Spaces:
Paused
Paused
"""Test functions for 1D array set operations. | |
""" | |
import numpy as np | |
from numpy.testing import (assert_array_equal, assert_equal, | |
assert_raises, assert_raises_regex) | |
from numpy.lib.arraysetops import ( | |
ediff1d, intersect1d, setxor1d, union1d, setdiff1d, unique, in1d, isin | |
) | |
import pytest | |
class TestSetOps: | |
def test_intersect1d(self): | |
# unique inputs | |
a = np.array([5, 7, 1, 2]) | |
b = np.array([2, 4, 3, 1, 5]) | |
ec = np.array([1, 2, 5]) | |
c = intersect1d(a, b, assume_unique=True) | |
assert_array_equal(c, ec) | |
# non-unique inputs | |
a = np.array([5, 5, 7, 1, 2]) | |
b = np.array([2, 1, 4, 3, 3, 1, 5]) | |
ed = np.array([1, 2, 5]) | |
c = intersect1d(a, b) | |
assert_array_equal(c, ed) | |
assert_array_equal([], intersect1d([], [])) | |
def test_intersect1d_array_like(self): | |
# See gh-11772 | |
class Test: | |
def __array__(self): | |
return np.arange(3) | |
a = Test() | |
res = intersect1d(a, a) | |
assert_array_equal(res, a) | |
res = intersect1d([1, 2, 3], [1, 2, 3]) | |
assert_array_equal(res, [1, 2, 3]) | |
def test_intersect1d_indices(self): | |
# unique inputs | |
a = np.array([1, 2, 3, 4]) | |
b = np.array([2, 1, 4, 6]) | |
c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) | |
ee = np.array([1, 2, 4]) | |
assert_array_equal(c, ee) | |
assert_array_equal(a[i1], ee) | |
assert_array_equal(b[i2], ee) | |
# non-unique inputs | |
a = np.array([1, 2, 2, 3, 4, 3, 2]) | |
b = np.array([1, 8, 4, 2, 2, 3, 2, 3]) | |
c, i1, i2 = intersect1d(a, b, return_indices=True) | |
ef = np.array([1, 2, 3, 4]) | |
assert_array_equal(c, ef) | |
assert_array_equal(a[i1], ef) | |
assert_array_equal(b[i2], ef) | |
# non1d, unique inputs | |
a = np.array([[2, 4, 5, 6], [7, 8, 1, 15]]) | |
b = np.array([[3, 2, 7, 6], [10, 12, 8, 9]]) | |
c, i1, i2 = intersect1d(a, b, assume_unique=True, return_indices=True) | |
ui1 = np.unravel_index(i1, a.shape) | |
ui2 = np.unravel_index(i2, b.shape) | |
ea = np.array([2, 6, 7, 8]) | |
assert_array_equal(ea, a[ui1]) | |
assert_array_equal(ea, b[ui2]) | |
# non1d, not assumed to be uniqueinputs | |
a = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]]) | |
b = np.array([[3, 2, 7, 7], [10, 12, 8, 7]]) | |
c, i1, i2 = intersect1d(a, b, return_indices=True) | |
ui1 = np.unravel_index(i1, a.shape) | |
ui2 = np.unravel_index(i2, b.shape) | |
ea = np.array([2, 7, 8]) | |
assert_array_equal(ea, a[ui1]) | |
assert_array_equal(ea, b[ui2]) | |
def test_setxor1d(self): | |
a = np.array([5, 7, 1, 2]) | |
b = np.array([2, 4, 3, 1, 5]) | |
ec = np.array([3, 4, 7]) | |
c = setxor1d(a, b) | |
assert_array_equal(c, ec) | |
a = np.array([1, 2, 3]) | |
b = np.array([6, 5, 4]) | |
ec = np.array([1, 2, 3, 4, 5, 6]) | |
c = setxor1d(a, b) | |
assert_array_equal(c, ec) | |
a = np.array([1, 8, 2, 3]) | |
b = np.array([6, 5, 4, 8]) | |
ec = np.array([1, 2, 3, 4, 5, 6]) | |
c = setxor1d(a, b) | |
assert_array_equal(c, ec) | |
assert_array_equal([], setxor1d([], [])) | |
def test_ediff1d(self): | |
zero_elem = np.array([]) | |
one_elem = np.array([1]) | |
two_elem = np.array([1, 2]) | |
assert_array_equal([], ediff1d(zero_elem)) | |
assert_array_equal([0], ediff1d(zero_elem, to_begin=0)) | |
assert_array_equal([0], ediff1d(zero_elem, to_end=0)) | |
assert_array_equal([-1, 0], ediff1d(zero_elem, to_begin=-1, to_end=0)) | |
assert_array_equal([], ediff1d(one_elem)) | |
assert_array_equal([1], ediff1d(two_elem)) | |
assert_array_equal([7, 1, 9], ediff1d(two_elem, to_begin=7, to_end=9)) | |
assert_array_equal([5, 6, 1, 7, 8], | |
ediff1d(two_elem, to_begin=[5, 6], to_end=[7, 8])) | |
assert_array_equal([1, 9], ediff1d(two_elem, to_end=9)) | |
assert_array_equal([1, 7, 8], ediff1d(two_elem, to_end=[7, 8])) | |
assert_array_equal([7, 1], ediff1d(two_elem, to_begin=7)) | |
assert_array_equal([5, 6, 1], ediff1d(two_elem, to_begin=[5, 6])) | |
def test_ediff1d_forbidden_type_casts(self, ary, prepend, append, expected): | |
# verify resolution of gh-11490 | |
# specifically, raise an appropriate | |
# Exception when attempting to append or | |
# prepend with an incompatible type | |
msg = 'dtype of `{}` must be compatible'.format(expected) | |
with assert_raises_regex(TypeError, msg): | |
ediff1d(ary=ary, | |
to_end=append, | |
to_begin=prepend) | |
def test_ediff1d_scalar_handling(self, | |
ary, | |
prepend, | |
append, | |
expected): | |
# maintain backwards-compatibility | |
# of scalar prepend / append behavior | |
# in ediff1d following fix for gh-11490 | |
actual = np.ediff1d(ary=ary, | |
to_end=append, | |
to_begin=prepend) | |
assert_equal(actual, expected) | |
assert actual.dtype == expected.dtype | |
def test_isin(self): | |
# the tests for in1d cover most of isin's behavior | |
# if in1d is removed, would need to change those tests to test | |
# isin instead. | |
def _isin_slow(a, b): | |
b = np.asarray(b).flatten().tolist() | |
return a in b | |
isin_slow = np.vectorize(_isin_slow, otypes=[bool], excluded={1}) | |
def assert_isin_equal(a, b): | |
x = isin(a, b) | |
y = isin_slow(a, b) | |
assert_array_equal(x, y) | |
# multidimensional arrays in both arguments | |
a = np.arange(24).reshape([2, 3, 4]) | |
b = np.array([[10, 20, 30], [0, 1, 3], [11, 22, 33]]) | |
assert_isin_equal(a, b) | |
# array-likes as both arguments | |
c = [(9, 8), (7, 6)] | |
d = (9, 7) | |
assert_isin_equal(c, d) | |
# zero-d array: | |
f = np.array(3) | |
assert_isin_equal(f, b) | |
assert_isin_equal(a, f) | |
assert_isin_equal(f, f) | |
# scalar: | |
assert_isin_equal(5, b) | |
assert_isin_equal(a, 6) | |
assert_isin_equal(5, 6) | |
# empty array-like: | |
x = [] | |
assert_isin_equal(x, b) | |
assert_isin_equal(a, x) | |
assert_isin_equal(x, x) | |
def test_in1d(self): | |
# we use two different sizes for the b array here to test the | |
# two different paths in in1d(). | |
for mult in (1, 10): | |
# One check without np.array to make sure lists are handled correct | |
a = [5, 7, 1, 2] | |
b = [2, 4, 3, 1, 5] * mult | |
ec = np.array([True, False, True, True]) | |
c = in1d(a, b, assume_unique=True) | |
assert_array_equal(c, ec) | |
a[0] = 8 | |
ec = np.array([False, False, True, True]) | |
c = in1d(a, b, assume_unique=True) | |
assert_array_equal(c, ec) | |
a[0], a[3] = 4, 8 | |
ec = np.array([True, False, True, False]) | |
c = in1d(a, b, assume_unique=True) | |
assert_array_equal(c, ec) | |
a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5]) | |
b = [2, 3, 4] * mult | |
ec = [False, True, False, True, True, True, True, True, True, | |
False, True, False, False, False] | |
c = in1d(a, b) | |
assert_array_equal(c, ec) | |
b = b + [5, 5, 4] * mult | |
ec = [True, True, True, True, True, True, True, True, True, True, | |
True, False, True, True] | |
c = in1d(a, b) | |
assert_array_equal(c, ec) | |
a = np.array([5, 7, 1, 2]) | |
b = np.array([2, 4, 3, 1, 5] * mult) | |
ec = np.array([True, False, True, True]) | |
c = in1d(a, b) | |
assert_array_equal(c, ec) | |
a = np.array([5, 7, 1, 1, 2]) | |
b = np.array([2, 4, 3, 3, 1, 5] * mult) | |
ec = np.array([True, False, True, True, True]) | |
c = in1d(a, b) | |
assert_array_equal(c, ec) | |
a = np.array([5, 5]) | |
b = np.array([2, 2] * mult) | |
ec = np.array([False, False]) | |
c = in1d(a, b) | |
assert_array_equal(c, ec) | |
a = np.array([5]) | |
b = np.array([2]) | |
ec = np.array([False]) | |
c = in1d(a, b) | |
assert_array_equal(c, ec) | |
assert_array_equal(in1d([], []), []) | |
def test_in1d_char_array(self): | |
a = np.array(['a', 'b', 'c', 'd', 'e', 'c', 'e', 'b']) | |
b = np.array(['a', 'c']) | |
ec = np.array([True, False, True, False, False, True, False, False]) | |
c = in1d(a, b) | |
assert_array_equal(c, ec) | |
def test_in1d_invert(self): | |
"Test in1d's invert parameter" | |
# We use two different sizes for the b array here to test the | |
# two different paths in in1d(). | |
for mult in (1, 10): | |
a = np.array([5, 4, 5, 3, 4, 4, 3, 4, 3, 5, 2, 1, 5, 5]) | |
b = [2, 3, 4] * mult | |
assert_array_equal(np.invert(in1d(a, b)), in1d(a, b, invert=True)) | |
def test_in1d_ravel(self): | |
# Test that in1d ravels its input arrays. This is not documented | |
# behavior however. The test is to ensure consistentency. | |
a = np.arange(6).reshape(2, 3) | |
b = np.arange(3, 9).reshape(3, 2) | |
long_b = np.arange(3, 63).reshape(30, 2) | |
ec = np.array([False, False, False, True, True, True]) | |
assert_array_equal(in1d(a, b, assume_unique=True), ec) | |
assert_array_equal(in1d(a, b, assume_unique=False), ec) | |
assert_array_equal(in1d(a, long_b, assume_unique=True), ec) | |
assert_array_equal(in1d(a, long_b, assume_unique=False), ec) | |
def test_in1d_first_array_is_object(self): | |
ar1 = [None] | |
ar2 = np.array([1]*10) | |
expected = np.array([False]) | |
result = np.in1d(ar1, ar2) | |
assert_array_equal(result, expected) | |
def test_in1d_second_array_is_object(self): | |
ar1 = 1 | |
ar2 = np.array([None]*10) | |
expected = np.array([False]) | |
result = np.in1d(ar1, ar2) | |
assert_array_equal(result, expected) | |
def test_in1d_both_arrays_are_object(self): | |
ar1 = [None] | |
ar2 = np.array([None]*10) | |
expected = np.array([True]) | |
result = np.in1d(ar1, ar2) | |
assert_array_equal(result, expected) | |
def test_in1d_both_arrays_have_structured_dtype(self): | |
# Test arrays of a structured data type containing an integer field | |
# and a field of dtype `object` allowing for arbitrary Python objects | |
dt = np.dtype([('field1', int), ('field2', object)]) | |
ar1 = np.array([(1, None)], dtype=dt) | |
ar2 = np.array([(1, None)]*10, dtype=dt) | |
expected = np.array([True]) | |
result = np.in1d(ar1, ar2) | |
assert_array_equal(result, expected) | |
def test_in1d_with_arrays_containing_tuples(self): | |
ar1 = np.array([(1,), 2], dtype=object) | |
ar2 = np.array([(1,), 2], dtype=object) | |
expected = np.array([True, True]) | |
result = np.in1d(ar1, ar2) | |
assert_array_equal(result, expected) | |
result = np.in1d(ar1, ar2, invert=True) | |
assert_array_equal(result, np.invert(expected)) | |
# An integer is added at the end of the array to make sure | |
# that the array builder will create the array with tuples | |
# and after it's created the integer is removed. | |
# There's a bug in the array constructor that doesn't handle | |
# tuples properly and adding the integer fixes that. | |
ar1 = np.array([(1,), (2, 1), 1], dtype=object) | |
ar1 = ar1[:-1] | |
ar2 = np.array([(1,), (2, 1), 1], dtype=object) | |
ar2 = ar2[:-1] | |
expected = np.array([True, True]) | |
result = np.in1d(ar1, ar2) | |
assert_array_equal(result, expected) | |
result = np.in1d(ar1, ar2, invert=True) | |
assert_array_equal(result, np.invert(expected)) | |
ar1 = np.array([(1,), (2, 3), 1], dtype=object) | |
ar1 = ar1[:-1] | |
ar2 = np.array([(1,), 2], dtype=object) | |
expected = np.array([True, False]) | |
result = np.in1d(ar1, ar2) | |
assert_array_equal(result, expected) | |
result = np.in1d(ar1, ar2, invert=True) | |
assert_array_equal(result, np.invert(expected)) | |
def test_union1d(self): | |
a = np.array([5, 4, 7, 1, 2]) | |
b = np.array([2, 4, 3, 3, 2, 1, 5]) | |
ec = np.array([1, 2, 3, 4, 5, 7]) | |
c = union1d(a, b) | |
assert_array_equal(c, ec) | |
# Tests gh-10340, arguments to union1d should be | |
# flattened if they are not already 1D | |
x = np.array([[0, 1, 2], [3, 4, 5]]) | |
y = np.array([0, 1, 2, 3, 4]) | |
ez = np.array([0, 1, 2, 3, 4, 5]) | |
z = union1d(x, y) | |
assert_array_equal(z, ez) | |
assert_array_equal([], union1d([], [])) | |
def test_setdiff1d(self): | |
a = np.array([6, 5, 4, 7, 1, 2, 7, 4]) | |
b = np.array([2, 4, 3, 3, 2, 1, 5]) | |
ec = np.array([6, 7]) | |
c = setdiff1d(a, b) | |
assert_array_equal(c, ec) | |
a = np.arange(21) | |
b = np.arange(19) | |
ec = np.array([19, 20]) | |
c = setdiff1d(a, b) | |
assert_array_equal(c, ec) | |
assert_array_equal([], setdiff1d([], [])) | |
a = np.array((), np.uint32) | |
assert_equal(setdiff1d(a, []).dtype, np.uint32) | |
def test_setdiff1d_unique(self): | |
a = np.array([3, 2, 1]) | |
b = np.array([7, 5, 2]) | |
expected = np.array([3, 1]) | |
actual = setdiff1d(a, b, assume_unique=True) | |
assert_equal(actual, expected) | |
def test_setdiff1d_char_array(self): | |
a = np.array(['a', 'b', 'c']) | |
b = np.array(['a', 'b', 's']) | |
assert_array_equal(setdiff1d(a, b), np.array(['c'])) | |
def test_manyways(self): | |
a = np.array([5, 7, 1, 2, 8]) | |
b = np.array([9, 8, 2, 4, 3, 1, 5]) | |
c1 = setxor1d(a, b) | |
aux1 = intersect1d(a, b) | |
aux2 = union1d(a, b) | |
c2 = setdiff1d(aux2, aux1) | |
assert_array_equal(c1, c2) | |
class TestUnique: | |
def test_unique_1d(self): | |
def check_all(a, b, i1, i2, c, dt): | |
base_msg = 'check {0} failed for type {1}' | |
msg = base_msg.format('values', dt) | |
v = unique(a) | |
assert_array_equal(v, b, msg) | |
msg = base_msg.format('return_index', dt) | |
v, j = unique(a, True, False, False) | |
assert_array_equal(v, b, msg) | |
assert_array_equal(j, i1, msg) | |
msg = base_msg.format('return_inverse', dt) | |
v, j = unique(a, False, True, False) | |
assert_array_equal(v, b, msg) | |
assert_array_equal(j, i2, msg) | |
msg = base_msg.format('return_counts', dt) | |
v, j = unique(a, False, False, True) | |
assert_array_equal(v, b, msg) | |
assert_array_equal(j, c, msg) | |
msg = base_msg.format('return_index and return_inverse', dt) | |
v, j1, j2 = unique(a, True, True, False) | |
assert_array_equal(v, b, msg) | |
assert_array_equal(j1, i1, msg) | |
assert_array_equal(j2, i2, msg) | |
msg = base_msg.format('return_index and return_counts', dt) | |
v, j1, j2 = unique(a, True, False, True) | |
assert_array_equal(v, b, msg) | |
assert_array_equal(j1, i1, msg) | |
assert_array_equal(j2, c, msg) | |
msg = base_msg.format('return_inverse and return_counts', dt) | |
v, j1, j2 = unique(a, False, True, True) | |
assert_array_equal(v, b, msg) | |
assert_array_equal(j1, i2, msg) | |
assert_array_equal(j2, c, msg) | |
msg = base_msg.format(('return_index, return_inverse ' | |
'and return_counts'), dt) | |
v, j1, j2, j3 = unique(a, True, True, True) | |
assert_array_equal(v, b, msg) | |
assert_array_equal(j1, i1, msg) | |
assert_array_equal(j2, i2, msg) | |
assert_array_equal(j3, c, msg) | |
a = [5, 7, 1, 2, 1, 5, 7]*10 | |
b = [1, 2, 5, 7] | |
i1 = [2, 3, 0, 1] | |
i2 = [2, 3, 0, 1, 0, 2, 3]*10 | |
c = np.multiply([2, 1, 2, 2], 10) | |
# test for numeric arrays | |
types = [] | |
types.extend(np.typecodes['AllInteger']) | |
types.extend(np.typecodes['AllFloat']) | |
types.append('datetime64[D]') | |
types.append('timedelta64[D]') | |
for dt in types: | |
aa = np.array(a, dt) | |
bb = np.array(b, dt) | |
check_all(aa, bb, i1, i2, c, dt) | |
# test for object arrays | |
dt = 'O' | |
aa = np.empty(len(a), dt) | |
aa[:] = a | |
bb = np.empty(len(b), dt) | |
bb[:] = b | |
check_all(aa, bb, i1, i2, c, dt) | |
# test for structured arrays | |
dt = [('', 'i'), ('', 'i')] | |
aa = np.array(list(zip(a, a)), dt) | |
bb = np.array(list(zip(b, b)), dt) | |
check_all(aa, bb, i1, i2, c, dt) | |
# test for ticket #2799 | |
aa = [1. + 0.j, 1 - 1.j, 1] | |
assert_array_equal(np.unique(aa), [1. - 1.j, 1. + 0.j]) | |
# test for ticket #4785 | |
a = [(1, 2), (1, 2), (2, 3)] | |
unq = [1, 2, 3] | |
inv = [0, 1, 0, 1, 1, 2] | |
a1 = unique(a) | |
assert_array_equal(a1, unq) | |
a2, a2_inv = unique(a, return_inverse=True) | |
assert_array_equal(a2, unq) | |
assert_array_equal(a2_inv, inv) | |
# test for chararrays with return_inverse (gh-5099) | |
a = np.chararray(5) | |
a[...] = '' | |
a2, a2_inv = np.unique(a, return_inverse=True) | |
assert_array_equal(a2_inv, np.zeros(5)) | |
# test for ticket #9137 | |
a = [] | |
a1_idx = np.unique(a, return_index=True)[1] | |
a2_inv = np.unique(a, return_inverse=True)[1] | |
a3_idx, a3_inv = np.unique(a, return_index=True, | |
return_inverse=True)[1:] | |
assert_equal(a1_idx.dtype, np.intp) | |
assert_equal(a2_inv.dtype, np.intp) | |
assert_equal(a3_idx.dtype, np.intp) | |
assert_equal(a3_inv.dtype, np.intp) | |
# test for ticket 2111 - float | |
a = [2.0, np.nan, 1.0, np.nan] | |
ua = [1.0, 2.0, np.nan] | |
ua_idx = [2, 0, 1] | |
ua_inv = [1, 2, 0, 2] | |
ua_cnt = [1, 1, 2] | |
assert_equal(np.unique(a), ua) | |
assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) | |
assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) | |
assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) | |
# test for ticket 2111 - complex | |
a = [2.0-1j, np.nan, 1.0+1j, complex(0.0, np.nan), complex(1.0, np.nan)] | |
ua = [1.0+1j, 2.0-1j, complex(0.0, np.nan)] | |
ua_idx = [2, 0, 3] | |
ua_inv = [1, 2, 0, 2, 2] | |
ua_cnt = [1, 1, 3] | |
assert_equal(np.unique(a), ua) | |
assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) | |
assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) | |
assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) | |
# test for ticket 2111 - datetime64 | |
nat = np.datetime64('nat') | |
a = [np.datetime64('2020-12-26'), nat, np.datetime64('2020-12-24'), nat] | |
ua = [np.datetime64('2020-12-24'), np.datetime64('2020-12-26'), nat] | |
ua_idx = [2, 0, 1] | |
ua_inv = [1, 2, 0, 2] | |
ua_cnt = [1, 1, 2] | |
assert_equal(np.unique(a), ua) | |
assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) | |
assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) | |
assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) | |
# test for ticket 2111 - timedelta | |
nat = np.timedelta64('nat') | |
a = [np.timedelta64(1, 'D'), nat, np.timedelta64(1, 'h'), nat] | |
ua = [np.timedelta64(1, 'h'), np.timedelta64(1, 'D'), nat] | |
ua_idx = [2, 0, 1] | |
ua_inv = [1, 2, 0, 2] | |
ua_cnt = [1, 1, 2] | |
assert_equal(np.unique(a), ua) | |
assert_equal(np.unique(a, return_index=True), (ua, ua_idx)) | |
assert_equal(np.unique(a, return_inverse=True), (ua, ua_inv)) | |
assert_equal(np.unique(a, return_counts=True), (ua, ua_cnt)) | |
# test for gh-19300 | |
all_nans = [np.nan] * 4 | |
ua = [np.nan] | |
ua_idx = [0] | |
ua_inv = [0, 0, 0, 0] | |
ua_cnt = [4] | |
assert_equal(np.unique(all_nans), ua) | |
assert_equal(np.unique(all_nans, return_index=True), (ua, ua_idx)) | |
assert_equal(np.unique(all_nans, return_inverse=True), (ua, ua_inv)) | |
assert_equal(np.unique(all_nans, return_counts=True), (ua, ua_cnt)) | |
def test_unique_axis_errors(self): | |
assert_raises(TypeError, self._run_axis_tests, object) | |
assert_raises(TypeError, self._run_axis_tests, | |
[('a', int), ('b', object)]) | |
assert_raises(np.AxisError, unique, np.arange(10), axis=2) | |
assert_raises(np.AxisError, unique, np.arange(10), axis=-2) | |
def test_unique_axis_list(self): | |
msg = "Unique failed on list of lists" | |
inp = [[0, 1, 0], [0, 1, 0]] | |
inp_arr = np.asarray(inp) | |
assert_array_equal(unique(inp, axis=0), unique(inp_arr, axis=0), msg) | |
assert_array_equal(unique(inp, axis=1), unique(inp_arr, axis=1), msg) | |
def test_unique_axis(self): | |
types = [] | |
types.extend(np.typecodes['AllInteger']) | |
types.extend(np.typecodes['AllFloat']) | |
types.append('datetime64[D]') | |
types.append('timedelta64[D]') | |
types.append([('a', int), ('b', int)]) | |
types.append([('a', int), ('b', float)]) | |
for dtype in types: | |
self._run_axis_tests(dtype) | |
msg = 'Non-bitwise-equal booleans test failed' | |
data = np.arange(10, dtype=np.uint8).reshape(-1, 2).view(bool) | |
result = np.array([[False, True], [True, True]], dtype=bool) | |
assert_array_equal(unique(data, axis=0), result, msg) | |
msg = 'Negative zero equality test failed' | |
data = np.array([[-0.0, 0.0], [0.0, -0.0], [-0.0, 0.0], [0.0, -0.0]]) | |
result = np.array([[-0.0, 0.0]]) | |
assert_array_equal(unique(data, axis=0), result, msg) | |
def test_unique_1d_with_axis(self, axis): | |
x = np.array([4, 3, 2, 3, 2, 1, 2, 2]) | |
uniq = unique(x, axis=axis) | |
assert_array_equal(uniq, [1, 2, 3, 4]) | |
def test_unique_axis_zeros(self): | |
# issue 15559 | |
single_zero = np.empty(shape=(2, 0), dtype=np.int8) | |
uniq, idx, inv, cnt = unique(single_zero, axis=0, return_index=True, | |
return_inverse=True, return_counts=True) | |
# there's 1 element of shape (0,) along axis 0 | |
assert_equal(uniq.dtype, single_zero.dtype) | |
assert_array_equal(uniq, np.empty(shape=(1, 0))) | |
assert_array_equal(idx, np.array([0])) | |
assert_array_equal(inv, np.array([0, 0])) | |
assert_array_equal(cnt, np.array([2])) | |
# there's 0 elements of shape (2,) along axis 1 | |
uniq, idx, inv, cnt = unique(single_zero, axis=1, return_index=True, | |
return_inverse=True, return_counts=True) | |
assert_equal(uniq.dtype, single_zero.dtype) | |
assert_array_equal(uniq, np.empty(shape=(2, 0))) | |
assert_array_equal(idx, np.array([])) | |
assert_array_equal(inv, np.array([])) | |
assert_array_equal(cnt, np.array([])) | |
# test a "complicated" shape | |
shape = (0, 2, 0, 3, 0, 4, 0) | |
multiple_zeros = np.empty(shape=shape) | |
for axis in range(len(shape)): | |
expected_shape = list(shape) | |
if shape[axis] == 0: | |
expected_shape[axis] = 0 | |
else: | |
expected_shape[axis] = 1 | |
assert_array_equal(unique(multiple_zeros, axis=axis), | |
np.empty(shape=expected_shape)) | |
def test_unique_masked(self): | |
# issue 8664 | |
x = np.array([64, 0, 1, 2, 3, 63, 63, 0, 0, 0, 1, 2, 0, 63, 0], | |
dtype='uint8') | |
y = np.ma.masked_equal(x, 0) | |
v = np.unique(y) | |
v2, i, c = np.unique(y, return_index=True, return_counts=True) | |
msg = 'Unique returned different results when asked for index' | |
assert_array_equal(v.data, v2.data, msg) | |
assert_array_equal(v.mask, v2.mask, msg) | |
def test_unique_sort_order_with_axis(self): | |
# These tests fail if sorting along axis is done by treating subarrays | |
# as unsigned byte strings. See gh-10495. | |
fmt = "sort order incorrect for integer type '%s'" | |
for dt in 'bhilq': | |
a = np.array([[-1], [0]], dt) | |
b = np.unique(a, axis=0) | |
assert_array_equal(a, b, fmt % dt) | |
def _run_axis_tests(self, dtype): | |
data = np.array([[0, 1, 0, 0], | |
[1, 0, 0, 0], | |
[0, 1, 0, 0], | |
[1, 0, 0, 0]]).astype(dtype) | |
msg = 'Unique with 1d array and axis=0 failed' | |
result = np.array([0, 1]) | |
assert_array_equal(unique(data), result.astype(dtype), msg) | |
msg = 'Unique with 2d array and axis=0 failed' | |
result = np.array([[0, 1, 0, 0], [1, 0, 0, 0]]) | |
assert_array_equal(unique(data, axis=0), result.astype(dtype), msg) | |
msg = 'Unique with 2d array and axis=1 failed' | |
result = np.array([[0, 0, 1], [0, 1, 0], [0, 0, 1], [0, 1, 0]]) | |
assert_array_equal(unique(data, axis=1), result.astype(dtype), msg) | |
msg = 'Unique with 3d array and axis=2 failed' | |
data3d = np.array([[[1, 1], | |
[1, 0]], | |
[[0, 1], | |
[0, 0]]]).astype(dtype) | |
result = np.take(data3d, [1, 0], axis=2) | |
assert_array_equal(unique(data3d, axis=2), result, msg) | |
uniq, idx, inv, cnt = unique(data, axis=0, return_index=True, | |
return_inverse=True, return_counts=True) | |
msg = "Unique's return_index=True failed with axis=0" | |
assert_array_equal(data[idx], uniq, msg) | |
msg = "Unique's return_inverse=True failed with axis=0" | |
assert_array_equal(uniq[inv], data) | |
msg = "Unique's return_counts=True failed with axis=0" | |
assert_array_equal(cnt, np.array([2, 2]), msg) | |
uniq, idx, inv, cnt = unique(data, axis=1, return_index=True, | |
return_inverse=True, return_counts=True) | |
msg = "Unique's return_index=True failed with axis=1" | |
assert_array_equal(data[:, idx], uniq) | |
msg = "Unique's return_inverse=True failed with axis=1" | |
assert_array_equal(uniq[:, inv], data) | |
msg = "Unique's return_counts=True failed with axis=1" | |
assert_array_equal(cnt, np.array([2, 1, 1]), msg) | |