Spaces:
Paused
Paused
import base64 | |
import urllib | |
import requests | |
import requests.exceptions | |
from requests.adapters import HTTPAdapter, Retry | |
from fsspec import AbstractFileSystem | |
from fsspec.spec import AbstractBufferedFile | |
class DatabricksException(Exception): | |
""" | |
Helper class for exceptions raised in this module. | |
""" | |
def __init__(self, error_code, message): | |
"""Create a new DatabricksException""" | |
super().__init__(message) | |
self.error_code = error_code | |
self.message = message | |
class DatabricksFileSystem(AbstractFileSystem): | |
""" | |
Get access to the Databricks filesystem implementation over HTTP. | |
Can be used inside and outside of a databricks cluster. | |
""" | |
def __init__(self, instance, token, **kwargs): | |
""" | |
Create a new DatabricksFileSystem. | |
Parameters | |
---------- | |
instance: str | |
The instance URL of the databricks cluster. | |
For example for an Azure databricks cluster, this | |
has the form adb-<some-number>.<two digits>.azuredatabricks.net. | |
token: str | |
Your personal token. Find out more | |
here: https://docs.databricks.com/dev-tools/api/latest/authentication.html | |
""" | |
self.instance = instance | |
self.token = token | |
self.session = requests.Session() | |
self.retries = Retry( | |
total=10, | |
backoff_factor=0.05, | |
status_forcelist=[408, 429, 500, 502, 503, 504], | |
) | |
self.session.mount("https://", HTTPAdapter(max_retries=self.retries)) | |
self.session.headers.update({"Authorization": f"Bearer {self.token}"}) | |
super().__init__(**kwargs) | |
def ls(self, path, detail=True, **kwargs): | |
""" | |
List the contents of the given path. | |
Parameters | |
---------- | |
path: str | |
Absolute path | |
detail: bool | |
Return not only the list of filenames, | |
but also additional information on file sizes | |
and types. | |
""" | |
out = self._ls_from_cache(path) | |
if not out: | |
try: | |
r = self._send_to_api( | |
method="get", endpoint="list", json={"path": path} | |
) | |
except DatabricksException as e: | |
if e.error_code == "RESOURCE_DOES_NOT_EXIST": | |
raise FileNotFoundError(e.message) | |
raise e | |
files = r["files"] | |
out = [ | |
{ | |
"name": o["path"], | |
"type": "directory" if o["is_dir"] else "file", | |
"size": o["file_size"], | |
} | |
for o in files | |
] | |
self.dircache[path] = out | |
if detail: | |
return out | |
return [o["name"] for o in out] | |
def makedirs(self, path, exist_ok=True): | |
""" | |
Create a given absolute path and all of its parents. | |
Parameters | |
---------- | |
path: str | |
Absolute path to create | |
exist_ok: bool | |
If false, checks if the folder | |
exists before creating it (and raises an | |
Exception if this is the case) | |
""" | |
if not exist_ok: | |
try: | |
# If the following succeeds, the path is already present | |
self._send_to_api( | |
method="get", endpoint="get-status", json={"path": path} | |
) | |
raise FileExistsError(f"Path {path} already exists") | |
except DatabricksException as e: | |
if e.error_code == "RESOURCE_DOES_NOT_EXIST": | |
pass | |
try: | |
self._send_to_api(method="post", endpoint="mkdirs", json={"path": path}) | |
except DatabricksException as e: | |
if e.error_code == "RESOURCE_ALREADY_EXISTS": | |
raise FileExistsError(e.message) | |
raise e | |
self.invalidate_cache(self._parent(path)) | |
def mkdir(self, path, create_parents=True, **kwargs): | |
""" | |
Create a given absolute path and all of its parents. | |
Parameters | |
---------- | |
path: str | |
Absolute path to create | |
create_parents: bool | |
Whether to create all parents or not. | |
"False" is not implemented so far. | |
""" | |
if not create_parents: | |
raise NotImplementedError | |
self.mkdirs(path, **kwargs) | |
def rm(self, path, recursive=False, **kwargs): | |
""" | |
Remove the file or folder at the given absolute path. | |
Parameters | |
---------- | |
path: str | |
Absolute path what to remove | |
recursive: bool | |
Recursively delete all files in a folder. | |
""" | |
try: | |
self._send_to_api( | |
method="post", | |
endpoint="delete", | |
json={"path": path, "recursive": recursive}, | |
) | |
except DatabricksException as e: | |
# This is not really an exception, it just means | |
# not everything was deleted so far | |
if e.error_code == "PARTIAL_DELETE": | |
self.rm(path=path, recursive=recursive) | |
elif e.error_code == "IO_ERROR": | |
# Using the same exception as the os module would use here | |
raise OSError(e.message) | |
raise e | |
self.invalidate_cache(self._parent(path)) | |
def mv( | |
self, source_path, destination_path, recursive=False, maxdepth=None, **kwargs | |
): | |
""" | |
Move a source to a destination path. | |
A note from the original [databricks API manual] | |
(https://docs.databricks.com/dev-tools/api/latest/dbfs.html#move). | |
When moving a large number of files the API call will time out after | |
approximately 60s, potentially resulting in partially moved data. | |
Therefore, for operations that move more than 10k files, we strongly | |
discourage using the DBFS REST API. | |
Parameters | |
---------- | |
source_path: str | |
From where to move (absolute path) | |
destination_path: str | |
To where to move (absolute path) | |
recursive: bool | |
Not implemented to far. | |
maxdepth: | |
Not implemented to far. | |
""" | |
if recursive: | |
raise NotImplementedError | |
if maxdepth: | |
raise NotImplementedError | |
try: | |
self._send_to_api( | |
method="post", | |
endpoint="move", | |
json={"source_path": source_path, "destination_path": destination_path}, | |
) | |
except DatabricksException as e: | |
if e.error_code == "RESOURCE_DOES_NOT_EXIST": | |
raise FileNotFoundError(e.message) | |
elif e.error_code == "RESOURCE_ALREADY_EXISTS": | |
raise FileExistsError(e.message) | |
raise e | |
self.invalidate_cache(self._parent(source_path)) | |
self.invalidate_cache(self._parent(destination_path)) | |
def _open(self, path, mode="rb", block_size="default", **kwargs): | |
""" | |
Overwrite the base class method to make sure to create a DBFile. | |
All arguments are copied from the base method. | |
Only the default blocksize is allowed. | |
""" | |
return DatabricksFile(self, path, mode=mode, block_size=block_size, **kwargs) | |
def _send_to_api(self, method, endpoint, json): | |
""" | |
Send the given json to the DBFS API | |
using a get or post request (specified by the argument `method`). | |
Parameters | |
---------- | |
method: str | |
Which http method to use for communication; "get" or "post". | |
endpoint: str | |
Where to send the request to (last part of the API URL) | |
json: dict | |
Dictionary of information to send | |
""" | |
if method == "post": | |
session_call = self.session.post | |
elif method == "get": | |
session_call = self.session.get | |
else: | |
raise ValueError(f"Do not understand method {method}") | |
url = urllib.parse.urljoin(f"https://{self.instance}/api/2.0/dbfs/", endpoint) | |
r = session_call(url, json=json) | |
# The DBFS API will return a json, also in case of an exception. | |
# We want to preserve this information as good as possible. | |
try: | |
r.raise_for_status() | |
except requests.HTTPError as e: | |
# try to extract json error message | |
# if that fails, fall back to the original exception | |
try: | |
exception_json = e.response.json() | |
except Exception: | |
raise e | |
raise DatabricksException(**exception_json) | |
return r.json() | |
def _create_handle(self, path, overwrite=True): | |
""" | |
Internal function to create a handle, which can be used to | |
write blocks of a file to DBFS. | |
A handle has a unique identifier which needs to be passed | |
whenever written during this transaction. | |
The handle is active for 10 minutes - after that a new | |
write transaction needs to be created. | |
Make sure to close the handle after you are finished. | |
Parameters | |
---------- | |
path: str | |
Absolute path for this file. | |
overwrite: bool | |
If a file already exist at this location, either overwrite | |
it or raise an exception. | |
""" | |
try: | |
r = self._send_to_api( | |
method="post", | |
endpoint="create", | |
json={"path": path, "overwrite": overwrite}, | |
) | |
return r["handle"] | |
except DatabricksException as e: | |
if e.error_code == "RESOURCE_ALREADY_EXISTS": | |
raise FileExistsError(e.message) | |
raise e | |
def _close_handle(self, handle): | |
""" | |
Close a handle, which was opened by :func:`_create_handle`. | |
Parameters | |
---------- | |
handle: str | |
Which handle to close. | |
""" | |
try: | |
self._send_to_api(method="post", endpoint="close", json={"handle": handle}) | |
except DatabricksException as e: | |
if e.error_code == "RESOURCE_DOES_NOT_EXIST": | |
raise FileNotFoundError(e.message) | |
raise e | |
def _add_data(self, handle, data): | |
""" | |
Upload data to an already opened file handle | |
(opened by :func:`_create_handle`). | |
The maximal allowed data size is 1MB after | |
conversion to base64. | |
Remember to close the handle when you are finished. | |
Parameters | |
---------- | |
handle: str | |
Which handle to upload data to. | |
data: bytes | |
Block of data to add to the handle. | |
""" | |
data = base64.b64encode(data).decode() | |
try: | |
self._send_to_api( | |
method="post", | |
endpoint="add-block", | |
json={"handle": handle, "data": data}, | |
) | |
except DatabricksException as e: | |
if e.error_code == "RESOURCE_DOES_NOT_EXIST": | |
raise FileNotFoundError(e.message) | |
elif e.error_code == "MAX_BLOCK_SIZE_EXCEEDED": | |
raise ValueError(e.message) | |
raise e | |
def _get_data(self, path, start, end): | |
""" | |
Download data in bytes from a given absolute path in a block | |
from [start, start+length]. | |
The maximum number of allowed bytes to read is 1MB. | |
Parameters | |
---------- | |
path: str | |
Absolute path to download data from | |
start: int | |
Start position of the block | |
end: int | |
End position of the block | |
""" | |
try: | |
r = self._send_to_api( | |
method="get", | |
endpoint="read", | |
json={"path": path, "offset": start, "length": end - start}, | |
) | |
return base64.b64decode(r["data"]) | |
except DatabricksException as e: | |
if e.error_code == "RESOURCE_DOES_NOT_EXIST": | |
raise FileNotFoundError(e.message) | |
elif e.error_code in ["INVALID_PARAMETER_VALUE", "MAX_READ_SIZE_EXCEEDED"]: | |
raise ValueError(e.message) | |
raise e | |
def invalidate_cache(self, path=None): | |
if path is None: | |
self.dircache.clear() | |
else: | |
self.dircache.pop(path, None) | |
super().invalidate_cache(path) | |
class DatabricksFile(AbstractBufferedFile): | |
""" | |
Helper class for files referenced in the DatabricksFileSystem. | |
""" | |
DEFAULT_BLOCK_SIZE = 1 * 2**20 # only allowed block size | |
def __init__( | |
self, | |
fs, | |
path, | |
mode="rb", | |
block_size="default", | |
autocommit=True, | |
cache_type="readahead", | |
cache_options=None, | |
**kwargs, | |
): | |
""" | |
Create a new instance of the DatabricksFile. | |
The blocksize needs to be the default one. | |
""" | |
if block_size is None or block_size == "default": | |
block_size = self.DEFAULT_BLOCK_SIZE | |
assert ( | |
block_size == self.DEFAULT_BLOCK_SIZE | |
), f"Only the default block size is allowed, not {block_size}" | |
super().__init__( | |
fs, | |
path, | |
mode=mode, | |
block_size=block_size, | |
autocommit=autocommit, | |
cache_type=cache_type, | |
cache_options=cache_options or {}, | |
**kwargs, | |
) | |
def _initiate_upload(self): | |
"""Internal function to start a file upload""" | |
self.handle = self.fs._create_handle(self.path) | |
def _upload_chunk(self, final=False): | |
"""Internal function to add a chunk of data to a started upload""" | |
self.buffer.seek(0) | |
data = self.buffer.getvalue() | |
data_chunks = [ | |
data[start:end] for start, end in self._to_sized_blocks(len(data)) | |
] | |
for data_chunk in data_chunks: | |
self.fs._add_data(handle=self.handle, data=data_chunk) | |
if final: | |
self.fs._close_handle(handle=self.handle) | |
return True | |
def _fetch_range(self, start, end): | |
"""Internal function to download a block of data""" | |
return_buffer = b"" | |
length = end - start | |
for chunk_start, chunk_end in self._to_sized_blocks(length, start): | |
return_buffer += self.fs._get_data( | |
path=self.path, start=chunk_start, end=chunk_end | |
) | |
return return_buffer | |
def _to_sized_blocks(self, length, start=0): | |
"""Helper function to split a range from 0 to total_length into bloksizes""" | |
end = start + length | |
for data_chunk in range(start, end, self.blocksize): | |
data_start = data_chunk | |
data_end = min(end, data_chunk + self.blocksize) | |
yield data_start, data_end | |