer
Power to which the series will be raised
maxpower : integer, optional
Maximum power allowed. This is mainly to limit growth of the series
to unmanageable size. Default is 16
Returns
-------
coef : ndarray
Power series of power.
See Also
--------
polyadd, polysub, polymulx, polymul, polydiv
Examples
--------
>>> from numpy.polynomial import polynomial as P
>>> P.polypow([1,2,3], 2)
array([ 1., 4., 10., 12., 9.])
"""
# note: this is more efficient than `pu._pow(polymul, c1, c2)`, as it
# avoids calling `as_series` repeatedly
return pu._pow(np.convolve, c, pow, maxpower)
def polyder(c, m=1, scl=1, axis=0):
"""
Differentiate a polynomial.
Returns the polynomial coefficients `c` differentiated `m` times along
`axis`. At each iteration the result is multiplied by `scl` (the
scaling factor is for use in a linear change of variable). The
argument `c` is an array of coefficients from low to high degree along
each axis, e.g., [1,2,3] represents the polynomial ``1 + 2*x + 3*x**2``
while [[1,2],[1,2]] represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is
``x`` and axis=1 is ``y``.
Parameters
----------
c : array_like
Array of polynomial coefficients. If c is multidimensional the
different axis correspond to different variables with the degree
in each axis given by the corresponding index.
m : int, optional
Number of derivatives taken, must be non-negative. (Default: 1)
scl : scalar, optional
Each differentiation is multiplied by `scl`. The end result is
multiplication by ``scl**m``. This is for use in a linear change
of variable. (Default: 1)
axis : int, optional
Axis over which the derivative is taken. (Default: 0).
.. versionadded:: 1.7.0
Returns
-------
der : ndarray
Polynomial coefficients of the derivative.
See Also
--------
polyint
Examples
--------
>>> from numpy.polynomial import polynomial as P
>>> c = (1,2,3,4) # 1 + 2x + 3x**2 + 4x**3
>>> P.polyder(c) # (d/dx)(c) = 2 + 6x + 12x**2
array([ 2., 6., 12.])
>>> P.polyder(c,3) # (d**3/dx**3)(c) = 24
array([24.])
>>> P.polyder(c,scl=-1) # (d/d(-x))(c) = -2 - 6x - 12x**2
array([ -2., -6., -12.])
>>> P.polyder(c,2,-1) # (d**2/d(-x)**2)(c) = 6 + 24x
array([ 6., 24.])
"""
c = np.array(c, ndmin=1, copy=True)
if c.dtype.char in '?bBhHiIlLqQpP':
# astype fails with NA
c = c + 0.0
cdt = c.dtype
cnt = pu._deprecate_as_int(m, "the order of derivation")
iaxis = pu._deprecate_as_int(axis, "the axis")
if cnt < 0:
raise ValueError("The order of derivation must be non-negative")
iaxis = normalize_axis_index(iaxis, c.ndim)
if cnt == 0:
return c
c = np.moveaxis(c, iaxis, 0)
n = len(c)
if cnt >= n:
c = c[:1]*0
else:
for i in range(cnt):
n = n - 1
c *= scl
der = np.empty((n,) + c.shape[1:], dtype=cdt)
for j in range(n, 0, -1):
der[j - 1] = j*c[j]
c = der
c = np.moveaxis(c, 0, iaxis)
return c
def polyint(c, m=1, k=[], lbnd=0, scl=1, axis=0):
"""
Integrate a polynomial.
Returns the polynomial coefficients `c` integrated `m` times from
`lbnd` along `axis`. At each iteration the resulting series is
**multiplied** by `scl` and an integration constant, `k`, is added.
The scaling factor is for use in a linear change of variable. ("Buyer
beware": note that, depending on what one is doing, one may want `scl`
to be the reciprocal of what one might expect; for more information,
see the Notes section below.) The argument `c` is an array of
coefficients, from low to high degree along each axis, e.g., [1,2,3]
represents the polynomial ``1 + 2*x + 3*x**2`` while [[1,2],[1,2]]
represents ``1 + 1*x + 2*y + 2*x*y`` if axis=0 is ``x`` and axis=1 is
``y``.
Parameters
----------
c : array_like
1-D array of polynomial coefficients, ordered from low to high.
m : int, optional
Order of integration, must be positive. (Default: 1)
k : {[], list, scalar}, optional
Integration constant(s). The value of the first integral at zero
is the first value in the list, the value of the second integral
at zero is the second value, etc. If ``k == []`` (the default),
all constants are set to zero. If ``m == 1``, a single scalar can
be given instead of a list.
lbnd : scalar, optional
The lower bound of the integral. (Default: 0)
scl : scalar, optional
Following each integration the result is *multiplied* by `scl`
before the integration constant is added. (Default: 1)
axis : int, optional
Axis over which the integral is taken. (Default: 0).
.. versionadded:: 1.7.0
Returns
-------
S : ndarray
Coefficient array of the integral.
Raises
------
ValueError
If ``m < 1``, ``len(k) > m``, ``np.ndim(lbnd) != 0``, or
``np.ndim(scl) != 0``.
See Also
--------
polyder
Notes
-----
Note that the result of each integration is *multiplied* by `scl`. Why
is this important to note? Say one is making a linear change of
variable :math:`u = ax + b` in an integral relative to `x`. Then
:math:`dx = du/a`, so one will need to set `scl` equal to
:math:`1/a` - perhaps not what one would have first thought.
Examples
--------
>>> from numpy.polynomial import polynomial as P
>>> c = (1,2,3)
>>> P.polyint(c) # should return array([0, 1, 1, 1])
array([0., 1., 1., 1.])
>>> P.polyint(c,3) # should return array([0, 0, 0, 1/6, 1/12, 1/20])
array([ 0. , 0. , 0. , 0.16666667, 0.08333333, # may vary
0.05 ])
>>> P.polyint(c,k=3) # should return array([3, 1, 1, 1])
array([3., 1., 1., 1.])
>>> P.polyint(c,lbnd=-2) # should return array([6, 1, 1, 1])
array([6., 1., 1., 1.])
>>> P.polyint(c,scl=-2) # should return array([0, -2, -2, -2])
array([ 0., -2., -2., -2.])
"""
c = np.array(c, ndmin=1, copy=True)
if c.dtype.char in '?bBhHiIlLqQpP':
# astype doesn't preserve mask attribute.
c = c + 0.0
cdt = c.dtype
if not np.iterable(k):
k = [k]
cnt = pu._deprecate_as_int(m, "the order of integration")
iaxis = pu._deprecate_as_int(axis, "the axis")
if cnt < 0:
raise ValueError("The order of integration must be non-negative")
if len(k) > cnt:
raise ValueError("Too many integration constants")
if np.ndim(lbnd) != 0:
raise ValueError("lbnd must be a scalar.")
if np.ndim(scl) != 0:
raise ValueError("scl must be a scalar.")
iaxis = normalize_axis_index(iaxis, c.ndim)
if cnt == 0:
return c
k = list(k) + [0]*(cnt - len(k))
c = np.moveaxis(c, iaxis, 0)
for i in range(cnt):
n = len(c)
c *= scl
if n == 1 and np.all(c[0] == 0):
c[0] += k[i]
else:
tmp = np.empty((n + 1,) + c.shape[1:], dtype=cdt)
tmp[0] = c[0]*0
tmp[1] = c[0]
for j in range(1, n):
tmp[j + 1] = c[j]/(j + 1)
tmp[0] += k[i] - polyval(lbnd, tmp)
c = tmp
c = np.moveaxis(c, 0, iaxis)
return c
def polyval(x, c, tensor=True):
"""
Evaluate a polynomial at points x.
If `c` is of length `n + 1`, this function returns the value
.. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n
The parameter `x` is converted to an array only if it is a tuple or a
list, otherwise it is treated as a scalar. In either case, either `x`
or its elements must support multiplication and addition both with
themselves and with the elements of `c`.
If `c` is a 1-D array, then `p(x)` will have the same shape as `x`. If
`c` is multidimensional, then the shape of the result depends on the
value of `tensor`. If `tensor` is true the shape will be c.shape[1:] +
x.shape. If `tensor` is false the shape will be c.shape[1:]. Note that
scalars have shape (,).
Trailing zeros in the coefficients will be used in the evaluation, so
they should be avoided if efficiency is a concern.
Parameters
----------
x : array_like, compatible object
If `x` is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, `x`
or its elements must support addition and multiplication with
with themselves and with the elements of `c`.
c : array_like
Array of coefficients ordered so that the coefficients for terms of
degree n are contained in c[n]. If `c` is multidimensional the
remaining indices enumerate multiple polynomials. In the two
dimensional case the coefficients may be thought of as stored in
the columns of `c`.
tensor : boolean, optional
If True, the shape of the coefficient array is extended with ones
on the right, one for each dimension of `x`. Scalars have dimension 0
for this action. The result is that every column of coefficients in
`c` is evaluated for every element of `x`. If False, `x` is broadcast
over the columns of `c` for the evaluation. This keyword is useful
when `c` is multidimensional. The default value is True.
.. versionadded:: 1.7.0
Returns
-------
values : ndarray, compatible object
The shape of the returned array is described above.
See Also
--------
polyval2d, polygrid2d, polyval3d, polygrid3d
Notes
-----
The evaluation uses Horner's method.
Examples
--------
>>> from numpy.polynomial.polynomial import polyval
>>> polyval(1, [1,2,3])
6.0
>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],
[2, 3]])
>>> polyval(a, [1,2,3])
array([[ 1., 6.],
[17., 34.]])
>>> coef = np.arange(4).reshape(2,2) # multidimensional coefficients
>>> coef
array([[0, 1],
[2, 3]])
>>> polyval([1,2], coef, tensor=True)
array([[2., 4.],
[4., 7.]])
>>> polyval([1,2], coef, tensor=False)
array([2., 7.])
"""
c = np.array(c, ndmin=1, copy=False)
if c.dtype.char in '?bBhHiIlLqQpP':
# astype fails with NA
c = c + 0.0
if isinstance(x, (tuple, list)):
x = np.asarray(x)
if isinstance(x, np.ndarray) and tensor:
c = c.reshape(c.shape + (1,)*x.ndim)
c0 = c[-1] + x*0
for i in range(2, len(c) + 1):
c0 = c[-i] + c0*x
return c0
def polyvalfromroots(x, r, tensor=True):
"""
Evaluate a polynomial specified by its roots at points x.
If `r` is of length `N`, this function returns the value
.. math:: p(x) = \\prod_{n=1}^{N} (x - r_n)
The parameter `x` is converted to an array only if it is a tuple or a
list, otherwise it is treated as a scalar. In either case, either `x`
or its elements must support multiplication and addition both with
themselves and with the elements of `r`.
If `r` is a 1-D array, then `p(x)` will have the same shape as `x`. If `r`
is multidimensional, then the shape of the result depends on the value of
`tensor`. If `tensor is ``True`` the shape will be r.shape[1:] + x.shape;
that is, each polynomial is evaluated at every value of `x`. If `tensor` is
``False``, the shape will be r.shape[1:]; that is, each polynomial is
evaluated only for the corresponding broadcast value of `x`. Note that
scalars have shape (,).
.. versionadded:: 1.12
Parameters
----------
x : array_like, compatible object
If `x` is a list or tuple, it is converted to an ndarray, otherwise
it is left unchanged and treated as a scalar. In either case, `x`
or its elements must support addition and multiplication with
with themselves and with the elements of `r`.
r : array_like
Array of roots. If `r` is multidimensional the first index is the
root index, while the remaining indices enumerate multiple
polynomials. For instance, in the two dimensional case the roots
of each polynomial may be thought of as stored in the columns of `r`.
tensor : boolean, optional
If True, the shape of the roots array is extended with ones on the
right, one for each dimension of `x`. Scalars have dimension 0 for this
action. The result is that every column of coefficients in `r` is
evaluated for every element of `x`. If False, `x` is broadcast over the
columns of `r` for the evaluation. This keyword is useful when `r` is
multidimensional. The default value is True.
Returns
-------
values : ndarray, compatible object
The shape of the returned array is described above.
See Also
--------
polyroots, polyfromroots, polyval
Examples
--------
>>> from numpy.polynomial.polynomial import polyvalfromroots
>>> polyvalfromroots(1, [1,2,3])
0.0
>>> a = np.arange(4).reshape(2,2)
>>> a
array([[0, 1],
[2, 3]])
>>> polyvalfromroots(a, [-1, 0, 1])
array([[-0., 0.],
[ 6., 24.]])
>>> r = np.arange(-2, 2).reshape(2,2) # multidimensional coefficients
>>> r # each column of r defines one polynomial
array([[-2, -1],
[ 0, 1]])
>>> b = [-2, 1]
>>> polyvalfromroots(b, r, tensor=True)
array([[-0., 3.],
[ 3., 0.]])
>>> polyvalfromroots(b, r, tensor=False)
array([-0., 0.])
"""
r = np.array(r, ndmin=1, copy=False)
if r.dtype.char in '?bBhHiIlLqQpP':
r = r.astype(np.double)
if isinstance(x, (tuple, list)):
x = np.asarray(x)
if isinstance(x, np.ndarray):
if tensor:
r = r.reshape(r.shape + (1,)*x.ndim)
elif x.ndim >= r.ndim:
raise ValueError("x.ndim must be < r.ndim when tensor == False")
return np.prod(x - r, axis=0)
def polyval2d(x, y, c):
"""
Evaluate a 2-D polynomial at points (x, y).
This function returns the value
.. math:: p(x,y) = \\sum_{i,j} c_{i,j} * x^i * y^j
The parameters `x` and `y` are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars and they
must have the same shape after conversion. In either case, either `x`
and `y` or their elements must support multiplication and addition both
with themselves and with the elements of `c`.
If `c` has fewer than two dimensions, ones are implicitly appended to
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
x.shape.
Parameters
----------
x, y : array_like, compatible objects
The two dimensional series is evaluated at the points `(x, y)`,
where `x` and `y` must have the same shape. If `x` or `y` is a list
or tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn't an ndarray, it is treated as a scalar.
c : array_like
Array of coefficients ordered so that the coefficient of the term
of multi-degree i,j is contained in `c[i,j]`. If `c` has
dimension greater than two the remaining indices enumerate multiple
sets of coefficients.
Returns
-------
values : ndarray, compatible object
The values of the two dimensional polynomial at points formed with
pairs of corresponding values from `x` and `y`.
See Also
--------
polyval, polygrid2d, polyval3d, polygrid3d
Notes
-----
.. versionadded:: 1.7.0
"""
return pu._valnd(polyval, c, x, y)
def polygrid2d(x, y, c):
"""
Evaluate a 2-D polynomial on the Cartesian product of x and y.
This function returns the values:
.. math:: p(a,b) = \\sum_{i,j} c_{i,j} * a^i * b^j
where the points `(a, b)` consist of all pairs formed by taking
`a` from `x` and `b` from `y`. The resulting points form a grid with
`x` in the first dimension and `y` in the second.
The parameters `x` and `y` are converted to arrays only if they are
tuples or a lists, otherwise they are treated as a scalars. In either
case, either `x` and `y` or their elements must support multiplication
and addition both with themselves and with the elements of `c`.
If `c` has fewer than two dimensions, ones are implicitly appended to
its shape to make it 2-D. The shape of the result will be c.shape[2:] +
x.shape + y.shape.
Parameters
----------
x, y : array_like, compatible objects
The two dimensional series is evaluated at the points in the
Cartesian product of `x` and `y`. If `x` or `y` is a list or
tuple, it is first converted to an ndarray, otherwise it is left
unchanged and, if it isn't an ndarray, it is treated as a scalar.
c : array_like
Array of coefficients ordered so that the coefficients for terms of
degree i,j are contained in ``c[i,j]``. If `c` has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.
Returns
-------
values : ndarray, compatible object
The values of the two dimensional polynomial at points in the Cartesian
product of `x` and `y`.
See Also
--------
polyval, polyval2d, polyval3d, polygrid3d
Notes
-----
.. versionadded:: 1.7.0
"""
return pu._gridnd(polyval, c, x, y)
def polyval3d(x, y, z, c):
"""
Evaluate a 3-D polynomial at points (x, y, z).
This function returns the values:
.. math:: p(x,y,z) = \\sum_{i,j,k} c_{i,j,k} * x^i * y^j * z^k
The parameters `x`, `y`, and `z` are converted to arrays only if
they are tuples or a lists, otherwise they are treated as a scalars and
they must have the same shape after conversion. In either case, either
`x`, `y`, and `z` or their elements must support multiplication and
addition both with themselves and with the elements of `c`.
If `c` has fewer than 3 dimensions, ones are implicitly appended to its
shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape.
Parameters
----------
x, y, z : array_like, compatible object
The three dimensional series is evaluated at the points
`(x, y, z)`, where `x`, `y`, and `z` must have the same shape. If
any of `x`, `y`, or `z` is a list or tuple, it is first converted
to an ndarray, otherwise it is left unchanged and if it isn't an
ndarray it is treated as a scalar.
c : array_like
Array of coefficients ordered so that the coefficient of the term of
multi-degree i,j,k is contained in ``c[i,j,k]``. If `c` has dimension
greater than 3 the remaining indices enumerate multiple sets of
coefficients.
Returns
-------
values : ndarray, compatible object
The values of the multidimensional polynomial on points formed with
triples of corresponding values from `x`, `y`, and `z`.
See Also
--------
polyval, polyval2d, polygrid2d, polygrid3d
Notes
-----
.. versionadded:: 1.7.0
"""
return pu._valnd(polyval, c, x, y, z)
def polygrid3d(x, y, z, c):
"""
Evaluate a 3-D polynomial on the Cartesian product of x, y and z.
This function returns the values:
.. math:: p(a,b,c) = \\sum_{i,j,k} c_{i,j,k} * a^i * b^j * c^k
where the points `(a, b, c)` consist of all triples formed by taking
`a` from `x`, `b` from `y`, and `c` from `z`. The resulting points form
a grid with `x` in the first dimension, `y` in the second, and `z` in
the third.
The parameters `x`, `y`, and `z` are converted to arrays only if they
are tuples or a lists, otherwise they are treated as a scalars. In
either case, either `x`, `y`, and `z` or their elements must support
multiplication and addition both with themselves and with the elements
of `c`.
If `c` has fewer than three dimensions, ones are implicitly appended to
its shape to make it 3-D. The shape of the result will be c.shape[3:] +
x.shape + y.shape + z.shape.
Parameters
----------
x, y, z : array_like, compatible objects
The three dimensional series is evaluated at the points in the
Cartesian product of `x`, `y`, and `z`. If `x`,`y`, or `z` is a
list or tuple, it is first converted to an ndarray, otherwise it is
left unchanged and, if it isn't an ndarray, it is treated as a
scalar.
c : array_like
Array of coefficients ordered so that the coefficients for terms of
degree i,j are contained in ``c[i,j]``. If `c` has dimension
greater than two the remaining indices enumerate multiple sets of
coefficients.
Returns
-------
values : ndarray, compatible object
The values of the two dimensional polynomial at points in the Cartesian
product of `x` and `y`.
See Also
--------
polyval, polyval2d, polygrid2d, polyval3d
Notes
-----
.. versionadded:: 1.7.0
"""
return pu._gridnd(polyval, c, x, y, z)
def polyvander(x, deg):
"""Vandermonde matrix of given degree.
Returns the Vandermonde matrix of degree `deg` and sample points
`x`. The Vandermonde matrix is defined by
.. math:: V[..., i] = x^i,
where `0 <= i <= deg`. The leading indices of `V` index the elements of
`x` and the last index is the power of `x`.
If `c` is a 1-D array of coefficients of length `n + 1` and `V` is the
matrix ``V = polyvander(x, n)``, then ``np.dot(V, c)`` and
``polyval(x, c)`` are the same up to roundoff. This equivalence is
useful both for least squares fitting and for the evaluation of a large
number of polynomials of the same degree and sample points.
Parameters
----------
x : array_like
Array of points. The dtype is converted to float64 or complex128
depending on whether any of the elements are complex. If `x` is
scalar it is converted to a 1-D array.
deg : int
Degree of the resulting matrix.
Returns
-------
vander : ndarray.
The Vandermonde matrix. The shape of the returned matrix is
``x.shape + (deg + 1,)``, where the last index is the power of `x`.
The dtype will be the same as the converted `x`.
See Also
--------
polyvander2d, polyvander3d
"""
ideg = pu._deprecate_as_int(deg, "deg")
if ideg < 0:
raise ValueError("deg must be non-negative")
x = np.array(x, copy=False, ndmin=1) + 0.0
dims = (ideg + 1,) + x.shape
dtyp = x.dtype
v = np.empty(dims, dtype=dtyp)
v[0] = x*0 + 1
if ideg > 0:
v[1] = x
for i in range(2, ideg + 1):
v[i] = v[i-1]*x
return np.moveaxis(v, 0, -1)
def polyvander2d(x, y, deg):
"""Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
points `(x, y)`. The pseudo-Vandermonde matrix is defined by
.. math:: V[..., (deg[1] + 1)*i + j] = x^i * y^j,
where `0 <= i <= deg[0]` and `0 <= j <= deg[1]`. The leading indices of
`V` index the points `(x, y)` and the last index encodes the powers of
`x` and `y`.
If ``V = polyvander2d(x, y, [xdeg, ydeg])``, then the columns of `V`
correspond to the elements of a 2-D coefficient array `c` of shape
(xdeg + 1, ydeg + 1) in the order
.. math:: c_{00}, c_{01}, c_{02} ... , c_{10}, c_{11}, c_{12} ...
and ``np.dot(V, c.flat)`` and ``polyval2d(x, y, c)`` will be the same
up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 2-D polynomials
of the same degrees and sample points.
Parameters
----------
x, y : array_like
Arrays of point coordinates, all of the same shape. The dtypes
will be converted to either float64 or complex128 depending on
whether any of the elements are complex. Scalars are converted to
1-D arrays.
deg : list of ints
List of maximum degrees of the form [x_deg, y_deg].
Returns
-------
vander2d : ndarray
The shape of the returned matrix is ``x.shape + (order,)``, where
:math:`order = (deg[0]+1)*(deg([1]+1)`. The dtype will be the same
as the converted `x` and `y`.
See Also
--------
polyvander, polyvander3d, polyval2d, polyval3d
"""
return pu._vander_nd_flat((polyvander, polyvander), (x, y), deg)
def polyvander3d(x, y, z, deg):
"""Pseudo-Vandermonde matrix of given degrees.
Returns the pseudo-Vandermonde matrix of degrees `deg` and sample
points `(x, y, z)`. If `l, m, n` are the given degrees in `x, y, z`,
then The pseudo-Vandermonde matrix is defined by
.. math:: V[..., (m+1)(n+1)i + (n+1)j + k] = x^i * y^j * z^k,
where `0 <= i <= l`, `0 <= j <= m`, and `0 <= j <= n`. The leading
indices of `V` index the points `(x, y, z)` and the last index encodes
the powers of `x`, `y`, and `z`.
If ``V = polyvander3d(x, y, z, [xdeg, ydeg, zdeg])``, then the columns
of `V` correspond to the elements of a 3-D coefficient array `c` of
shape (xdeg + 1, ydeg + 1, zdeg + 1) in the order
.. math:: c_{000}, c_{001}, c_{002},... , c_{010}, c_{011}, c_{012},...
and ``np.dot(V, c.flat)`` and ``polyval3d(x, y, z, c)`` will be the
same up to roundoff. This equivalence is useful both for least squares
fitting and for the evaluation of a large number of 3-D polynomials
of the same degrees and sample points.
Parameters
----------
x, y, z : array_like
Arrays of point coordinates, all of the same shape. The dtypes will
be converted to either float64 or complex128 depending on whether
any of the elements are complex. Scalars are converted to 1-D
arrays.
deg : list of ints
List of maximum degrees of the form [x_deg, y_deg, z_deg].
Returns
-------
vander3d : ndarray
The shape of the returned matrix is ``x.shape + (order,)``, where
:math:`order = (deg[0]+1)*(deg([1]+1)*(deg[2]+1)`. The dtype will
be the same as the converted `x`, `y`, and `z`.
See Also
--------
polyvander, polyvander3d, polyval2d, polyval3d
Notes
-----
.. versionadded:: 1.7.0
"""
return pu._vander_nd_flat((polyvander, polyvander, polyvander), (x, y, z), deg)
def polyfit(x, y, deg, rcond=None, full=False, w=None):
"""
Least-squares fit of a polynomial to data.
Return the coefficients of a polynomial of degree `deg` that is the
least squares fit to the data values `y` given at points `x`. If `y` is
1-D the returned coefficients will also be 1-D. If `y` is 2-D multiple
fits are done, one for each column of `y`, and the resulting
coefficients are stored in the corresponding columns of a 2-D return.
The fitted polynomial(s) are in the form
.. math:: p(x) = c_0 + c_1 * x + ... + c_n * x^n,
where `n` is `deg`.
Parameters
----------
x : array_like, shape (`M`,)
x-coordinates of the `M` sample (data) points ``(x[i], y[i])``.
y : array_like, shape (`M`,) or (`M`, `K`)
y-coordinates of the sample points. Several sets of sample points
sharing the same x-coordinates can be (independently) fit with one
call to `polyfit` by passing in for `y` a 2-D array that contains
one data set per column.
deg : int or 1-D array_like
Degree(s) of the fitting polynomials. If `deg` is a single integer
all terms up to and including the `deg`'th term are included in the
fit. For NumPy versions >= 1.11.0 a list of integers specifying the
degrees of the terms to include may be used instead.
rcond : float, optional
Relative condition number of the fit. Singular values smaller
than `rcond`, relative to the largest singular value, will be
ignored. The default value is ``len(x)*eps``, where `eps` is the
relative precision of the platform's float type, about 2e-16 in
most cases.
full : bool, optional
Switch determining the nature of the return value. When ``False``
(the default) just the coefficients are returned; when ``True``,
diagnostic information from the singular value decomposition (used
to solve the fit's matrix equation) is also returned.
w : array_like, shape (`M`,), optional
Weights. If not None, the contribution of each point
``(x[i],y[i])`` to the fit is weighted by ``w[i]``. Ideally the
weights are chosen so that the errors of the products ``w[i]*y[i]``
all have the same variance. The default value is None.
.. versionadded:: 1.5.0
Returns
-------
coef : ndarray, shape (`deg` + 1,) or (`deg` + 1, `K`)
Polynomial coefficients ordered from low to high. If `y` was 2-D,
the coefficients in column `k` of `coef` represent the polynomial
fit to the data in `y`'s `k`-th column.
[residuals, rank, singular_values, rcond] : list
These values are only returned if `full` = True
resid -- sum of squared residuals of the least squares fit
rank -- the numerical rank of the scaled Vandermonde matrix
sv -- singular values of the scaled Vandermonde matrix
rcond -- value of `rcond`.
For more details, see `numpy.linalg.lstsq`.
Raises
------
RankWarning
Raised if the matrix in the least-squares fit is rank deficient.
The warning is only raised if `full` == False. The warnings can
be turned off by:
>>> import warnings
>>> warnings.simplefilter('ignore', np.RankWarning)
See Also
--------
numpy.polynomial.chebyshev.chebfit
numpy.polynomial.legendre.legfit
numpy.polynomial.laguerre.lagfit
numpy.polynomial.hermite.hermfit
numpy.polynomial.hermite_e.hermefit
polyval : Evaluates a polynomial.
polyvander : Vandermonde matrix for powers.
numpy.linalg.lstsq : Computes a least-squares fit from the matrix.
scipy.interpolate.UnivariateSpline : Computes spline fits.
Notes
-----
The solution is the coefficients of the polynomial `p` that minimizes
the sum of the weighted squared errors
.. math :: E = \\sum_j w_j^2 * |y_j - p(x_j)|^2,
where the :math:`w_j` are the weights. This problem is solved by
setting up the (typically) over-determined matrix equation:
.. math :: V(x) * c = w * y,
where `V` is the weighted pseudo Vandermonde matrix of `x`, `c` are the
coefficients to be solved for, `w` are the weights, and `y` are the
observed values. This equation is then solved using the singular value
decomposition of `V`.
If some of the singular values of `V` are so small that they are
neglected (and `full` == ``False``), a `RankWarning` will be raised.
This means that the coefficient values may be poorly determined.
Fitting to a lower order polynomial will usually get rid of the warning
(but may not be what you want, of course; if you have independent
reason(s) for choosing the degree which isn't working, you may have to:
a) reconsider those reasons, and/or b) reconsider the quality of your
data). The `rcond` parameter can also be set to a value smaller than
its default, but the resulting fit may be spurious and have large
contributions from roundoff error.
Polynomial fits using double precision tend to "fail" at about
(polynomial) degree 20. Fits using Chebyshev or Legendre series are
generally better conditioned, but much can still depend on the
distribution of the sample points and the smoothness of the data. If
the quality of the fit is inadequate, splines may be a good
alternative.
Examples
--------
>>> np.random.seed(123)
>>> from numpy.polynomial import polynomial as P
>>> x = np.linspace(-1,1,51) # x "data": [-1, -0.96, ..., 0.96, 1]
>>> y = x**3 - x + np.random.randn(len(x)) # x^3 - x + N(0,1) "noise"
>>> c, stats = P.polyfit(x,y,3,full=True)
>>> np.random.seed(123)
>>> c # c[0], c[2] should be approx. 0, c[1] approx. -1, c[3] approx. 1
array([ 0.01909725, -1.30598256, -0.00577963, 1.02644286]) # may vary
>>> stats # note the large SSR, explaining the rather poor results
[array([ 38.06116253]), 4, array([ 1.38446749, 1.32119158, 0.50443316, # may vary
0.28853036]), 1.1324274851176597e-014]
Same thing without the added noise
>>> y = x**3 - x
>>> c, stats = P.polyfit(x,y,3,full=True)
>>> c # c[0], c[2] should be "very close to 0", c[1] ~= -1, c[3] ~= 1
array([-6.36925336e-18, -1.00000000e+00, -4.08053781e-16, 1.00000000e+00])
>>> stats # note the minuscule SSR
[array([ 7.46346754e-31]), 4, array([ 1.38446749, 1.32119158, # may vary
0.50443316, 0.28853036]), 1.1324274851176597e-014]
"""
return pu._fit(polyvander, x, y, deg, rcond, full, w)
def polycompanion(c):
"""
Return the companion matrix of c.
The companion matrix for power series cannot be made symmetric by
scaling the basis, so this function differs from those for the
orthogonal polynomials.
Parameters
----------
c : array_like
1-D array of polynomial coefficients ordered from low to high
degree.
Returns
-------
mat : ndarray
Companion matrix of dimensions (deg, deg).
Notes
-----
.. versionadded:: 1.7.0
"""
# c is a trimmed copy
[c] = pu.as_series([c])
if len(c) < 2:
raise ValueError('Series must have maximum degree of at least 1.')
if len(c) == 2:
return np.array([[-c[0]/c[1]]])
n = len(c) - 1
mat = np.zeros((n, n), dtype=c.dtype)
bot = mat.reshape(-1)[n::n+1]
bot[...] = 1
mat[:, -1] -= c[:-1]/c[-1]
return mat
def polyroots(c):
"""
Compute the roots of a polynomial.
Return the roots (a.k.a. "zeros") of the polynomial
.. math:: p(x) = \\sum_i c[i] * x^i.
Parameters
----------
c : 1-D array_like
1-D array of polynomial coefficients.
Returns
-------
out : ndarray
Array of the roots of the polynomial. If all the roots are real,
then `out` is also real, otherwise it is complex.
See Also
--------
numpy.polynomial.chebyshev.chebroots
numpy.polynomial.legendre.legroots
numpy.polynomial.laguerre.lagroots
numpy.polynomial.hermite.hermroots
numpy.polynomial.hermite_e.hermeroots
Notes
-----
The root estimates are obtained as the eigenvalues of the companion
matrix, Roots far from the origin of the complex plane may have large
errors due to the numerical instability of the power series for such
values. Roots with multiplicity greater than 1 will also show larger
errors as the value of the series near such points is relatively
insensitive to errors in the roots. Isolated roots near the origin can
be improved by a few iterations of Newton's method.
Examples
--------
>>> import numpy.polynomial.polynomial as poly
>>> poly.polyroots(poly.polyfromroots((-1,0,1)))
array([-1., 0., 1.])
>>> poly.polyroots(poly.polyfromroots((-1,0,1))).dtype
dtype('float64')
>>> j = complex(0,1)
>>> poly.polyroots(poly.polyfromroots((-j,0,j)))
array([ 0.00000000e+00+0.j, 0.00000000e+00+1.j, 2.77555756e-17-1.j]) # may vary
"""
# c is a trimmed copy
[c] = pu.as_series([c])
if len(c) < 2:
return np.array([], dtype=c.dtype)
if len(c) == 2:
return np.array([-c[0]/c[1]])
# rotated companion matrix reduces error
m = polycompanion(c)[::-1,::-1]
r = la.eigvals(m)
r.sort()
return r
#
# polynomial class
#
class Polynomial(ABCPolyBase):
"""A power series class.
The Polynomial class provides the standard Python numerical methods
'+', '-', '*', '//', '%', 'divmod', '**', and '()' as well as the
attributes and methods listed in the `ABCPolyBase` documentation.
Parameters
----------
coef : array_like
Polynomial coefficients in order of increasing degree, i.e.,
``(1, 2, 3)`` give ``1 + 2*x + 3*x**2``.
domain : (2,) array_like, optional
Domain to use. The interval ``[domain[0], domain[1]]`` is mapped
to the interval ``[window[0], window[1]]`` by shifting and scaling.
The default value is [-1, 1].
window : (2,) array_like, optional
Window, see `domain` for its use. The default value is [-1, 1].
.. versionadded:: 1.6.0
"""
# Virtual Functions
_add = staticmethod(polyadd)
_sub = staticmethod(polysub)
_mul = staticmethod(polymul)
_div = staticmethod(polydiv)
_pow = staticmethod(polypow)
_val = staticmethod(polyval)
_int = staticmethod(polyint)
_der = staticmethod(polyder)
_fit = staticmethod(polyfit)
_line = staticmethod(polyline)
_roots = staticmethod(polyroots)
_fromroots = staticmethod(polyfromroots)
# Virtual properties
domain = np.array(polydomain)
window = np.array(polydomain)
basis_name = None
@classmethod
def _str_term_unicode(cls, i, arg_str):
return f"·{arg_str}{i.translate(cls._superscript_mapping)}"
@staticmethod
def _str_term_ascii(i, arg_str):
return f" {arg_str}**{i}"
@staticmethod
def _repr_latex_term(i, arg_str, needs_parens):
if needs_parens:
arg_str = rf"\left({arg_str}\right)"
if i == 0:
return '1'
elif i == 1:
return arg_str
else:
return f"{arg_str}^{{{i}}}"
|