Spaces:
Paused
Paused
import operator | |
import warnings | |
import sys | |
import decimal | |
from fractions import Fraction | |
import math | |
import pytest | |
import hypothesis | |
from hypothesis.extra.numpy import arrays | |
import hypothesis.strategies as st | |
import numpy as np | |
from numpy import ma | |
from numpy.testing import ( | |
assert_, assert_equal, assert_array_equal, assert_almost_equal, | |
assert_array_almost_equal, assert_raises, assert_allclose, IS_PYPY, | |
assert_warns, assert_raises_regex, suppress_warnings, HAS_REFCOUNT, | |
) | |
import numpy.lib.function_base as nfb | |
from numpy.random import rand | |
from numpy.lib import ( | |
add_newdoc_ufunc, angle, average, bartlett, blackman, corrcoef, cov, | |
delete, diff, digitize, extract, flipud, gradient, hamming, hanning, | |
i0, insert, interp, kaiser, meshgrid, msort, piecewise, place, rot90, | |
select, setxor1d, sinc, trapz, trim_zeros, unwrap, unique, vectorize | |
) | |
def get_mat(n): | |
data = np.arange(n) | |
data = np.add.outer(data, data) | |
return data | |
def _make_complex(real, imag): | |
""" | |
Like real + 1j * imag, but behaves as expected when imag contains non-finite | |
values | |
""" | |
ret = np.zeros(np.broadcast(real, imag).shape, np.complex_) | |
ret.real = real | |
ret.imag = imag | |
return ret | |
class TestRot90: | |
def test_basic(self): | |
assert_raises(ValueError, rot90, np.ones(4)) | |
assert_raises(ValueError, rot90, np.ones((2,2,2)), axes=(0,1,2)) | |
assert_raises(ValueError, rot90, np.ones((2,2)), axes=(0,2)) | |
assert_raises(ValueError, rot90, np.ones((2,2)), axes=(1,1)) | |
assert_raises(ValueError, rot90, np.ones((2,2,2)), axes=(-2,1)) | |
a = [[0, 1, 2], | |
[3, 4, 5]] | |
b1 = [[2, 5], | |
[1, 4], | |
[0, 3]] | |
b2 = [[5, 4, 3], | |
[2, 1, 0]] | |
b3 = [[3, 0], | |
[4, 1], | |
[5, 2]] | |
b4 = [[0, 1, 2], | |
[3, 4, 5]] | |
for k in range(-3, 13, 4): | |
assert_equal(rot90(a, k=k), b1) | |
for k in range(-2, 13, 4): | |
assert_equal(rot90(a, k=k), b2) | |
for k in range(-1, 13, 4): | |
assert_equal(rot90(a, k=k), b3) | |
for k in range(0, 13, 4): | |
assert_equal(rot90(a, k=k), b4) | |
assert_equal(rot90(rot90(a, axes=(0,1)), axes=(1,0)), a) | |
assert_equal(rot90(a, k=1, axes=(1,0)), rot90(a, k=-1, axes=(0,1))) | |
def test_axes(self): | |
a = np.ones((50, 40, 3)) | |
assert_equal(rot90(a).shape, (40, 50, 3)) | |
assert_equal(rot90(a, axes=(0,2)), rot90(a, axes=(0,-1))) | |
assert_equal(rot90(a, axes=(1,2)), rot90(a, axes=(-2,-1))) | |
def test_rotation_axes(self): | |
a = np.arange(8).reshape((2,2,2)) | |
a_rot90_01 = [[[2, 3], | |
[6, 7]], | |
[[0, 1], | |
[4, 5]]] | |
a_rot90_12 = [[[1, 3], | |
[0, 2]], | |
[[5, 7], | |
[4, 6]]] | |
a_rot90_20 = [[[4, 0], | |
[6, 2]], | |
[[5, 1], | |
[7, 3]]] | |
a_rot90_10 = [[[4, 5], | |
[0, 1]], | |
[[6, 7], | |
[2, 3]]] | |
assert_equal(rot90(a, axes=(0, 1)), a_rot90_01) | |
assert_equal(rot90(a, axes=(1, 0)), a_rot90_10) | |
assert_equal(rot90(a, axes=(1, 2)), a_rot90_12) | |
for k in range(1,5): | |
assert_equal(rot90(a, k=k, axes=(2, 0)), | |
rot90(a_rot90_20, k=k-1, axes=(2, 0))) | |
class TestFlip: | |
def test_axes(self): | |
assert_raises(np.AxisError, np.flip, np.ones(4), axis=1) | |
assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=2) | |
assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=-3) | |
assert_raises(np.AxisError, np.flip, np.ones((4, 4)), axis=(0, 3)) | |
def test_basic_lr(self): | |
a = get_mat(4) | |
b = a[:, ::-1] | |
assert_equal(np.flip(a, 1), b) | |
a = [[0, 1, 2], | |
[3, 4, 5]] | |
b = [[2, 1, 0], | |
[5, 4, 3]] | |
assert_equal(np.flip(a, 1), b) | |
def test_basic_ud(self): | |
a = get_mat(4) | |
b = a[::-1, :] | |
assert_equal(np.flip(a, 0), b) | |
a = [[0, 1, 2], | |
[3, 4, 5]] | |
b = [[3, 4, 5], | |
[0, 1, 2]] | |
assert_equal(np.flip(a, 0), b) | |
def test_3d_swap_axis0(self): | |
a = np.array([[[0, 1], | |
[2, 3]], | |
[[4, 5], | |
[6, 7]]]) | |
b = np.array([[[4, 5], | |
[6, 7]], | |
[[0, 1], | |
[2, 3]]]) | |
assert_equal(np.flip(a, 0), b) | |
def test_3d_swap_axis1(self): | |
a = np.array([[[0, 1], | |
[2, 3]], | |
[[4, 5], | |
[6, 7]]]) | |
b = np.array([[[2, 3], | |
[0, 1]], | |
[[6, 7], | |
[4, 5]]]) | |
assert_equal(np.flip(a, 1), b) | |
def test_3d_swap_axis2(self): | |
a = np.array([[[0, 1], | |
[2, 3]], | |
[[4, 5], | |
[6, 7]]]) | |
b = np.array([[[1, 0], | |
[3, 2]], | |
[[5, 4], | |
[7, 6]]]) | |
assert_equal(np.flip(a, 2), b) | |
def test_4d(self): | |
a = np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5) | |
for i in range(a.ndim): | |
assert_equal(np.flip(a, i), | |
np.flipud(a.swapaxes(0, i)).swapaxes(i, 0)) | |
def test_default_axis(self): | |
a = np.array([[1, 2, 3], | |
[4, 5, 6]]) | |
b = np.array([[6, 5, 4], | |
[3, 2, 1]]) | |
assert_equal(np.flip(a), b) | |
def test_multiple_axes(self): | |
a = np.array([[[0, 1], | |
[2, 3]], | |
[[4, 5], | |
[6, 7]]]) | |
assert_equal(np.flip(a, axis=()), a) | |
b = np.array([[[5, 4], | |
[7, 6]], | |
[[1, 0], | |
[3, 2]]]) | |
assert_equal(np.flip(a, axis=(0, 2)), b) | |
c = np.array([[[3, 2], | |
[1, 0]], | |
[[7, 6], | |
[5, 4]]]) | |
assert_equal(np.flip(a, axis=(1, 2)), c) | |
class TestAny: | |
def test_basic(self): | |
y1 = [0, 0, 1, 0] | |
y2 = [0, 0, 0, 0] | |
y3 = [1, 0, 1, 0] | |
assert_(np.any(y1)) | |
assert_(np.any(y3)) | |
assert_(not np.any(y2)) | |
def test_nd(self): | |
y1 = [[0, 0, 0], [0, 1, 0], [1, 1, 0]] | |
assert_(np.any(y1)) | |
assert_array_equal(np.sometrue(y1, axis=0), [1, 1, 0]) | |
assert_array_equal(np.sometrue(y1, axis=1), [0, 1, 1]) | |
class TestAll: | |
def test_basic(self): | |
y1 = [0, 1, 1, 0] | |
y2 = [0, 0, 0, 0] | |
y3 = [1, 1, 1, 1] | |
assert_(not np.all(y1)) | |
assert_(np.all(y3)) | |
assert_(not np.all(y2)) | |
assert_(np.all(~np.array(y2))) | |
def test_nd(self): | |
y1 = [[0, 0, 1], [0, 1, 1], [1, 1, 1]] | |
assert_(not np.all(y1)) | |
assert_array_equal(np.alltrue(y1, axis=0), [0, 0, 1]) | |
assert_array_equal(np.alltrue(y1, axis=1), [0, 0, 1]) | |
class TestCopy: | |
def test_basic(self): | |
a = np.array([[1, 2], [3, 4]]) | |
a_copy = np.copy(a) | |
assert_array_equal(a, a_copy) | |
a_copy[0, 0] = 10 | |
assert_equal(a[0, 0], 1) | |
assert_equal(a_copy[0, 0], 10) | |
def test_order(self): | |
# It turns out that people rely on np.copy() preserving order by | |
# default; changing this broke scikit-learn: | |
# github.com/scikit-learn/scikit-learn/commit/7842748cf777412c506a8c0ed28090711d3a3783 # noqa | |
a = np.array([[1, 2], [3, 4]]) | |
assert_(a.flags.c_contiguous) | |
assert_(not a.flags.f_contiguous) | |
a_fort = np.array([[1, 2], [3, 4]], order="F") | |
assert_(not a_fort.flags.c_contiguous) | |
assert_(a_fort.flags.f_contiguous) | |
a_copy = np.copy(a) | |
assert_(a_copy.flags.c_contiguous) | |
assert_(not a_copy.flags.f_contiguous) | |
a_fort_copy = np.copy(a_fort) | |
assert_(not a_fort_copy.flags.c_contiguous) | |
assert_(a_fort_copy.flags.f_contiguous) | |
def test_subok(self): | |
mx = ma.ones(5) | |
assert_(not ma.isMaskedArray(np.copy(mx, subok=False))) | |
assert_(ma.isMaskedArray(np.copy(mx, subok=True))) | |
# Default behavior | |
assert_(not ma.isMaskedArray(np.copy(mx))) | |
class TestAverage: | |
def test_basic(self): | |
y1 = np.array([1, 2, 3]) | |
assert_(average(y1, axis=0) == 2.) | |
y2 = np.array([1., 2., 3.]) | |
assert_(average(y2, axis=0) == 2.) | |
y3 = [0., 0., 0.] | |
assert_(average(y3, axis=0) == 0.) | |
y4 = np.ones((4, 4)) | |
y4[0, 1] = 0 | |
y4[1, 0] = 2 | |
assert_almost_equal(y4.mean(0), average(y4, 0)) | |
assert_almost_equal(y4.mean(1), average(y4, 1)) | |
y5 = rand(5, 5) | |
assert_almost_equal(y5.mean(0), average(y5, 0)) | |
assert_almost_equal(y5.mean(1), average(y5, 1)) | |
def test_weights(self): | |
y = np.arange(10) | |
w = np.arange(10) | |
actual = average(y, weights=w) | |
desired = (np.arange(10) ** 2).sum() * 1. / np.arange(10).sum() | |
assert_almost_equal(actual, desired) | |
y1 = np.array([[1, 2, 3], [4, 5, 6]]) | |
w0 = [1, 2] | |
actual = average(y1, weights=w0, axis=0) | |
desired = np.array([3., 4., 5.]) | |
assert_almost_equal(actual, desired) | |
w1 = [0, 0, 1] | |
actual = average(y1, weights=w1, axis=1) | |
desired = np.array([3., 6.]) | |
assert_almost_equal(actual, desired) | |
# This should raise an error. Can we test for that ? | |
# assert_equal(average(y1, weights=w1), 9./2.) | |
# 2D Case | |
w2 = [[0, 0, 1], [0, 0, 2]] | |
desired = np.array([3., 6.]) | |
assert_array_equal(average(y1, weights=w2, axis=1), desired) | |
assert_equal(average(y1, weights=w2), 5.) | |
y3 = rand(5).astype(np.float32) | |
w3 = rand(5).astype(np.float64) | |
assert_(np.average(y3, weights=w3).dtype == np.result_type(y3, w3)) | |
def test_returned(self): | |
y = np.array([[1, 2, 3], [4, 5, 6]]) | |
# No weights | |
avg, scl = average(y, returned=True) | |
assert_equal(scl, 6.) | |
avg, scl = average(y, 0, returned=True) | |
assert_array_equal(scl, np.array([2., 2., 2.])) | |
avg, scl = average(y, 1, returned=True) | |
assert_array_equal(scl, np.array([3., 3.])) | |
# With weights | |
w0 = [1, 2] | |
avg, scl = average(y, weights=w0, axis=0, returned=True) | |
assert_array_equal(scl, np.array([3., 3., 3.])) | |
w1 = [1, 2, 3] | |
avg, scl = average(y, weights=w1, axis=1, returned=True) | |
assert_array_equal(scl, np.array([6., 6.])) | |
w2 = [[0, 0, 1], [1, 2, 3]] | |
avg, scl = average(y, weights=w2, axis=1, returned=True) | |
assert_array_equal(scl, np.array([1., 6.])) | |
def test_subclasses(self): | |
class subclass(np.ndarray): | |
pass | |
a = np.array([[1,2],[3,4]]).view(subclass) | |
w = np.array([[1,2],[3,4]]).view(subclass) | |
assert_equal(type(np.average(a)), subclass) | |
assert_equal(type(np.average(a, weights=w)), subclass) | |
def test_upcasting(self): | |
typs = [('i4', 'i4', 'f8'), ('i4', 'f4', 'f8'), ('f4', 'i4', 'f8'), | |
('f4', 'f4', 'f4'), ('f4', 'f8', 'f8')] | |
for at, wt, rt in typs: | |
a = np.array([[1,2],[3,4]], dtype=at) | |
w = np.array([[1,2],[3,4]], dtype=wt) | |
assert_equal(np.average(a, weights=w).dtype, np.dtype(rt)) | |
def test_object_dtype(self): | |
a = np.array([decimal.Decimal(x) for x in range(10)]) | |
w = np.array([decimal.Decimal(1) for _ in range(10)]) | |
w /= w.sum() | |
assert_almost_equal(a.mean(0), average(a, weights=w)) | |
class TestSelect: | |
choices = [np.array([1, 2, 3]), | |
np.array([4, 5, 6]), | |
np.array([7, 8, 9])] | |
conditions = [np.array([False, False, False]), | |
np.array([False, True, False]), | |
np.array([False, False, True])] | |
def _select(self, cond, values, default=0): | |
output = [] | |
for m in range(len(cond)): | |
output += [V[m] for V, C in zip(values, cond) if C[m]] or [default] | |
return output | |
def test_basic(self): | |
choices = self.choices | |
conditions = self.conditions | |
assert_array_equal(select(conditions, choices, default=15), | |
self._select(conditions, choices, default=15)) | |
assert_equal(len(choices), 3) | |
assert_equal(len(conditions), 3) | |
def test_broadcasting(self): | |
conditions = [np.array(True), np.array([False, True, False])] | |
choices = [1, np.arange(12).reshape(4, 3)] | |
assert_array_equal(select(conditions, choices), np.ones((4, 3))) | |
# default can broadcast too: | |
assert_equal(select([True], [0], default=[0]).shape, (1,)) | |
def test_return_dtype(self): | |
assert_equal(select(self.conditions, self.choices, 1j).dtype, | |
np.complex_) | |
# But the conditions need to be stronger then the scalar default | |
# if it is scalar. | |
choices = [choice.astype(np.int8) for choice in self.choices] | |
assert_equal(select(self.conditions, choices).dtype, np.int8) | |
d = np.array([1, 2, 3, np.nan, 5, 7]) | |
m = np.isnan(d) | |
assert_equal(select([m], [d]), [0, 0, 0, np.nan, 0, 0]) | |
def test_deprecated_empty(self): | |
assert_raises(ValueError, select, [], [], 3j) | |
assert_raises(ValueError, select, [], []) | |
def test_non_bool_deprecation(self): | |
choices = self.choices | |
conditions = self.conditions[:] | |
conditions[0] = conditions[0].astype(np.int_) | |
assert_raises(TypeError, select, conditions, choices) | |
conditions[0] = conditions[0].astype(np.uint8) | |
assert_raises(TypeError, select, conditions, choices) | |
assert_raises(TypeError, select, conditions, choices) | |
def test_many_arguments(self): | |
# This used to be limited by NPY_MAXARGS == 32 | |
conditions = [np.array([False])] * 100 | |
choices = [np.array([1])] * 100 | |
select(conditions, choices) | |
class TestInsert: | |
def test_basic(self): | |
a = [1, 2, 3] | |
assert_equal(insert(a, 0, 1), [1, 1, 2, 3]) | |
assert_equal(insert(a, 3, 1), [1, 2, 3, 1]) | |
assert_equal(insert(a, [1, 1, 1], [1, 2, 3]), [1, 1, 2, 3, 2, 3]) | |
assert_equal(insert(a, 1, [1, 2, 3]), [1, 1, 2, 3, 2, 3]) | |
assert_equal(insert(a, [1, -1, 3], 9), [1, 9, 2, 9, 3, 9]) | |
assert_equal(insert(a, slice(-1, None, -1), 9), [9, 1, 9, 2, 9, 3]) | |
assert_equal(insert(a, [-1, 1, 3], [7, 8, 9]), [1, 8, 2, 7, 3, 9]) | |
b = np.array([0, 1], dtype=np.float64) | |
assert_equal(insert(b, 0, b[0]), [0., 0., 1.]) | |
assert_equal(insert(b, [], []), b) | |
# Bools will be treated differently in the future: | |
# assert_equal(insert(a, np.array([True]*4), 9), [9, 1, 9, 2, 9, 3, 9]) | |
with warnings.catch_warnings(record=True) as w: | |
warnings.filterwarnings('always', '', FutureWarning) | |
assert_equal( | |
insert(a, np.array([True] * 4), 9), [1, 9, 9, 9, 9, 2, 3]) | |
assert_(w[0].category is FutureWarning) | |
def test_multidim(self): | |
a = [[1, 1, 1]] | |
r = [[2, 2, 2], | |
[1, 1, 1]] | |
assert_equal(insert(a, 0, [1]), [1, 1, 1, 1]) | |
assert_equal(insert(a, 0, [2, 2, 2], axis=0), r) | |
assert_equal(insert(a, 0, 2, axis=0), r) | |
assert_equal(insert(a, 2, 2, axis=1), [[1, 1, 2, 1]]) | |
a = np.array([[1, 1], [2, 2], [3, 3]]) | |
b = np.arange(1, 4).repeat(3).reshape(3, 3) | |
c = np.concatenate( | |
(a[:, 0:1], np.arange(1, 4).repeat(3).reshape(3, 3).T, | |
a[:, 1:2]), axis=1) | |
assert_equal(insert(a, [1], [[1], [2], [3]], axis=1), b) | |
assert_equal(insert(a, [1], [1, 2, 3], axis=1), c) | |
# scalars behave differently, in this case exactly opposite: | |
assert_equal(insert(a, 1, [1, 2, 3], axis=1), b) | |
assert_equal(insert(a, 1, [[1], [2], [3]], axis=1), c) | |
a = np.arange(4).reshape(2, 2) | |
assert_equal(insert(a[:, :1], 1, a[:, 1], axis=1), a) | |
assert_equal(insert(a[:1,:], 1, a[1,:], axis=0), a) | |
# negative axis value | |
a = np.arange(24).reshape((2, 3, 4)) | |
assert_equal(insert(a, 1, a[:,:, 3], axis=-1), | |
insert(a, 1, a[:,:, 3], axis=2)) | |
assert_equal(insert(a, 1, a[:, 2,:], axis=-2), | |
insert(a, 1, a[:, 2,:], axis=1)) | |
# invalid axis value | |
assert_raises(np.AxisError, insert, a, 1, a[:, 2, :], axis=3) | |
assert_raises(np.AxisError, insert, a, 1, a[:, 2, :], axis=-4) | |
# negative axis value | |
a = np.arange(24).reshape((2, 3, 4)) | |
assert_equal(insert(a, 1, a[:, :, 3], axis=-1), | |
insert(a, 1, a[:, :, 3], axis=2)) | |
assert_equal(insert(a, 1, a[:, 2, :], axis=-2), | |
insert(a, 1, a[:, 2, :], axis=1)) | |
def test_0d(self): | |
a = np.array(1) | |
with pytest.raises(np.AxisError): | |
insert(a, [], 2, axis=0) | |
with pytest.raises(TypeError): | |
insert(a, [], 2, axis="nonsense") | |
def test_subclass(self): | |
class SubClass(np.ndarray): | |
pass | |
a = np.arange(10).view(SubClass) | |
assert_(isinstance(np.insert(a, 0, [0]), SubClass)) | |
assert_(isinstance(np.insert(a, [], []), SubClass)) | |
assert_(isinstance(np.insert(a, [0, 1], [1, 2]), SubClass)) | |
assert_(isinstance(np.insert(a, slice(1, 2), [1, 2]), SubClass)) | |
assert_(isinstance(np.insert(a, slice(1, -2, -1), []), SubClass)) | |
# This is an error in the future: | |
a = np.array(1).view(SubClass) | |
assert_(isinstance(np.insert(a, 0, [0]), SubClass)) | |
def test_index_array_copied(self): | |
x = np.array([1, 1, 1]) | |
np.insert([0, 1, 2], x, [3, 4, 5]) | |
assert_equal(x, np.array([1, 1, 1])) | |
def test_structured_array(self): | |
a = np.array([(1, 'a'), (2, 'b'), (3, 'c')], | |
dtype=[('foo', 'i'), ('bar', 'a1')]) | |
val = (4, 'd') | |
b = np.insert(a, 0, val) | |
assert_array_equal(b[0], np.array(val, dtype=b.dtype)) | |
val = [(4, 'd')] * 2 | |
b = np.insert(a, [0, 2], val) | |
assert_array_equal(b[[0, 3]], np.array(val, dtype=b.dtype)) | |
def test_index_floats(self): | |
with pytest.raises(IndexError): | |
np.insert([0, 1, 2], np.array([1.0, 2.0]), [10, 20]) | |
with pytest.raises(IndexError): | |
np.insert([0, 1, 2], np.array([], dtype=float), []) | |
class TestAmax: | |
def test_basic(self): | |
a = [3, 4, 5, 10, -3, -5, 6.0] | |
assert_equal(np.amax(a), 10.0) | |
b = [[3, 6.0, 9.0], | |
[4, 10.0, 5.0], | |
[8, 3.0, 2.0]] | |
assert_equal(np.amax(b, axis=0), [8.0, 10.0, 9.0]) | |
assert_equal(np.amax(b, axis=1), [9.0, 10.0, 8.0]) | |
class TestAmin: | |
def test_basic(self): | |
a = [3, 4, 5, 10, -3, -5, 6.0] | |
assert_equal(np.amin(a), -5.0) | |
b = [[3, 6.0, 9.0], | |
[4, 10.0, 5.0], | |
[8, 3.0, 2.0]] | |
assert_equal(np.amin(b, axis=0), [3.0, 3.0, 2.0]) | |
assert_equal(np.amin(b, axis=1), [3.0, 4.0, 2.0]) | |
class TestPtp: | |
def test_basic(self): | |
a = np.array([3, 4, 5, 10, -3, -5, 6.0]) | |
assert_equal(a.ptp(axis=0), 15.0) | |
b = np.array([[3, 6.0, 9.0], | |
[4, 10.0, 5.0], | |
[8, 3.0, 2.0]]) | |
assert_equal(b.ptp(axis=0), [5.0, 7.0, 7.0]) | |
assert_equal(b.ptp(axis=-1), [6.0, 6.0, 6.0]) | |
assert_equal(b.ptp(axis=0, keepdims=True), [[5.0, 7.0, 7.0]]) | |
assert_equal(b.ptp(axis=(0,1), keepdims=True), [[8.0]]) | |
class TestCumsum: | |
def test_basic(self): | |
ba = [1, 2, 10, 11, 6, 5, 4] | |
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] | |
for ctype in [np.int8, np.uint8, np.int16, np.uint16, np.int32, | |
np.uint32, np.float32, np.float64, np.complex64, | |
np.complex128]: | |
a = np.array(ba, ctype) | |
a2 = np.array(ba2, ctype) | |
tgt = np.array([1, 3, 13, 24, 30, 35, 39], ctype) | |
assert_array_equal(np.cumsum(a, axis=0), tgt) | |
tgt = np.array( | |
[[1, 2, 3, 4], [6, 8, 10, 13], [16, 11, 14, 18]], ctype) | |
assert_array_equal(np.cumsum(a2, axis=0), tgt) | |
tgt = np.array( | |
[[1, 3, 6, 10], [5, 11, 18, 27], [10, 13, 17, 22]], ctype) | |
assert_array_equal(np.cumsum(a2, axis=1), tgt) | |
class TestProd: | |
def test_basic(self): | |
ba = [1, 2, 10, 11, 6, 5, 4] | |
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] | |
for ctype in [np.int16, np.uint16, np.int32, np.uint32, | |
np.float32, np.float64, np.complex64, np.complex128]: | |
a = np.array(ba, ctype) | |
a2 = np.array(ba2, ctype) | |
if ctype in ['1', 'b']: | |
assert_raises(ArithmeticError, np.prod, a) | |
assert_raises(ArithmeticError, np.prod, a2, 1) | |
else: | |
assert_equal(a.prod(axis=0), 26400) | |
assert_array_equal(a2.prod(axis=0), | |
np.array([50, 36, 84, 180], ctype)) | |
assert_array_equal(a2.prod(axis=-1), | |
np.array([24, 1890, 600], ctype)) | |
class TestCumprod: | |
def test_basic(self): | |
ba = [1, 2, 10, 11, 6, 5, 4] | |
ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] | |
for ctype in [np.int16, np.uint16, np.int32, np.uint32, | |
np.float32, np.float64, np.complex64, np.complex128]: | |
a = np.array(ba, ctype) | |
a2 = np.array(ba2, ctype) | |
if ctype in ['1', 'b']: | |
assert_raises(ArithmeticError, np.cumprod, a) | |
assert_raises(ArithmeticError, np.cumprod, a2, 1) | |
assert_raises(ArithmeticError, np.cumprod, a) | |
else: | |
assert_array_equal(np.cumprod(a, axis=-1), | |
np.array([1, 2, 20, 220, | |
1320, 6600, 26400], ctype)) | |
assert_array_equal(np.cumprod(a2, axis=0), | |
np.array([[1, 2, 3, 4], | |
[5, 12, 21, 36], | |
[50, 36, 84, 180]], ctype)) | |
assert_array_equal(np.cumprod(a2, axis=-1), | |
np.array([[1, 2, 6, 24], | |
[5, 30, 210, 1890], | |
[10, 30, 120, 600]], ctype)) | |
class TestDiff: | |
def test_basic(self): | |
x = [1, 4, 6, 7, 12] | |
out = np.array([3, 2, 1, 5]) | |
out2 = np.array([-1, -1, 4]) | |
out3 = np.array([0, 5]) | |
assert_array_equal(diff(x), out) | |
assert_array_equal(diff(x, n=2), out2) | |
assert_array_equal(diff(x, n=3), out3) | |
x = [1.1, 2.2, 3.0, -0.2, -0.1] | |
out = np.array([1.1, 0.8, -3.2, 0.1]) | |
assert_almost_equal(diff(x), out) | |
x = [True, True, False, False] | |
out = np.array([False, True, False]) | |
out2 = np.array([True, True]) | |
assert_array_equal(diff(x), out) | |
assert_array_equal(diff(x, n=2), out2) | |
def test_axis(self): | |
x = np.zeros((10, 20, 30)) | |
x[:, 1::2, :] = 1 | |
exp = np.ones((10, 19, 30)) | |
exp[:, 1::2, :] = -1 | |
assert_array_equal(diff(x), np.zeros((10, 20, 29))) | |
assert_array_equal(diff(x, axis=-1), np.zeros((10, 20, 29))) | |
assert_array_equal(diff(x, axis=0), np.zeros((9, 20, 30))) | |
assert_array_equal(diff(x, axis=1), exp) | |
assert_array_equal(diff(x, axis=-2), exp) | |
assert_raises(np.AxisError, diff, x, axis=3) | |
assert_raises(np.AxisError, diff, x, axis=-4) | |
x = np.array(1.11111111111, np.float64) | |
assert_raises(ValueError, diff, x) | |
def test_nd(self): | |
x = 20 * rand(10, 20, 30) | |
out1 = x[:, :, 1:] - x[:, :, :-1] | |
out2 = out1[:, :, 1:] - out1[:, :, :-1] | |
out3 = x[1:, :, :] - x[:-1, :, :] | |
out4 = out3[1:, :, :] - out3[:-1, :, :] | |
assert_array_equal(diff(x), out1) | |
assert_array_equal(diff(x, n=2), out2) | |
assert_array_equal(diff(x, axis=0), out3) | |
assert_array_equal(diff(x, n=2, axis=0), out4) | |
def test_n(self): | |
x = list(range(3)) | |
assert_raises(ValueError, diff, x, n=-1) | |
output = [diff(x, n=n) for n in range(1, 5)] | |
expected = [[1, 1], [0], [], []] | |
assert_(diff(x, n=0) is x) | |
for n, (expected, out) in enumerate(zip(expected, output), start=1): | |
assert_(type(out) is np.ndarray) | |
assert_array_equal(out, expected) | |
assert_equal(out.dtype, np.int_) | |
assert_equal(len(out), max(0, len(x) - n)) | |
def test_times(self): | |
x = np.arange('1066-10-13', '1066-10-16', dtype=np.datetime64) | |
expected = [ | |
np.array([1, 1], dtype='timedelta64[D]'), | |
np.array([0], dtype='timedelta64[D]'), | |
] | |
expected.extend([np.array([], dtype='timedelta64[D]')] * 3) | |
for n, exp in enumerate(expected, start=1): | |
out = diff(x, n=n) | |
assert_array_equal(out, exp) | |
assert_equal(out.dtype, exp.dtype) | |
def test_subclass(self): | |
x = ma.array([[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]], | |
mask=[[False, False], [True, False], | |
[False, True], [True, True], [False, False]]) | |
out = diff(x) | |
assert_array_equal(out.data, [[1], [1], [1], [1], [1]]) | |
assert_array_equal(out.mask, [[False], [True], | |
[True], [True], [False]]) | |
assert_(type(out) is type(x)) | |
out3 = diff(x, n=3) | |
assert_array_equal(out3.data, [[], [], [], [], []]) | |
assert_array_equal(out3.mask, [[], [], [], [], []]) | |
assert_(type(out3) is type(x)) | |
def test_prepend(self): | |
x = np.arange(5) + 1 | |
assert_array_equal(diff(x, prepend=0), np.ones(5)) | |
assert_array_equal(diff(x, prepend=[0]), np.ones(5)) | |
assert_array_equal(np.cumsum(np.diff(x, prepend=0)), x) | |
assert_array_equal(diff(x, prepend=[-1, 0]), np.ones(6)) | |
x = np.arange(4).reshape(2, 2) | |
result = np.diff(x, axis=1, prepend=0) | |
expected = [[0, 1], [2, 1]] | |
assert_array_equal(result, expected) | |
result = np.diff(x, axis=1, prepend=[[0], [0]]) | |
assert_array_equal(result, expected) | |
result = np.diff(x, axis=0, prepend=0) | |
expected = [[0, 1], [2, 2]] | |
assert_array_equal(result, expected) | |
result = np.diff(x, axis=0, prepend=[[0, 0]]) | |
assert_array_equal(result, expected) | |
assert_raises(ValueError, np.diff, x, prepend=np.zeros((3,3))) | |
assert_raises(np.AxisError, diff, x, prepend=0, axis=3) | |
def test_append(self): | |
x = np.arange(5) | |
result = diff(x, append=0) | |
expected = [1, 1, 1, 1, -4] | |
assert_array_equal(result, expected) | |
result = diff(x, append=[0]) | |
assert_array_equal(result, expected) | |
result = diff(x, append=[0, 2]) | |
expected = expected + [2] | |
assert_array_equal(result, expected) | |
x = np.arange(4).reshape(2, 2) | |
result = np.diff(x, axis=1, append=0) | |
expected = [[1, -1], [1, -3]] | |
assert_array_equal(result, expected) | |
result = np.diff(x, axis=1, append=[[0], [0]]) | |
assert_array_equal(result, expected) | |
result = np.diff(x, axis=0, append=0) | |
expected = [[2, 2], [-2, -3]] | |
assert_array_equal(result, expected) | |
result = np.diff(x, axis=0, append=[[0, 0]]) | |
assert_array_equal(result, expected) | |
assert_raises(ValueError, np.diff, x, append=np.zeros((3,3))) | |
assert_raises(np.AxisError, diff, x, append=0, axis=3) | |
class TestDelete: | |
def setup(self): | |
self.a = np.arange(5) | |
self.nd_a = np.arange(5).repeat(2).reshape(1, 5, 2) | |
def _check_inverse_of_slicing(self, indices): | |
a_del = delete(self.a, indices) | |
nd_a_del = delete(self.nd_a, indices, axis=1) | |
msg = 'Delete failed for obj: %r' % indices | |
assert_array_equal(setxor1d(a_del, self.a[indices, ]), self.a, | |
err_msg=msg) | |
xor = setxor1d(nd_a_del[0,:, 0], self.nd_a[0, indices, 0]) | |
assert_array_equal(xor, self.nd_a[0,:, 0], err_msg=msg) | |
def test_slices(self): | |
lims = [-6, -2, 0, 1, 2, 4, 5] | |
steps = [-3, -1, 1, 3] | |
for start in lims: | |
for stop in lims: | |
for step in steps: | |
s = slice(start, stop, step) | |
self._check_inverse_of_slicing(s) | |
def test_fancy(self): | |
self._check_inverse_of_slicing(np.array([[0, 1], [2, 1]])) | |
with pytest.raises(IndexError): | |
delete(self.a, [100]) | |
with pytest.raises(IndexError): | |
delete(self.a, [-100]) | |
self._check_inverse_of_slicing([0, -1, 2, 2]) | |
self._check_inverse_of_slicing([True, False, False, True, False]) | |
# not legal, indexing with these would change the dimension | |
with pytest.raises(ValueError): | |
delete(self.a, True) | |
with pytest.raises(ValueError): | |
delete(self.a, False) | |
# not enough items | |
with pytest.raises(ValueError): | |
delete(self.a, [False]*4) | |
def test_single(self): | |
self._check_inverse_of_slicing(0) | |
self._check_inverse_of_slicing(-4) | |
def test_0d(self): | |
a = np.array(1) | |
with pytest.raises(np.AxisError): | |
delete(a, [], axis=0) | |
with pytest.raises(TypeError): | |
delete(a, [], axis="nonsense") | |
def test_subclass(self): | |
class SubClass(np.ndarray): | |
pass | |
a = self.a.view(SubClass) | |
assert_(isinstance(delete(a, 0), SubClass)) | |
assert_(isinstance(delete(a, []), SubClass)) | |
assert_(isinstance(delete(a, [0, 1]), SubClass)) | |
assert_(isinstance(delete(a, slice(1, 2)), SubClass)) | |
assert_(isinstance(delete(a, slice(1, -2)), SubClass)) | |
def test_array_order_preserve(self): | |
# See gh-7113 | |
k = np.arange(10).reshape(2, 5, order='F') | |
m = delete(k, slice(60, None), axis=1) | |
# 'k' is Fortran ordered, and 'm' should have the | |
# same ordering as 'k' and NOT become C ordered | |
assert_equal(m.flags.c_contiguous, k.flags.c_contiguous) | |
assert_equal(m.flags.f_contiguous, k.flags.f_contiguous) | |
def test_index_floats(self): | |
with pytest.raises(IndexError): | |
np.delete([0, 1, 2], np.array([1.0, 2.0])) | |
with pytest.raises(IndexError): | |
np.delete([0, 1, 2], np.array([], dtype=float)) | |
class TestGradient: | |
def test_basic(self): | |
v = [[1, 1], [3, 4]] | |
x = np.array(v) | |
dx = [np.array([[2., 3.], [2., 3.]]), | |
np.array([[0., 0.], [1., 1.]])] | |
assert_array_equal(gradient(x), dx) | |
assert_array_equal(gradient(v), dx) | |
def test_args(self): | |
dx = np.cumsum(np.ones(5)) | |
dx_uneven = [1., 2., 5., 9., 11.] | |
f_2d = np.arange(25).reshape(5, 5) | |
# distances must be scalars or have size equal to gradient[axis] | |
gradient(np.arange(5), 3.) | |
gradient(np.arange(5), np.array(3.)) | |
gradient(np.arange(5), dx) | |
# dy is set equal to dx because scalar | |
gradient(f_2d, 1.5) | |
gradient(f_2d, np.array(1.5)) | |
gradient(f_2d, dx_uneven, dx_uneven) | |
# mix between even and uneven spaces and | |
# mix between scalar and vector | |
gradient(f_2d, dx, 2) | |
# 2D but axis specified | |
gradient(f_2d, dx, axis=1) | |
# 2d coordinate arguments are not yet allowed | |
assert_raises_regex(ValueError, '.*scalars or 1d', | |
gradient, f_2d, np.stack([dx]*2, axis=-1), 1) | |
def test_badargs(self): | |
f_2d = np.arange(25).reshape(5, 5) | |
x = np.cumsum(np.ones(5)) | |
# wrong sizes | |
assert_raises(ValueError, gradient, f_2d, x, np.ones(2)) | |
assert_raises(ValueError, gradient, f_2d, 1, np.ones(2)) | |
assert_raises(ValueError, gradient, f_2d, np.ones(2), np.ones(2)) | |
# wrong number of arguments | |
assert_raises(TypeError, gradient, f_2d, x) | |
assert_raises(TypeError, gradient, f_2d, x, axis=(0,1)) | |
assert_raises(TypeError, gradient, f_2d, x, x, x) | |
assert_raises(TypeError, gradient, f_2d, 1, 1, 1) | |
assert_raises(TypeError, gradient, f_2d, x, x, axis=1) | |
assert_raises(TypeError, gradient, f_2d, 1, 1, axis=1) | |
def test_datetime64(self): | |
# Make sure gradient() can handle special types like datetime64 | |
x = np.array( | |
['1910-08-16', '1910-08-11', '1910-08-10', '1910-08-12', | |
'1910-10-12', '1910-12-12', '1912-12-12'], | |
dtype='datetime64[D]') | |
dx = np.array( | |
[-5, -3, 0, 31, 61, 396, 731], | |
dtype='timedelta64[D]') | |
assert_array_equal(gradient(x), dx) | |
assert_(dx.dtype == np.dtype('timedelta64[D]')) | |
def test_masked(self): | |
# Make sure that gradient supports subclasses like masked arrays | |
x = np.ma.array([[1, 1], [3, 4]], | |
mask=[[False, False], [False, False]]) | |
out = gradient(x)[0] | |
assert_equal(type(out), type(x)) | |
# And make sure that the output and input don't have aliased mask | |
# arrays | |
assert_(x._mask is not out._mask) | |
# Also check that edge_order=2 doesn't alter the original mask | |
x2 = np.ma.arange(5) | |
x2[2] = np.ma.masked | |
np.gradient(x2, edge_order=2) | |
assert_array_equal(x2.mask, [False, False, True, False, False]) | |
def test_second_order_accurate(self): | |
# Testing that the relative numerical error is less that 3% for | |
# this example problem. This corresponds to second order | |
# accurate finite differences for all interior and boundary | |
# points. | |
x = np.linspace(0, 1, 10) | |
dx = x[1] - x[0] | |
y = 2 * x ** 3 + 4 * x ** 2 + 2 * x | |
analytical = 6 * x ** 2 + 8 * x + 2 | |
num_error = np.abs((np.gradient(y, dx, edge_order=2) / analytical) - 1) | |
assert_(np.all(num_error < 0.03) == True) | |
# test with unevenly spaced | |
np.random.seed(0) | |
x = np.sort(np.random.random(10)) | |
y = 2 * x ** 3 + 4 * x ** 2 + 2 * x | |
analytical = 6 * x ** 2 + 8 * x + 2 | |
num_error = np.abs((np.gradient(y, x, edge_order=2) / analytical) - 1) | |
assert_(np.all(num_error < 0.03) == True) | |
def test_spacing(self): | |
f = np.array([0, 2., 3., 4., 5., 5.]) | |
f = np.tile(f, (6,1)) + f.reshape(-1, 1) | |
x_uneven = np.array([0., 0.5, 1., 3., 5., 7.]) | |
x_even = np.arange(6.) | |
fdx_even_ord1 = np.tile([2., 1.5, 1., 1., 0.5, 0.], (6,1)) | |
fdx_even_ord2 = np.tile([2.5, 1.5, 1., 1., 0.5, -0.5], (6,1)) | |
fdx_uneven_ord1 = np.tile([4., 3., 1.7, 0.5, 0.25, 0.], (6,1)) | |
fdx_uneven_ord2 = np.tile([5., 3., 1.7, 0.5, 0.25, -0.25], (6,1)) | |
# evenly spaced | |
for edge_order, exp_res in [(1, fdx_even_ord1), (2, fdx_even_ord2)]: | |
res1 = gradient(f, 1., axis=(0,1), edge_order=edge_order) | |
res2 = gradient(f, x_even, x_even, | |
axis=(0,1), edge_order=edge_order) | |
res3 = gradient(f, x_even, x_even, | |
axis=None, edge_order=edge_order) | |
assert_array_equal(res1, res2) | |
assert_array_equal(res2, res3) | |
assert_almost_equal(res1[0], exp_res.T) | |
assert_almost_equal(res1[1], exp_res) | |
res1 = gradient(f, 1., axis=0, edge_order=edge_order) | |
res2 = gradient(f, x_even, axis=0, edge_order=edge_order) | |
assert_(res1.shape == res2.shape) | |
assert_almost_equal(res2, exp_res.T) | |
res1 = gradient(f, 1., axis=1, edge_order=edge_order) | |
res2 = gradient(f, x_even, axis=1, edge_order=edge_order) | |
assert_(res1.shape == res2.shape) | |
assert_array_equal(res2, exp_res) | |
# unevenly spaced | |
for edge_order, exp_res in [(1, fdx_uneven_ord1), (2, fdx_uneven_ord2)]: | |
res1 = gradient(f, x_uneven, x_uneven, | |
axis=(0,1), edge_order=edge_order) | |
res2 = gradient(f, x_uneven, x_uneven, | |
axis=None, edge_order=edge_order) | |
assert_array_equal(res1, res2) | |
assert_almost_equal(res1[0], exp_res.T) | |
assert_almost_equal(res1[1], exp_res) | |
res1 = gradient(f, x_uneven, axis=0, edge_order=edge_order) | |
assert_almost_equal(res1, exp_res.T) | |
res1 = gradient(f, x_uneven, axis=1, edge_order=edge_order) | |
assert_almost_equal(res1, exp_res) | |
# mixed | |
res1 = gradient(f, x_even, x_uneven, axis=(0,1), edge_order=1) | |
res2 = gradient(f, x_uneven, x_even, axis=(1,0), edge_order=1) | |
assert_array_equal(res1[0], res2[1]) | |
assert_array_equal(res1[1], res2[0]) | |
assert_almost_equal(res1[0], fdx_even_ord1.T) | |
assert_almost_equal(res1[1], fdx_uneven_ord1) | |
res1 = gradient(f, x_even, x_uneven, axis=(0,1), edge_order=2) | |
res2 = gradient(f, x_uneven, x_even, axis=(1,0), edge_order=2) | |
assert_array_equal(res1[0], res2[1]) | |
assert_array_equal(res1[1], res2[0]) | |
assert_almost_equal(res1[0], fdx_even_ord2.T) | |
assert_almost_equal(res1[1], fdx_uneven_ord2) | |
def test_specific_axes(self): | |
# Testing that gradient can work on a given axis only | |
v = [[1, 1], [3, 4]] | |
x = np.array(v) | |
dx = [np.array([[2., 3.], [2., 3.]]), | |
np.array([[0., 0.], [1., 1.]])] | |
assert_array_equal(gradient(x, axis=0), dx[0]) | |
assert_array_equal(gradient(x, axis=1), dx[1]) | |
assert_array_equal(gradient(x, axis=-1), dx[1]) | |
assert_array_equal(gradient(x, axis=(1, 0)), [dx[1], dx[0]]) | |
# test axis=None which means all axes | |
assert_almost_equal(gradient(x, axis=None), [dx[0], dx[1]]) | |
# and is the same as no axis keyword given | |
assert_almost_equal(gradient(x, axis=None), gradient(x)) | |
# test vararg order | |
assert_array_equal(gradient(x, 2, 3, axis=(1, 0)), | |
[dx[1]/2.0, dx[0]/3.0]) | |
# test maximal number of varargs | |
assert_raises(TypeError, gradient, x, 1, 2, axis=1) | |
assert_raises(np.AxisError, gradient, x, axis=3) | |
assert_raises(np.AxisError, gradient, x, axis=-3) | |
# assert_raises(TypeError, gradient, x, axis=[1,]) | |
def test_timedelta64(self): | |
# Make sure gradient() can handle special types like timedelta64 | |
x = np.array( | |
[-5, -3, 10, 12, 61, 321, 300], | |
dtype='timedelta64[D]') | |
dx = np.array( | |
[2, 7, 7, 25, 154, 119, -21], | |
dtype='timedelta64[D]') | |
assert_array_equal(gradient(x), dx) | |
assert_(dx.dtype == np.dtype('timedelta64[D]')) | |
def test_inexact_dtypes(self): | |
for dt in [np.float16, np.float32, np.float64]: | |
# dtypes should not be promoted in a different way to what diff does | |
x = np.array([1, 2, 3], dtype=dt) | |
assert_equal(gradient(x).dtype, np.diff(x).dtype) | |
def test_values(self): | |
# needs at least 2 points for edge_order ==1 | |
gradient(np.arange(2), edge_order=1) | |
# needs at least 3 points for edge_order ==1 | |
gradient(np.arange(3), edge_order=2) | |
assert_raises(ValueError, gradient, np.arange(0), edge_order=1) | |
assert_raises(ValueError, gradient, np.arange(0), edge_order=2) | |
assert_raises(ValueError, gradient, np.arange(1), edge_order=1) | |
assert_raises(ValueError, gradient, np.arange(1), edge_order=2) | |
assert_raises(ValueError, gradient, np.arange(2), edge_order=2) | |
def test_f_decreasing_unsigned_int(self, f_dtype): | |
f = np.array([5, 4, 3, 2, 1], dtype=f_dtype) | |
g = gradient(f) | |
assert_array_equal(g, [-1]*len(f)) | |
def test_f_signed_int_big_jump(self, f_dtype): | |
maxint = np.iinfo(f_dtype).max | |
x = np.array([1, 3]) | |
f = np.array([-1, maxint], dtype=f_dtype) | |
dfdx = gradient(f, x) | |
assert_array_equal(dfdx, [(maxint + 1) // 2]*2) | |
def test_x_decreasing_unsigned(self, x_dtype): | |
x = np.array([3, 2, 1], dtype=x_dtype) | |
f = np.array([0, 2, 4]) | |
dfdx = gradient(f, x) | |
assert_array_equal(dfdx, [-2]*len(x)) | |
def test_x_signed_int_big_jump(self, x_dtype): | |
minint = np.iinfo(x_dtype).min | |
maxint = np.iinfo(x_dtype).max | |
x = np.array([-1, maxint], dtype=x_dtype) | |
f = np.array([minint // 2, 0]) | |
dfdx = gradient(f, x) | |
assert_array_equal(dfdx, [0.5, 0.5]) | |
class TestAngle: | |
def test_basic(self): | |
x = [1 + 3j, np.sqrt(2) / 2.0 + 1j * np.sqrt(2) / 2, | |
1, 1j, -1, -1j, 1 - 3j, -1 + 3j] | |
y = angle(x) | |
yo = [ | |
np.arctan(3.0 / 1.0), | |
np.arctan(1.0), 0, np.pi / 2, np.pi, -np.pi / 2.0, | |
-np.arctan(3.0 / 1.0), np.pi - np.arctan(3.0 / 1.0)] | |
z = angle(x, deg=True) | |
zo = np.array(yo) * 180 / np.pi | |
assert_array_almost_equal(y, yo, 11) | |
assert_array_almost_equal(z, zo, 11) | |
def test_subclass(self): | |
x = np.ma.array([1 + 3j, 1, np.sqrt(2)/2 * (1 + 1j)]) | |
x[1] = np.ma.masked | |
expected = np.ma.array([np.arctan(3.0 / 1.0), 0, np.arctan(1.0)]) | |
expected[1] = np.ma.masked | |
actual = angle(x) | |
assert_equal(type(actual), type(expected)) | |
assert_equal(actual.mask, expected.mask) | |
assert_equal(actual, expected) | |
class TestTrimZeros: | |
a = np.array([0, 0, 1, 0, 2, 3, 4, 0]) | |
b = a.astype(float) | |
c = a.astype(complex) | |
d = a.astype(object) | |
def values(self): | |
attr_names = ('a', 'b', 'c', 'd') | |
return (getattr(self, name) for name in attr_names) | |
def test_basic(self): | |
slc = np.s_[2:-1] | |
for arr in self.values(): | |
res = trim_zeros(arr) | |
assert_array_equal(res, arr[slc]) | |
def test_leading_skip(self): | |
slc = np.s_[:-1] | |
for arr in self.values(): | |
res = trim_zeros(arr, trim='b') | |
assert_array_equal(res, arr[slc]) | |
def test_trailing_skip(self): | |
slc = np.s_[2:] | |
for arr in self.values(): | |
res = trim_zeros(arr, trim='F') | |
assert_array_equal(res, arr[slc]) | |
def test_all_zero(self): | |
for _arr in self.values(): | |
arr = np.zeros_like(_arr, dtype=_arr.dtype) | |
res1 = trim_zeros(arr, trim='B') | |
assert len(res1) == 0 | |
res2 = trim_zeros(arr, trim='f') | |
assert len(res2) == 0 | |
def test_size_zero(self): | |
arr = np.zeros(0) | |
res = trim_zeros(arr) | |
assert_array_equal(arr, res) | |
def test_overflow(self, arr): | |
slc = np.s_[1:2] | |
res = trim_zeros(arr) | |
assert_array_equal(res, arr[slc]) | |
def test_no_trim(self): | |
arr = np.array([None, 1, None]) | |
res = trim_zeros(arr) | |
assert_array_equal(arr, res) | |
def test_list_to_list(self): | |
res = trim_zeros(self.a.tolist()) | |
assert isinstance(res, list) | |
class TestExtins: | |
def test_basic(self): | |
a = np.array([1, 3, 2, 1, 2, 3, 3]) | |
b = extract(a > 1, a) | |
assert_array_equal(b, [3, 2, 2, 3, 3]) | |
def test_place(self): | |
# Make sure that non-np.ndarray objects | |
# raise an error instead of doing nothing | |
assert_raises(TypeError, place, [1, 2, 3], [True, False], [0, 1]) | |
a = np.array([1, 4, 3, 2, 5, 8, 7]) | |
place(a, [0, 1, 0, 1, 0, 1, 0], [2, 4, 6]) | |
assert_array_equal(a, [1, 2, 3, 4, 5, 6, 7]) | |
place(a, np.zeros(7), []) | |
assert_array_equal(a, np.arange(1, 8)) | |
place(a, [1, 0, 1, 0, 1, 0, 1], [8, 9]) | |
assert_array_equal(a, [8, 2, 9, 4, 8, 6, 9]) | |
assert_raises_regex(ValueError, "Cannot insert from an empty array", | |
lambda: place(a, [0, 0, 0, 0, 0, 1, 0], [])) | |
# See Issue #6974 | |
a = np.array(['12', '34']) | |
place(a, [0, 1], '9') | |
assert_array_equal(a, ['12', '9']) | |
def test_both(self): | |
a = rand(10) | |
mask = a > 0.5 | |
ac = a.copy() | |
c = extract(mask, a) | |
place(a, mask, 0) | |
place(a, mask, c) | |
assert_array_equal(a, ac) | |
# _foo1 and _foo2 are used in some tests in TestVectorize. | |
def _foo1(x, y=1.0): | |
return y*math.floor(x) | |
def _foo2(x, y=1.0, z=0.0): | |
return y*math.floor(x) + z | |
class TestVectorize: | |
def test_simple(self): | |
def addsubtract(a, b): | |
if a > b: | |
return a - b | |
else: | |
return a + b | |
f = vectorize(addsubtract) | |
r = f([0, 3, 6, 9], [1, 3, 5, 7]) | |
assert_array_equal(r, [1, 6, 1, 2]) | |
def test_scalar(self): | |
def addsubtract(a, b): | |
if a > b: | |
return a - b | |
else: | |
return a + b | |
f = vectorize(addsubtract) | |
r = f([0, 3, 6, 9], 5) | |
assert_array_equal(r, [5, 8, 1, 4]) | |
def test_large(self): | |
x = np.linspace(-3, 2, 10000) | |
f = vectorize(lambda x: x) | |
y = f(x) | |
assert_array_equal(y, x) | |
def test_ufunc(self): | |
f = vectorize(math.cos) | |
args = np.array([0, 0.5 * np.pi, np.pi, 1.5 * np.pi, 2 * np.pi]) | |
r1 = f(args) | |
r2 = np.cos(args) | |
assert_array_almost_equal(r1, r2) | |
def test_keywords(self): | |
def foo(a, b=1): | |
return a + b | |
f = vectorize(foo) | |
args = np.array([1, 2, 3]) | |
r1 = f(args) | |
r2 = np.array([2, 3, 4]) | |
assert_array_equal(r1, r2) | |
r1 = f(args, 2) | |
r2 = np.array([3, 4, 5]) | |
assert_array_equal(r1, r2) | |
def test_keywords_with_otypes_order1(self): | |
# gh-1620: The second call of f would crash with | |
# `ValueError: invalid number of arguments`. | |
f = vectorize(_foo1, otypes=[float]) | |
# We're testing the caching of ufuncs by vectorize, so the order | |
# of these function calls is an important part of the test. | |
r1 = f(np.arange(3.0), 1.0) | |
r2 = f(np.arange(3.0)) | |
assert_array_equal(r1, r2) | |
def test_keywords_with_otypes_order2(self): | |
# gh-1620: The second call of f would crash with | |
# `ValueError: non-broadcastable output operand with shape () | |
# doesn't match the broadcast shape (3,)`. | |
f = vectorize(_foo1, otypes=[float]) | |
# We're testing the caching of ufuncs by vectorize, so the order | |
# of these function calls is an important part of the test. | |
r1 = f(np.arange(3.0)) | |
r2 = f(np.arange(3.0), 1.0) | |
assert_array_equal(r1, r2) | |
def test_keywords_with_otypes_order3(self): | |
# gh-1620: The third call of f would crash with | |
# `ValueError: invalid number of arguments`. | |
f = vectorize(_foo1, otypes=[float]) | |
# We're testing the caching of ufuncs by vectorize, so the order | |
# of these function calls is an important part of the test. | |
r1 = f(np.arange(3.0)) | |
r2 = f(np.arange(3.0), y=1.0) | |
r3 = f(np.arange(3.0)) | |
assert_array_equal(r1, r2) | |
assert_array_equal(r1, r3) | |
def test_keywords_with_otypes_several_kwd_args1(self): | |
# gh-1620 Make sure different uses of keyword arguments | |
# don't break the vectorized function. | |
f = vectorize(_foo2, otypes=[float]) | |
# We're testing the caching of ufuncs by vectorize, so the order | |
# of these function calls is an important part of the test. | |
r1 = f(10.4, z=100) | |
r2 = f(10.4, y=-1) | |
r3 = f(10.4) | |
assert_equal(r1, _foo2(10.4, z=100)) | |
assert_equal(r2, _foo2(10.4, y=-1)) | |
assert_equal(r3, _foo2(10.4)) | |
def test_keywords_with_otypes_several_kwd_args2(self): | |
# gh-1620 Make sure different uses of keyword arguments | |
# don't break the vectorized function. | |
f = vectorize(_foo2, otypes=[float]) | |
# We're testing the caching of ufuncs by vectorize, so the order | |
# of these function calls is an important part of the test. | |
r1 = f(z=100, x=10.4, y=-1) | |
r2 = f(1, 2, 3) | |
assert_equal(r1, _foo2(z=100, x=10.4, y=-1)) | |
assert_equal(r2, _foo2(1, 2, 3)) | |
def test_keywords_no_func_code(self): | |
# This needs to test a function that has keywords but | |
# no func_code attribute, since otherwise vectorize will | |
# inspect the func_code. | |
import random | |
try: | |
vectorize(random.randrange) # Should succeed | |
except Exception: | |
raise AssertionError() | |
def test_keywords2_ticket_2100(self): | |
# Test kwarg support: enhancement ticket 2100 | |
def foo(a, b=1): | |
return a + b | |
f = vectorize(foo) | |
args = np.array([1, 2, 3]) | |
r1 = f(a=args) | |
r2 = np.array([2, 3, 4]) | |
assert_array_equal(r1, r2) | |
r1 = f(b=1, a=args) | |
assert_array_equal(r1, r2) | |
r1 = f(args, b=2) | |
r2 = np.array([3, 4, 5]) | |
assert_array_equal(r1, r2) | |
def test_keywords3_ticket_2100(self): | |
# Test excluded with mixed positional and kwargs: ticket 2100 | |
def mypolyval(x, p): | |
_p = list(p) | |
res = _p.pop(0) | |
while _p: | |
res = res * x + _p.pop(0) | |
return res | |
vpolyval = np.vectorize(mypolyval, excluded=['p', 1]) | |
ans = [3, 6] | |
assert_array_equal(ans, vpolyval(x=[0, 1], p=[1, 2, 3])) | |
assert_array_equal(ans, vpolyval([0, 1], p=[1, 2, 3])) | |
assert_array_equal(ans, vpolyval([0, 1], [1, 2, 3])) | |
def test_keywords4_ticket_2100(self): | |
# Test vectorizing function with no positional args. | |
def f(**kw): | |
res = 1.0 | |
for _k in kw: | |
res *= kw[_k] | |
return res | |
assert_array_equal(f(a=[1, 2], b=[3, 4]), [3, 8]) | |
def test_keywords5_ticket_2100(self): | |
# Test vectorizing function with no kwargs args. | |
def f(*v): | |
return np.prod(v) | |
assert_array_equal(f([1, 2], [3, 4]), [3, 8]) | |
def test_coverage1_ticket_2100(self): | |
def foo(): | |
return 1 | |
f = vectorize(foo) | |
assert_array_equal(f(), 1) | |
def test_assigning_docstring(self): | |
def foo(x): | |
"""Original documentation""" | |
return x | |
f = vectorize(foo) | |
assert_equal(f.__doc__, foo.__doc__) | |
doc = "Provided documentation" | |
f = vectorize(foo, doc=doc) | |
assert_equal(f.__doc__, doc) | |
def test_UnboundMethod_ticket_1156(self): | |
# Regression test for issue 1156 | |
class Foo: | |
b = 2 | |
def bar(self, a): | |
return a ** self.b | |
assert_array_equal(vectorize(Foo().bar)(np.arange(9)), | |
np.arange(9) ** 2) | |
assert_array_equal(vectorize(Foo.bar)(Foo(), np.arange(9)), | |
np.arange(9) ** 2) | |
def test_execution_order_ticket_1487(self): | |
# Regression test for dependence on execution order: issue 1487 | |
f1 = vectorize(lambda x: x) | |
res1a = f1(np.arange(3)) | |
res1b = f1(np.arange(0.1, 3)) | |
f2 = vectorize(lambda x: x) | |
res2b = f2(np.arange(0.1, 3)) | |
res2a = f2(np.arange(3)) | |
assert_equal(res1a, res2a) | |
assert_equal(res1b, res2b) | |
def test_string_ticket_1892(self): | |
# Test vectorization over strings: issue 1892. | |
f = np.vectorize(lambda x: x) | |
s = '0123456789' * 10 | |
assert_equal(s, f(s)) | |
def test_cache(self): | |
# Ensure that vectorized func called exactly once per argument. | |
_calls = [0] | |
def f(x): | |
_calls[0] += 1 | |
return x ** 2 | |
f.cache = True | |
x = np.arange(5) | |
assert_array_equal(f(x), x * x) | |
assert_equal(_calls[0], len(x)) | |
def test_otypes(self): | |
f = np.vectorize(lambda x: x) | |
f.otypes = 'i' | |
x = np.arange(5) | |
assert_array_equal(f(x), x) | |
def test_parse_gufunc_signature(self): | |
assert_equal(nfb._parse_gufunc_signature('(x)->()'), ([('x',)], [()])) | |
assert_equal(nfb._parse_gufunc_signature('(x,y)->()'), | |
([('x', 'y')], [()])) | |
assert_equal(nfb._parse_gufunc_signature('(x),(y)->()'), | |
([('x',), ('y',)], [()])) | |
assert_equal(nfb._parse_gufunc_signature('(x)->(y)'), | |
([('x',)], [('y',)])) | |
assert_equal(nfb._parse_gufunc_signature('(x)->(y),()'), | |
([('x',)], [('y',), ()])) | |
assert_equal(nfb._parse_gufunc_signature('(),(a,b,c),(d)->(d,e)'), | |
([(), ('a', 'b', 'c'), ('d',)], [('d', 'e')])) | |
with assert_raises(ValueError): | |
nfb._parse_gufunc_signature('(x)(y)->()') | |
with assert_raises(ValueError): | |
nfb._parse_gufunc_signature('(x),(y)->') | |
with assert_raises(ValueError): | |
nfb._parse_gufunc_signature('((x))->(x)') | |
def test_signature_simple(self): | |
def addsubtract(a, b): | |
if a > b: | |
return a - b | |
else: | |
return a + b | |
f = vectorize(addsubtract, signature='(),()->()') | |
r = f([0, 3, 6, 9], [1, 3, 5, 7]) | |
assert_array_equal(r, [1, 6, 1, 2]) | |
def test_signature_mean_last(self): | |
def mean(a): | |
return a.mean() | |
f = vectorize(mean, signature='(n)->()') | |
r = f([[1, 3], [2, 4]]) | |
assert_array_equal(r, [2, 3]) | |
def test_signature_center(self): | |
def center(a): | |
return a - a.mean() | |
f = vectorize(center, signature='(n)->(n)') | |
r = f([[1, 3], [2, 4]]) | |
assert_array_equal(r, [[-1, 1], [-1, 1]]) | |
def test_signature_two_outputs(self): | |
f = vectorize(lambda x: (x, x), signature='()->(),()') | |
r = f([1, 2, 3]) | |
assert_(isinstance(r, tuple) and len(r) == 2) | |
assert_array_equal(r[0], [1, 2, 3]) | |
assert_array_equal(r[1], [1, 2, 3]) | |
def test_signature_outer(self): | |
f = vectorize(np.outer, signature='(a),(b)->(a,b)') | |
r = f([1, 2], [1, 2, 3]) | |
assert_array_equal(r, [[1, 2, 3], [2, 4, 6]]) | |
r = f([[[1, 2]]], [1, 2, 3]) | |
assert_array_equal(r, [[[[1, 2, 3], [2, 4, 6]]]]) | |
r = f([[1, 0], [2, 0]], [1, 2, 3]) | |
assert_array_equal(r, [[[1, 2, 3], [0, 0, 0]], | |
[[2, 4, 6], [0, 0, 0]]]) | |
r = f([1, 2], [[1, 2, 3], [0, 0, 0]]) | |
assert_array_equal(r, [[[1, 2, 3], [2, 4, 6]], | |
[[0, 0, 0], [0, 0, 0]]]) | |
def test_signature_computed_size(self): | |
f = vectorize(lambda x: x[:-1], signature='(n)->(m)') | |
r = f([1, 2, 3]) | |
assert_array_equal(r, [1, 2]) | |
r = f([[1, 2, 3], [2, 3, 4]]) | |
assert_array_equal(r, [[1, 2], [2, 3]]) | |
def test_signature_excluded(self): | |
def foo(a, b=1): | |
return a + b | |
f = vectorize(foo, signature='()->()', excluded={'b'}) | |
assert_array_equal(f([1, 2, 3]), [2, 3, 4]) | |
assert_array_equal(f([1, 2, 3], b=0), [1, 2, 3]) | |
def test_signature_otypes(self): | |
f = vectorize(lambda x: x, signature='(n)->(n)', otypes=['float64']) | |
r = f([1, 2, 3]) | |
assert_equal(r.dtype, np.dtype('float64')) | |
assert_array_equal(r, [1, 2, 3]) | |
def test_signature_invalid_inputs(self): | |
f = vectorize(operator.add, signature='(n),(n)->(n)') | |
with assert_raises_regex(TypeError, 'wrong number of positional'): | |
f([1, 2]) | |
with assert_raises_regex( | |
ValueError, 'does not have enough dimensions'): | |
f(1, 2) | |
with assert_raises_regex( | |
ValueError, 'inconsistent size for core dimension'): | |
f([1, 2], [1, 2, 3]) | |
f = vectorize(operator.add, signature='()->()') | |
with assert_raises_regex(TypeError, 'wrong number of positional'): | |
f(1, 2) | |
def test_signature_invalid_outputs(self): | |
f = vectorize(lambda x: x[:-1], signature='(n)->(n)') | |
with assert_raises_regex( | |
ValueError, 'inconsistent size for core dimension'): | |
f([1, 2, 3]) | |
f = vectorize(lambda x: x, signature='()->(),()') | |
with assert_raises_regex(ValueError, 'wrong number of outputs'): | |
f(1) | |
f = vectorize(lambda x: (x, x), signature='()->()') | |
with assert_raises_regex(ValueError, 'wrong number of outputs'): | |
f([1, 2]) | |
def test_size_zero_output(self): | |
# see issue 5868 | |
f = np.vectorize(lambda x: x) | |
x = np.zeros([0, 5], dtype=int) | |
with assert_raises_regex(ValueError, 'otypes'): | |
f(x) | |
f.otypes = 'i' | |
assert_array_equal(f(x), x) | |
f = np.vectorize(lambda x: x, signature='()->()') | |
with assert_raises_regex(ValueError, 'otypes'): | |
f(x) | |
f = np.vectorize(lambda x: x, signature='()->()', otypes='i') | |
assert_array_equal(f(x), x) | |
f = np.vectorize(lambda x: x, signature='(n)->(n)', otypes='i') | |
assert_array_equal(f(x), x) | |
f = np.vectorize(lambda x: x, signature='(n)->(n)') | |
assert_array_equal(f(x.T), x.T) | |
f = np.vectorize(lambda x: [x], signature='()->(n)', otypes='i') | |
with assert_raises_regex(ValueError, 'new output dimensions'): | |
f(x) | |
class TestLeaks: | |
class A: | |
iters = 20 | |
def bound(self, *args): | |
return 0 | |
def unbound(*args): | |
return 0 | |
def test_frompyfunc_leaks(self, name, incr): | |
# exposed in gh-11867 as np.vectorized, but the problem stems from | |
# frompyfunc. | |
# class.attribute = np.frompyfunc(<method>) creates a | |
# reference cycle if <method> is a bound class method. It requires a | |
# gc collection cycle to break the cycle (on CPython 3) | |
import gc | |
A_func = getattr(self.A, name) | |
gc.disable() | |
try: | |
refcount = sys.getrefcount(A_func) | |
for i in range(self.A.iters): | |
a = self.A() | |
a.f = np.frompyfunc(getattr(a, name), 1, 1) | |
out = a.f(np.arange(10)) | |
a = None | |
# A.func is part of a reference cycle if incr is non-zero | |
assert_equal(sys.getrefcount(A_func), refcount + incr) | |
for i in range(5): | |
gc.collect() | |
assert_equal(sys.getrefcount(A_func), refcount) | |
finally: | |
gc.enable() | |
class TestDigitize: | |
def test_forward(self): | |
x = np.arange(-6, 5) | |
bins = np.arange(-5, 5) | |
assert_array_equal(digitize(x, bins), np.arange(11)) | |
def test_reverse(self): | |
x = np.arange(5, -6, -1) | |
bins = np.arange(5, -5, -1) | |
assert_array_equal(digitize(x, bins), np.arange(11)) | |
def test_random(self): | |
x = rand(10) | |
bin = np.linspace(x.min(), x.max(), 10) | |
assert_(np.all(digitize(x, bin) != 0)) | |
def test_right_basic(self): | |
x = [1, 5, 4, 10, 8, 11, 0] | |
bins = [1, 5, 10] | |
default_answer = [1, 2, 1, 3, 2, 3, 0] | |
assert_array_equal(digitize(x, bins), default_answer) | |
right_answer = [0, 1, 1, 2, 2, 3, 0] | |
assert_array_equal(digitize(x, bins, True), right_answer) | |
def test_right_open(self): | |
x = np.arange(-6, 5) | |
bins = np.arange(-6, 4) | |
assert_array_equal(digitize(x, bins, True), np.arange(11)) | |
def test_right_open_reverse(self): | |
x = np.arange(5, -6, -1) | |
bins = np.arange(4, -6, -1) | |
assert_array_equal(digitize(x, bins, True), np.arange(11)) | |
def test_right_open_random(self): | |
x = rand(10) | |
bins = np.linspace(x.min(), x.max(), 10) | |
assert_(np.all(digitize(x, bins, True) != 10)) | |
def test_monotonic(self): | |
x = [-1, 0, 1, 2] | |
bins = [0, 0, 1] | |
assert_array_equal(digitize(x, bins, False), [0, 2, 3, 3]) | |
assert_array_equal(digitize(x, bins, True), [0, 0, 2, 3]) | |
bins = [1, 1, 0] | |
assert_array_equal(digitize(x, bins, False), [3, 2, 0, 0]) | |
assert_array_equal(digitize(x, bins, True), [3, 3, 2, 0]) | |
bins = [1, 1, 1, 1] | |
assert_array_equal(digitize(x, bins, False), [0, 0, 4, 4]) | |
assert_array_equal(digitize(x, bins, True), [0, 0, 0, 4]) | |
bins = [0, 0, 1, 0] | |
assert_raises(ValueError, digitize, x, bins) | |
bins = [1, 1, 0, 1] | |
assert_raises(ValueError, digitize, x, bins) | |
def test_casting_error(self): | |
x = [1, 2, 3 + 1.j] | |
bins = [1, 2, 3] | |
assert_raises(TypeError, digitize, x, bins) | |
x, bins = bins, x | |
assert_raises(TypeError, digitize, x, bins) | |
def test_return_type(self): | |
# Functions returning indices should always return base ndarrays | |
class A(np.ndarray): | |
pass | |
a = np.arange(5).view(A) | |
b = np.arange(1, 3).view(A) | |
assert_(not isinstance(digitize(b, a, False), A)) | |
assert_(not isinstance(digitize(b, a, True), A)) | |
def test_large_integers_increasing(self): | |
# gh-11022 | |
x = 2**54 # loses precision in a float | |
assert_equal(np.digitize(x, [x - 1, x + 1]), 1) | |
def test_large_integers_decreasing(self): | |
# gh-11022 | |
x = 2**54 # loses precision in a float | |
assert_equal(np.digitize(x, [x + 1, x - 1]), 1) | |
class TestUnwrap: | |
def test_simple(self): | |
# check that unwrap removes jumps greater that 2*pi | |
assert_array_equal(unwrap([1, 1 + 2 * np.pi]), [1, 1]) | |
# check that unwrap maintains continuity | |
assert_(np.all(diff(unwrap(rand(10) * 100)) < np.pi)) | |
def test_period(self): | |
# check that unwrap removes jumps greater that 255 | |
assert_array_equal(unwrap([1, 1 + 256], period=255), [1, 2]) | |
# check that unwrap maintains continuity | |
assert_(np.all(diff(unwrap(rand(10) * 1000, period=255)) < 255)) | |
# check simple case | |
simple_seq = np.array([0, 75, 150, 225, 300]) | |
wrap_seq = np.mod(simple_seq, 255) | |
assert_array_equal(unwrap(wrap_seq, period=255), simple_seq) | |
# check custom discont value | |
uneven_seq = np.array([0, 75, 150, 225, 300, 430]) | |
wrap_uneven = np.mod(uneven_seq, 250) | |
no_discont = unwrap(wrap_uneven, period=250) | |
assert_array_equal(no_discont, [0, 75, 150, 225, 300, 180]) | |
sm_discont = unwrap(wrap_uneven, period=250, discont=140) | |
assert_array_equal(sm_discont, [0, 75, 150, 225, 300, 430]) | |
assert sm_discont.dtype == wrap_uneven.dtype | |
class TestFilterwindows: | |
def test_hanning(self): | |
# check symmetry | |
w = hanning(10) | |
assert_equal(w, flipud(w)) | |
# check known value | |
assert_almost_equal(np.sum(w, axis=0), 4.500, 4) | |
def test_hamming(self): | |
# check symmetry | |
w = hamming(10) | |
assert_equal(w, flipud(w)) | |
# check known value | |
assert_almost_equal(np.sum(w, axis=0), 4.9400, 4) | |
def test_bartlett(self): | |
# check symmetry | |
w = bartlett(10) | |
assert_equal(w, flipud(w)) | |
# check known value | |
assert_almost_equal(np.sum(w, axis=0), 4.4444, 4) | |
def test_blackman(self): | |
# check symmetry | |
w = blackman(10) | |
assert_equal(w, flipud(w)) | |
# check known value | |
assert_almost_equal(np.sum(w, axis=0), 3.7800, 4) | |
class TestTrapz: | |
def test_simple(self): | |
x = np.arange(-10, 10, .1) | |
r = trapz(np.exp(-.5 * x ** 2) / np.sqrt(2 * np.pi), dx=0.1) | |
# check integral of normal equals 1 | |
assert_almost_equal(r, 1, 7) | |
def test_ndim(self): | |
x = np.linspace(0, 1, 3) | |
y = np.linspace(0, 2, 8) | |
z = np.linspace(0, 3, 13) | |
wx = np.ones_like(x) * (x[1] - x[0]) | |
wx[0] /= 2 | |
wx[-1] /= 2 | |
wy = np.ones_like(y) * (y[1] - y[0]) | |
wy[0] /= 2 | |
wy[-1] /= 2 | |
wz = np.ones_like(z) * (z[1] - z[0]) | |
wz[0] /= 2 | |
wz[-1] /= 2 | |
q = x[:, None, None] + y[None,:, None] + z[None, None,:] | |
qx = (q * wx[:, None, None]).sum(axis=0) | |
qy = (q * wy[None, :, None]).sum(axis=1) | |
qz = (q * wz[None, None, :]).sum(axis=2) | |
# n-d `x` | |
r = trapz(q, x=x[:, None, None], axis=0) | |
assert_almost_equal(r, qx) | |
r = trapz(q, x=y[None,:, None], axis=1) | |
assert_almost_equal(r, qy) | |
r = trapz(q, x=z[None, None,:], axis=2) | |
assert_almost_equal(r, qz) | |
# 1-d `x` | |
r = trapz(q, x=x, axis=0) | |
assert_almost_equal(r, qx) | |
r = trapz(q, x=y, axis=1) | |
assert_almost_equal(r, qy) | |
r = trapz(q, x=z, axis=2) | |
assert_almost_equal(r, qz) | |
def test_masked(self): | |
# Testing that masked arrays behave as if the function is 0 where | |
# masked | |
x = np.arange(5) | |
y = x * x | |
mask = x == 2 | |
ym = np.ma.array(y, mask=mask) | |
r = 13.0 # sum(0.5 * (0 + 1) * 1.0 + 0.5 * (9 + 16)) | |
assert_almost_equal(trapz(ym, x), r) | |
xm = np.ma.array(x, mask=mask) | |
assert_almost_equal(trapz(ym, xm), r) | |
xm = np.ma.array(x, mask=mask) | |
assert_almost_equal(trapz(y, xm), r) | |
class TestSinc: | |
def test_simple(self): | |
assert_(sinc(0) == 1) | |
w = sinc(np.linspace(-1, 1, 100)) | |
# check symmetry | |
assert_array_almost_equal(w, flipud(w), 7) | |
def test_array_like(self): | |
x = [0, 0.5] | |
y1 = sinc(np.array(x)) | |
y2 = sinc(list(x)) | |
y3 = sinc(tuple(x)) | |
assert_array_equal(y1, y2) | |
assert_array_equal(y1, y3) | |
class TestUnique: | |
def test_simple(self): | |
x = np.array([4, 3, 2, 1, 1, 2, 3, 4, 0]) | |
assert_(np.all(unique(x) == [0, 1, 2, 3, 4])) | |
assert_(unique(np.array([1, 1, 1, 1, 1])) == np.array([1])) | |
x = ['widget', 'ham', 'foo', 'bar', 'foo', 'ham'] | |
assert_(np.all(unique(x) == ['bar', 'foo', 'ham', 'widget'])) | |
x = np.array([5 + 6j, 1 + 1j, 1 + 10j, 10, 5 + 6j]) | |
assert_(np.all(unique(x) == [1 + 1j, 1 + 10j, 5 + 6j, 10])) | |
class TestCheckFinite: | |
def test_simple(self): | |
a = [1, 2, 3] | |
b = [1, 2, np.inf] | |
c = [1, 2, np.nan] | |
np.lib.asarray_chkfinite(a) | |
assert_raises(ValueError, np.lib.asarray_chkfinite, b) | |
assert_raises(ValueError, np.lib.asarray_chkfinite, c) | |
def test_dtype_order(self): | |
# Regression test for missing dtype and order arguments | |
a = [1, 2, 3] | |
a = np.lib.asarray_chkfinite(a, order='F', dtype=np.float64) | |
assert_(a.dtype == np.float64) | |
class TestCorrCoef: | |
A = np.array( | |
[[0.15391142, 0.18045767, 0.14197213], | |
[0.70461506, 0.96474128, 0.27906989], | |
[0.9297531, 0.32296769, 0.19267156]]) | |
B = np.array( | |
[[0.10377691, 0.5417086, 0.49807457], | |
[0.82872117, 0.77801674, 0.39226705], | |
[0.9314666, 0.66800209, 0.03538394]]) | |
res1 = np.array( | |
[[1., 0.9379533, -0.04931983], | |
[0.9379533, 1., 0.30007991], | |
[-0.04931983, 0.30007991, 1.]]) | |
res2 = np.array( | |
[[1., 0.9379533, -0.04931983, 0.30151751, 0.66318558, 0.51532523], | |
[0.9379533, 1., 0.30007991, -0.04781421, 0.88157256, 0.78052386], | |
[-0.04931983, 0.30007991, 1., -0.96717111, 0.71483595, 0.83053601], | |
[0.30151751, -0.04781421, -0.96717111, 1., -0.51366032, -0.66173113], | |
[0.66318558, 0.88157256, 0.71483595, -0.51366032, 1., 0.98317823], | |
[0.51532523, 0.78052386, 0.83053601, -0.66173113, 0.98317823, 1.]]) | |
def test_non_array(self): | |
assert_almost_equal(np.corrcoef([0, 1, 0], [1, 0, 1]), | |
[[1., -1.], [-1., 1.]]) | |
def test_simple(self): | |
tgt1 = corrcoef(self.A) | |
assert_almost_equal(tgt1, self.res1) | |
assert_(np.all(np.abs(tgt1) <= 1.0)) | |
tgt2 = corrcoef(self.A, self.B) | |
assert_almost_equal(tgt2, self.res2) | |
assert_(np.all(np.abs(tgt2) <= 1.0)) | |
def test_ddof(self): | |
# ddof raises DeprecationWarning | |
with suppress_warnings() as sup: | |
warnings.simplefilter("always") | |
assert_warns(DeprecationWarning, corrcoef, self.A, ddof=-1) | |
sup.filter(DeprecationWarning) | |
# ddof has no or negligible effect on the function | |
assert_almost_equal(corrcoef(self.A, ddof=-1), self.res1) | |
assert_almost_equal(corrcoef(self.A, self.B, ddof=-1), self.res2) | |
assert_almost_equal(corrcoef(self.A, ddof=3), self.res1) | |
assert_almost_equal(corrcoef(self.A, self.B, ddof=3), self.res2) | |
def test_bias(self): | |
# bias raises DeprecationWarning | |
with suppress_warnings() as sup: | |
warnings.simplefilter("always") | |
assert_warns(DeprecationWarning, corrcoef, self.A, self.B, 1, 0) | |
assert_warns(DeprecationWarning, corrcoef, self.A, bias=0) | |
sup.filter(DeprecationWarning) | |
# bias has no or negligible effect on the function | |
assert_almost_equal(corrcoef(self.A, bias=1), self.res1) | |
def test_complex(self): | |
x = np.array([[1, 2, 3], [1j, 2j, 3j]]) | |
res = corrcoef(x) | |
tgt = np.array([[1., -1.j], [1.j, 1.]]) | |
assert_allclose(res, tgt) | |
assert_(np.all(np.abs(res) <= 1.0)) | |
def test_xy(self): | |
x = np.array([[1, 2, 3]]) | |
y = np.array([[1j, 2j, 3j]]) | |
assert_allclose(np.corrcoef(x, y), np.array([[1., -1.j], [1.j, 1.]])) | |
def test_empty(self): | |
with warnings.catch_warnings(record=True): | |
warnings.simplefilter('always', RuntimeWarning) | |
assert_array_equal(corrcoef(np.array([])), np.nan) | |
assert_array_equal(corrcoef(np.array([]).reshape(0, 2)), | |
np.array([]).reshape(0, 0)) | |
assert_array_equal(corrcoef(np.array([]).reshape(2, 0)), | |
np.array([[np.nan, np.nan], [np.nan, np.nan]])) | |
def test_extreme(self): | |
x = [[1e-100, 1e100], [1e100, 1e-100]] | |
with np.errstate(all='raise'): | |
c = corrcoef(x) | |
assert_array_almost_equal(c, np.array([[1., -1.], [-1., 1.]])) | |
assert_(np.all(np.abs(c) <= 1.0)) | |
def test_corrcoef_dtype(self, test_type): | |
cast_A = self.A.astype(test_type) | |
res = corrcoef(cast_A, dtype=test_type) | |
assert test_type == res.dtype | |
class TestCov: | |
x1 = np.array([[0, 2], [1, 1], [2, 0]]).T | |
res1 = np.array([[1., -1.], [-1., 1.]]) | |
x2 = np.array([0.0, 1.0, 2.0], ndmin=2) | |
frequencies = np.array([1, 4, 1]) | |
x2_repeats = np.array([[0.0], [1.0], [1.0], [1.0], [1.0], [2.0]]).T | |
res2 = np.array([[0.4, -0.4], [-0.4, 0.4]]) | |
unit_frequencies = np.ones(3, dtype=np.int_) | |
weights = np.array([1.0, 4.0, 1.0]) | |
res3 = np.array([[2. / 3., -2. / 3.], [-2. / 3., 2. / 3.]]) | |
unit_weights = np.ones(3) | |
x3 = np.array([0.3942, 0.5969, 0.7730, 0.9918, 0.7964]) | |
def test_basic(self): | |
assert_allclose(cov(self.x1), self.res1) | |
def test_complex(self): | |
x = np.array([[1, 2, 3], [1j, 2j, 3j]]) | |
res = np.array([[1., -1.j], [1.j, 1.]]) | |
assert_allclose(cov(x), res) | |
assert_allclose(cov(x, aweights=np.ones(3)), res) | |
def test_xy(self): | |
x = np.array([[1, 2, 3]]) | |
y = np.array([[1j, 2j, 3j]]) | |
assert_allclose(cov(x, y), np.array([[1., -1.j], [1.j, 1.]])) | |
def test_empty(self): | |
with warnings.catch_warnings(record=True): | |
warnings.simplefilter('always', RuntimeWarning) | |
assert_array_equal(cov(np.array([])), np.nan) | |
assert_array_equal(cov(np.array([]).reshape(0, 2)), | |
np.array([]).reshape(0, 0)) | |
assert_array_equal(cov(np.array([]).reshape(2, 0)), | |
np.array([[np.nan, np.nan], [np.nan, np.nan]])) | |
def test_wrong_ddof(self): | |
with warnings.catch_warnings(record=True): | |
warnings.simplefilter('always', RuntimeWarning) | |
assert_array_equal(cov(self.x1, ddof=5), | |
np.array([[np.inf, -np.inf], | |
[-np.inf, np.inf]])) | |
def test_1D_rowvar(self): | |
assert_allclose(cov(self.x3), cov(self.x3, rowvar=False)) | |
y = np.array([0.0780, 0.3107, 0.2111, 0.0334, 0.8501]) | |
assert_allclose(cov(self.x3, y), cov(self.x3, y, rowvar=False)) | |
def test_1D_variance(self): | |
assert_allclose(cov(self.x3, ddof=1), np.var(self.x3, ddof=1)) | |
def test_fweights(self): | |
assert_allclose(cov(self.x2, fweights=self.frequencies), | |
cov(self.x2_repeats)) | |
assert_allclose(cov(self.x1, fweights=self.frequencies), | |
self.res2) | |
assert_allclose(cov(self.x1, fweights=self.unit_frequencies), | |
self.res1) | |
nonint = self.frequencies + 0.5 | |
assert_raises(TypeError, cov, self.x1, fweights=nonint) | |
f = np.ones((2, 3), dtype=np.int_) | |
assert_raises(RuntimeError, cov, self.x1, fweights=f) | |
f = np.ones(2, dtype=np.int_) | |
assert_raises(RuntimeError, cov, self.x1, fweights=f) | |
f = -1 * np.ones(3, dtype=np.int_) | |
assert_raises(ValueError, cov, self.x1, fweights=f) | |
def test_aweights(self): | |
assert_allclose(cov(self.x1, aweights=self.weights), self.res3) | |
assert_allclose(cov(self.x1, aweights=3.0 * self.weights), | |
cov(self.x1, aweights=self.weights)) | |
assert_allclose(cov(self.x1, aweights=self.unit_weights), self.res1) | |
w = np.ones((2, 3)) | |
assert_raises(RuntimeError, cov, self.x1, aweights=w) | |
w = np.ones(2) | |
assert_raises(RuntimeError, cov, self.x1, aweights=w) | |
w = -1.0 * np.ones(3) | |
assert_raises(ValueError, cov, self.x1, aweights=w) | |
def test_unit_fweights_and_aweights(self): | |
assert_allclose(cov(self.x2, fweights=self.frequencies, | |
aweights=self.unit_weights), | |
cov(self.x2_repeats)) | |
assert_allclose(cov(self.x1, fweights=self.frequencies, | |
aweights=self.unit_weights), | |
self.res2) | |
assert_allclose(cov(self.x1, fweights=self.unit_frequencies, | |
aweights=self.unit_weights), | |
self.res1) | |
assert_allclose(cov(self.x1, fweights=self.unit_frequencies, | |
aweights=self.weights), | |
self.res3) | |
assert_allclose(cov(self.x1, fweights=self.unit_frequencies, | |
aweights=3.0 * self.weights), | |
cov(self.x1, aweights=self.weights)) | |
assert_allclose(cov(self.x1, fweights=self.unit_frequencies, | |
aweights=self.unit_weights), | |
self.res1) | |
def test_cov_dtype(self, test_type): | |
cast_x1 = self.x1.astype(test_type) | |
res = cov(cast_x1, dtype=test_type) | |
assert test_type == res.dtype | |
class Test_I0: | |
def test_simple(self): | |
assert_almost_equal( | |
i0(0.5), | |
np.array(1.0634833707413234)) | |
# need at least one test above 8, as the implementation is piecewise | |
A = np.array([0.49842636, 0.6969809, 0.22011976, 0.0155549, 10.0]) | |
expected = np.array([1.06307822, 1.12518299, 1.01214991, 1.00006049, 2815.71662847]) | |
assert_almost_equal(i0(A), expected) | |
assert_almost_equal(i0(-A), expected) | |
B = np.array([[0.827002, 0.99959078], | |
[0.89694769, 0.39298162], | |
[0.37954418, 0.05206293], | |
[0.36465447, 0.72446427], | |
[0.48164949, 0.50324519]]) | |
assert_almost_equal( | |
i0(B), | |
np.array([[1.17843223, 1.26583466], | |
[1.21147086, 1.03898290], | |
[1.03633899, 1.00067775], | |
[1.03352052, 1.13557954], | |
[1.05884290, 1.06432317]])) | |
# Regression test for gh-11205 | |
i0_0 = np.i0([0.]) | |
assert_equal(i0_0.shape, (1,)) | |
assert_array_equal(np.i0([0.]), np.array([1.])) | |
def test_non_array(self): | |
a = np.arange(4) | |
class array_like: | |
__array_interface__ = a.__array_interface__ | |
def __array_wrap__(self, arr): | |
return self | |
# E.g. pandas series survive ufunc calls through array-wrap: | |
assert isinstance(np.abs(array_like()), array_like) | |
exp = np.i0(a) | |
res = np.i0(array_like()) | |
assert_array_equal(exp, res) | |
def test_complex(self): | |
a = np.array([0, 1 + 2j]) | |
with pytest.raises(TypeError, match="i0 not supported for complex values"): | |
res = i0(a) | |
class TestKaiser: | |
def test_simple(self): | |
assert_(np.isfinite(kaiser(1, 1.0))) | |
assert_almost_equal(kaiser(0, 1.0), | |
np.array([])) | |
assert_almost_equal(kaiser(2, 1.0), | |
np.array([0.78984831, 0.78984831])) | |
assert_almost_equal(kaiser(5, 1.0), | |
np.array([0.78984831, 0.94503323, 1., | |
0.94503323, 0.78984831])) | |
assert_almost_equal(kaiser(5, 1.56789), | |
np.array([0.58285404, 0.88409679, 1., | |
0.88409679, 0.58285404])) | |
def test_int_beta(self): | |
kaiser(3, 4) | |
class TestMsort: | |
def test_simple(self): | |
A = np.array([[0.44567325, 0.79115165, 0.54900530], | |
[0.36844147, 0.37325583, 0.96098397], | |
[0.64864341, 0.52929049, 0.39172155]]) | |
assert_almost_equal( | |
msort(A), | |
np.array([[0.36844147, 0.37325583, 0.39172155], | |
[0.44567325, 0.52929049, 0.54900530], | |
[0.64864341, 0.79115165, 0.96098397]])) | |
class TestMeshgrid: | |
def test_simple(self): | |
[X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7]) | |
assert_array_equal(X, np.array([[1, 2, 3], | |
[1, 2, 3], | |
[1, 2, 3], | |
[1, 2, 3]])) | |
assert_array_equal(Y, np.array([[4, 4, 4], | |
[5, 5, 5], | |
[6, 6, 6], | |
[7, 7, 7]])) | |
def test_single_input(self): | |
[X] = meshgrid([1, 2, 3, 4]) | |
assert_array_equal(X, np.array([1, 2, 3, 4])) | |
def test_no_input(self): | |
args = [] | |
assert_array_equal([], meshgrid(*args)) | |
assert_array_equal([], meshgrid(*args, copy=False)) | |
def test_indexing(self): | |
x = [1, 2, 3] | |
y = [4, 5, 6, 7] | |
[X, Y] = meshgrid(x, y, indexing='ij') | |
assert_array_equal(X, np.array([[1, 1, 1, 1], | |
[2, 2, 2, 2], | |
[3, 3, 3, 3]])) | |
assert_array_equal(Y, np.array([[4, 5, 6, 7], | |
[4, 5, 6, 7], | |
[4, 5, 6, 7]])) | |
# Test expected shapes: | |
z = [8, 9] | |
assert_(meshgrid(x, y)[0].shape == (4, 3)) | |
assert_(meshgrid(x, y, indexing='ij')[0].shape == (3, 4)) | |
assert_(meshgrid(x, y, z)[0].shape == (4, 3, 2)) | |
assert_(meshgrid(x, y, z, indexing='ij')[0].shape == (3, 4, 2)) | |
assert_raises(ValueError, meshgrid, x, y, indexing='notvalid') | |
def test_sparse(self): | |
[X, Y] = meshgrid([1, 2, 3], [4, 5, 6, 7], sparse=True) | |
assert_array_equal(X, np.array([[1, 2, 3]])) | |
assert_array_equal(Y, np.array([[4], [5], [6], [7]])) | |
def test_invalid_arguments(self): | |
# Test that meshgrid complains about invalid arguments | |
# Regression test for issue #4755: | |
# https://github.com/numpy/numpy/issues/4755 | |
assert_raises(TypeError, meshgrid, | |
[1, 2, 3], [4, 5, 6, 7], indices='ij') | |
def test_return_type(self): | |
# Test for appropriate dtype in returned arrays. | |
# Regression test for issue #5297 | |
# https://github.com/numpy/numpy/issues/5297 | |
x = np.arange(0, 10, dtype=np.float32) | |
y = np.arange(10, 20, dtype=np.float64) | |
X, Y = np.meshgrid(x,y) | |
assert_(X.dtype == x.dtype) | |
assert_(Y.dtype == y.dtype) | |
# copy | |
X, Y = np.meshgrid(x,y, copy=True) | |
assert_(X.dtype == x.dtype) | |
assert_(Y.dtype == y.dtype) | |
# sparse | |
X, Y = np.meshgrid(x,y, sparse=True) | |
assert_(X.dtype == x.dtype) | |
assert_(Y.dtype == y.dtype) | |
def test_writeback(self): | |
# Issue 8561 | |
X = np.array([1.1, 2.2]) | |
Y = np.array([3.3, 4.4]) | |
x, y = np.meshgrid(X, Y, sparse=False, copy=True) | |
x[0, :] = 0 | |
assert_equal(x[0, :], 0) | |
assert_equal(x[1, :], X) | |
def test_nd_shape(self): | |
a, b, c, d, e = np.meshgrid(*([0] * i for i in range(1, 6))) | |
expected_shape = (2, 1, 3, 4, 5) | |
assert_equal(a.shape, expected_shape) | |
assert_equal(b.shape, expected_shape) | |
assert_equal(c.shape, expected_shape) | |
assert_equal(d.shape, expected_shape) | |
assert_equal(e.shape, expected_shape) | |
def test_nd_values(self): | |
a, b, c = np.meshgrid([0], [1, 2], [3, 4, 5]) | |
assert_equal(a, [[[0, 0, 0]], [[0, 0, 0]]]) | |
assert_equal(b, [[[1, 1, 1]], [[2, 2, 2]]]) | |
assert_equal(c, [[[3, 4, 5]], [[3, 4, 5]]]) | |
def test_nd_indexing(self): | |
a, b, c = np.meshgrid([0], [1, 2], [3, 4, 5], indexing='ij') | |
assert_equal(a, [[[0, 0, 0], [0, 0, 0]]]) | |
assert_equal(b, [[[1, 1, 1], [2, 2, 2]]]) | |
assert_equal(c, [[[3, 4, 5], [3, 4, 5]]]) | |
class TestPiecewise: | |
def test_simple(self): | |
# Condition is single bool list | |
x = piecewise([0, 0], [True, False], [1]) | |
assert_array_equal(x, [1, 0]) | |
# List of conditions: single bool list | |
x = piecewise([0, 0], [[True, False]], [1]) | |
assert_array_equal(x, [1, 0]) | |
# Conditions is single bool array | |
x = piecewise([0, 0], np.array([True, False]), [1]) | |
assert_array_equal(x, [1, 0]) | |
# Condition is single int array | |
x = piecewise([0, 0], np.array([1, 0]), [1]) | |
assert_array_equal(x, [1, 0]) | |
# List of conditions: int array | |
x = piecewise([0, 0], [np.array([1, 0])], [1]) | |
assert_array_equal(x, [1, 0]) | |
x = piecewise([0, 0], [[False, True]], [lambda x:-1]) | |
assert_array_equal(x, [0, -1]) | |
assert_raises_regex(ValueError, '1 or 2 functions are expected', | |
piecewise, [0, 0], [[False, True]], []) | |
assert_raises_regex(ValueError, '1 or 2 functions are expected', | |
piecewise, [0, 0], [[False, True]], [1, 2, 3]) | |
def test_two_conditions(self): | |
x = piecewise([1, 2], [[True, False], [False, True]], [3, 4]) | |
assert_array_equal(x, [3, 4]) | |
def test_scalar_domains_three_conditions(self): | |
x = piecewise(3, [True, False, False], [4, 2, 0]) | |
assert_equal(x, 4) | |
def test_default(self): | |
# No value specified for x[1], should be 0 | |
x = piecewise([1, 2], [True, False], [2]) | |
assert_array_equal(x, [2, 0]) | |
# Should set x[1] to 3 | |
x = piecewise([1, 2], [True, False], [2, 3]) | |
assert_array_equal(x, [2, 3]) | |
def test_0d(self): | |
x = np.array(3) | |
y = piecewise(x, x > 3, [4, 0]) | |
assert_(y.ndim == 0) | |
assert_(y == 0) | |
x = 5 | |
y = piecewise(x, [True, False], [1, 0]) | |
assert_(y.ndim == 0) | |
assert_(y == 1) | |
# With 3 ranges (It was failing, before) | |
y = piecewise(x, [False, False, True], [1, 2, 3]) | |
assert_array_equal(y, 3) | |
def test_0d_comparison(self): | |
x = 3 | |
y = piecewise(x, [x <= 3, x > 3], [4, 0]) # Should succeed. | |
assert_equal(y, 4) | |
# With 3 ranges (It was failing, before) | |
x = 4 | |
y = piecewise(x, [x <= 3, (x > 3) * (x <= 5), x > 5], [1, 2, 3]) | |
assert_array_equal(y, 2) | |
assert_raises_regex(ValueError, '2 or 3 functions are expected', | |
piecewise, x, [x <= 3, x > 3], [1]) | |
assert_raises_regex(ValueError, '2 or 3 functions are expected', | |
piecewise, x, [x <= 3, x > 3], [1, 1, 1, 1]) | |
def test_0d_0d_condition(self): | |
x = np.array(3) | |
c = np.array(x > 3) | |
y = piecewise(x, [c], [1, 2]) | |
assert_equal(y, 2) | |
def test_multidimensional_extrafunc(self): | |
x = np.array([[-2.5, -1.5, -0.5], | |
[0.5, 1.5, 2.5]]) | |
y = piecewise(x, [x < 0, x >= 2], [-1, 1, 3]) | |
assert_array_equal(y, np.array([[-1., -1., -1.], | |
[3., 3., 1.]])) | |
def test_subclasses(self): | |
class subclass(np.ndarray): | |
pass | |
x = np.arange(5.).view(subclass) | |
r = piecewise(x, [x<2., x>=4], [-1., 1., 0.]) | |
assert_equal(type(r), subclass) | |
assert_equal(r, [-1., -1., 0., 0., 1.]) | |
class TestBincount: | |
def test_simple(self): | |
y = np.bincount(np.arange(4)) | |
assert_array_equal(y, np.ones(4)) | |
def test_simple2(self): | |
y = np.bincount(np.array([1, 5, 2, 4, 1])) | |
assert_array_equal(y, np.array([0, 2, 1, 0, 1, 1])) | |
def test_simple_weight(self): | |
x = np.arange(4) | |
w = np.array([0.2, 0.3, 0.5, 0.1]) | |
y = np.bincount(x, w) | |
assert_array_equal(y, w) | |
def test_simple_weight2(self): | |
x = np.array([1, 2, 4, 5, 2]) | |
w = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) | |
y = np.bincount(x, w) | |
assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1])) | |
def test_with_minlength(self): | |
x = np.array([0, 1, 0, 1, 1]) | |
y = np.bincount(x, minlength=3) | |
assert_array_equal(y, np.array([2, 3, 0])) | |
x = [] | |
y = np.bincount(x, minlength=0) | |
assert_array_equal(y, np.array([])) | |
def test_with_minlength_smaller_than_maxvalue(self): | |
x = np.array([0, 1, 1, 2, 2, 3, 3]) | |
y = np.bincount(x, minlength=2) | |
assert_array_equal(y, np.array([1, 2, 2, 2])) | |
y = np.bincount(x, minlength=0) | |
assert_array_equal(y, np.array([1, 2, 2, 2])) | |
def test_with_minlength_and_weights(self): | |
x = np.array([1, 2, 4, 5, 2]) | |
w = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) | |
y = np.bincount(x, w, 8) | |
assert_array_equal(y, np.array([0, 0.2, 0.5, 0, 0.5, 0.1, 0, 0])) | |
def test_empty(self): | |
x = np.array([], dtype=int) | |
y = np.bincount(x) | |
assert_array_equal(x, y) | |
def test_empty_with_minlength(self): | |
x = np.array([], dtype=int) | |
y = np.bincount(x, minlength=5) | |
assert_array_equal(y, np.zeros(5, dtype=int)) | |
def test_with_incorrect_minlength(self): | |
x = np.array([], dtype=int) | |
assert_raises_regex(TypeError, | |
"'str' object cannot be interpreted", | |
lambda: np.bincount(x, minlength="foobar")) | |
assert_raises_regex(ValueError, | |
"must not be negative", | |
lambda: np.bincount(x, minlength=-1)) | |
x = np.arange(5) | |
assert_raises_regex(TypeError, | |
"'str' object cannot be interpreted", | |
lambda: np.bincount(x, minlength="foobar")) | |
assert_raises_regex(ValueError, | |
"must not be negative", | |
lambda: np.bincount(x, minlength=-1)) | |
def test_dtype_reference_leaks(self): | |
# gh-6805 | |
intp_refcount = sys.getrefcount(np.dtype(np.intp)) | |
double_refcount = sys.getrefcount(np.dtype(np.double)) | |
for j in range(10): | |
np.bincount([1, 2, 3]) | |
assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount) | |
assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount) | |
for j in range(10): | |
np.bincount([1, 2, 3], [4, 5, 6]) | |
assert_equal(sys.getrefcount(np.dtype(np.intp)), intp_refcount) | |
assert_equal(sys.getrefcount(np.dtype(np.double)), double_refcount) | |
def test_error_not_1d(self, vals): | |
# Test that values has to be 1-D (both as array and nested list) | |
vals_arr = np.asarray(vals) | |
with assert_raises(ValueError): | |
np.bincount(vals_arr) | |
with assert_raises(ValueError): | |
np.bincount(vals) | |
class TestInterp: | |
def test_exceptions(self): | |
assert_raises(ValueError, interp, 0, [], []) | |
assert_raises(ValueError, interp, 0, [0], [1, 2]) | |
assert_raises(ValueError, interp, 0, [0, 1], [1, 2], period=0) | |
assert_raises(ValueError, interp, 0, [], [], period=360) | |
assert_raises(ValueError, interp, 0, [0], [1, 2], period=360) | |
def test_basic(self): | |
x = np.linspace(0, 1, 5) | |
y = np.linspace(0, 1, 5) | |
x0 = np.linspace(0, 1, 50) | |
assert_almost_equal(np.interp(x0, x, y), x0) | |
def test_right_left_behavior(self): | |
# Needs range of sizes to test different code paths. | |
# size ==1 is special cased, 1 < size < 5 is linear search, and | |
# size >= 5 goes through local search and possibly binary search. | |
for size in range(1, 10): | |
xp = np.arange(size, dtype=np.double) | |
yp = np.ones(size, dtype=np.double) | |
incpts = np.array([-1, 0, size - 1, size], dtype=np.double) | |
decpts = incpts[::-1] | |
incres = interp(incpts, xp, yp) | |
decres = interp(decpts, xp, yp) | |
inctgt = np.array([1, 1, 1, 1], dtype=float) | |
dectgt = inctgt[::-1] | |
assert_equal(incres, inctgt) | |
assert_equal(decres, dectgt) | |
incres = interp(incpts, xp, yp, left=0) | |
decres = interp(decpts, xp, yp, left=0) | |
inctgt = np.array([0, 1, 1, 1], dtype=float) | |
dectgt = inctgt[::-1] | |
assert_equal(incres, inctgt) | |
assert_equal(decres, dectgt) | |
incres = interp(incpts, xp, yp, right=2) | |
decres = interp(decpts, xp, yp, right=2) | |
inctgt = np.array([1, 1, 1, 2], dtype=float) | |
dectgt = inctgt[::-1] | |
assert_equal(incres, inctgt) | |
assert_equal(decres, dectgt) | |
incres = interp(incpts, xp, yp, left=0, right=2) | |
decres = interp(decpts, xp, yp, left=0, right=2) | |
inctgt = np.array([0, 1, 1, 2], dtype=float) | |
dectgt = inctgt[::-1] | |
assert_equal(incres, inctgt) | |
assert_equal(decres, dectgt) | |
def test_scalar_interpolation_point(self): | |
x = np.linspace(0, 1, 5) | |
y = np.linspace(0, 1, 5) | |
x0 = 0 | |
assert_almost_equal(np.interp(x0, x, y), x0) | |
x0 = .3 | |
assert_almost_equal(np.interp(x0, x, y), x0) | |
x0 = np.float32(.3) | |
assert_almost_equal(np.interp(x0, x, y), x0) | |
x0 = np.float64(.3) | |
assert_almost_equal(np.interp(x0, x, y), x0) | |
x0 = np.nan | |
assert_almost_equal(np.interp(x0, x, y), x0) | |
def test_non_finite_behavior_exact_x(self): | |
x = [1, 2, 2.5, 3, 4] | |
xp = [1, 2, 3, 4] | |
fp = [1, 2, np.inf, 4] | |
assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.inf, np.inf, 4]) | |
fp = [1, 2, np.nan, 4] | |
assert_almost_equal(np.interp(x, xp, fp), [1, 2, np.nan, np.nan, 4]) | |
def sc(self, request): | |
""" scale function used by the below tests """ | |
return request.param | |
def test_non_finite_any_nan(self, sc): | |
""" test that nans are propagated """ | |
assert_equal(np.interp(0.5, [np.nan, 1], sc([ 0, 10])), sc(np.nan)) | |
assert_equal(np.interp(0.5, [ 0, np.nan], sc([ 0, 10])), sc(np.nan)) | |
assert_equal(np.interp(0.5, [ 0, 1], sc([np.nan, 10])), sc(np.nan)) | |
assert_equal(np.interp(0.5, [ 0, 1], sc([ 0, np.nan])), sc(np.nan)) | |
def test_non_finite_inf(self, sc): | |
""" Test that interp between opposite infs gives nan """ | |
assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 0, 10])), sc(np.nan)) | |
assert_equal(np.interp(0.5, [ 0, 1], sc([-np.inf, +np.inf])), sc(np.nan)) | |
assert_equal(np.interp(0.5, [ 0, 1], sc([+np.inf, -np.inf])), sc(np.nan)) | |
# unless the y values are equal | |
assert_equal(np.interp(0.5, [-np.inf, +np.inf], sc([ 10, 10])), sc(10)) | |
def test_non_finite_half_inf_xf(self, sc): | |
""" Test that interp where both axes have a bound at inf gives nan """ | |
assert_equal(np.interp(0.5, [-np.inf, 1], sc([-np.inf, 10])), sc(np.nan)) | |
assert_equal(np.interp(0.5, [-np.inf, 1], sc([+np.inf, 10])), sc(np.nan)) | |
assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, -np.inf])), sc(np.nan)) | |
assert_equal(np.interp(0.5, [-np.inf, 1], sc([ 0, +np.inf])), sc(np.nan)) | |
assert_equal(np.interp(0.5, [ 0, +np.inf], sc([-np.inf, 10])), sc(np.nan)) | |
assert_equal(np.interp(0.5, [ 0, +np.inf], sc([+np.inf, 10])), sc(np.nan)) | |
assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, -np.inf])), sc(np.nan)) | |
assert_equal(np.interp(0.5, [ 0, +np.inf], sc([ 0, +np.inf])), sc(np.nan)) | |
def test_non_finite_half_inf_x(self, sc): | |
""" Test interp where the x axis has a bound at inf """ | |
assert_equal(np.interp(0.5, [-np.inf, -np.inf], sc([0, 10])), sc(10)) | |
assert_equal(np.interp(0.5, [-np.inf, 1 ], sc([0, 10])), sc(10)) | |
assert_equal(np.interp(0.5, [ 0, +np.inf], sc([0, 10])), sc(0)) | |
assert_equal(np.interp(0.5, [+np.inf, +np.inf], sc([0, 10])), sc(0)) | |
def test_non_finite_half_inf_f(self, sc): | |
""" Test interp where the f axis has a bound at inf """ | |
assert_equal(np.interp(0.5, [0, 1], sc([ 0, -np.inf])), sc(-np.inf)) | |
assert_equal(np.interp(0.5, [0, 1], sc([ 0, +np.inf])), sc(+np.inf)) | |
assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, 10])), sc(-np.inf)) | |
assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, 10])), sc(+np.inf)) | |
assert_equal(np.interp(0.5, [0, 1], sc([-np.inf, -np.inf])), sc(-np.inf)) | |
assert_equal(np.interp(0.5, [0, 1], sc([+np.inf, +np.inf])), sc(+np.inf)) | |
def test_complex_interp(self): | |
# test complex interpolation | |
x = np.linspace(0, 1, 5) | |
y = np.linspace(0, 1, 5) + (1 + np.linspace(0, 1, 5))*1.0j | |
x0 = 0.3 | |
y0 = x0 + (1+x0)*1.0j | |
assert_almost_equal(np.interp(x0, x, y), y0) | |
# test complex left and right | |
x0 = -1 | |
left = 2 + 3.0j | |
assert_almost_equal(np.interp(x0, x, y, left=left), left) | |
x0 = 2.0 | |
right = 2 + 3.0j | |
assert_almost_equal(np.interp(x0, x, y, right=right), right) | |
# test complex non finite | |
x = [1, 2, 2.5, 3, 4] | |
xp = [1, 2, 3, 4] | |
fp = [1, 2+1j, np.inf, 4] | |
y = [1, 2+1j, np.inf+0.5j, np.inf, 4] | |
assert_almost_equal(np.interp(x, xp, fp), y) | |
# test complex periodic | |
x = [-180, -170, -185, 185, -10, -5, 0, 365] | |
xp = [190, -190, 350, -350] | |
fp = [5+1.0j, 10+2j, 3+3j, 4+4j] | |
y = [7.5+1.5j, 5.+1.0j, 8.75+1.75j, 6.25+1.25j, 3.+3j, 3.25+3.25j, | |
3.5+3.5j, 3.75+3.75j] | |
assert_almost_equal(np.interp(x, xp, fp, period=360), y) | |
def test_zero_dimensional_interpolation_point(self): | |
x = np.linspace(0, 1, 5) | |
y = np.linspace(0, 1, 5) | |
x0 = np.array(.3) | |
assert_almost_equal(np.interp(x0, x, y), x0) | |
xp = np.array([0, 2, 4]) | |
fp = np.array([1, -1, 1]) | |
actual = np.interp(np.array(1), xp, fp) | |
assert_equal(actual, 0) | |
assert_(isinstance(actual, np.float64)) | |
actual = np.interp(np.array(4.5), xp, fp, period=4) | |
assert_equal(actual, 0.5) | |
assert_(isinstance(actual, np.float64)) | |
def test_if_len_x_is_small(self): | |
xp = np.arange(0, 10, 0.0001) | |
fp = np.sin(xp) | |
assert_almost_equal(np.interp(np.pi, xp, fp), 0.0) | |
def test_period(self): | |
x = [-180, -170, -185, 185, -10, -5, 0, 365] | |
xp = [190, -190, 350, -350] | |
fp = [5, 10, 3, 4] | |
y = [7.5, 5., 8.75, 6.25, 3., 3.25, 3.5, 3.75] | |
assert_almost_equal(np.interp(x, xp, fp, period=360), y) | |
x = np.array(x, order='F').reshape(2, -1) | |
y = np.array(y, order='C').reshape(2, -1) | |
assert_almost_equal(np.interp(x, xp, fp, period=360), y) | |
def compare_results(res, desired): | |
for i in range(len(desired)): | |
assert_array_equal(res[i], desired[i]) | |
class TestPercentile: | |
def test_basic(self): | |
x = np.arange(8) * 0.5 | |
assert_equal(np.percentile(x, 0), 0.) | |
assert_equal(np.percentile(x, 100), 3.5) | |
assert_equal(np.percentile(x, 50), 1.75) | |
x[1] = np.nan | |
assert_equal(np.percentile(x, 0), np.nan) | |
assert_equal(np.percentile(x, 0, interpolation='nearest'), np.nan) | |
def test_fraction(self): | |
x = [Fraction(i, 2) for i in range(8)] | |
p = np.percentile(x, Fraction(0)) | |
assert_equal(p, Fraction(0)) | |
assert_equal(type(p), Fraction) | |
p = np.percentile(x, Fraction(100)) | |
assert_equal(p, Fraction(7, 2)) | |
assert_equal(type(p), Fraction) | |
p = np.percentile(x, Fraction(50)) | |
assert_equal(p, Fraction(7, 4)) | |
assert_equal(type(p), Fraction) | |
p = np.percentile(x, [Fraction(50)]) | |
assert_equal(p, np.array([Fraction(7, 4)])) | |
assert_equal(type(p), np.ndarray) | |
def test_api(self): | |
d = np.ones(5) | |
np.percentile(d, 5, None, None, False) | |
np.percentile(d, 5, None, None, False, 'linear') | |
o = np.ones((1,)) | |
np.percentile(d, 5, None, o, False, 'linear') | |
def test_2D(self): | |
x = np.array([[1, 1, 1], | |
[1, 1, 1], | |
[4, 4, 3], | |
[1, 1, 1], | |
[1, 1, 1]]) | |
assert_array_equal(np.percentile(x, 50, axis=0), [1, 1, 1]) | |
def test_linear(self): | |
# Test defaults | |
assert_equal(np.percentile(range(10), 50), 4.5) | |
# explicitly specify interpolation_method 'linear' (the default) | |
assert_equal(np.percentile(range(10), 50, | |
interpolation='linear'), 4.5) | |
def test_lower_higher(self): | |
# interpolation_method 'lower'/'higher' | |
assert_equal(np.percentile(range(10), 50, | |
interpolation='lower'), 4) | |
assert_equal(np.percentile(range(10), 50, | |
interpolation='higher'), 5) | |
def test_midpoint(self): | |
assert_equal(np.percentile(range(10), 51, | |
interpolation='midpoint'), 4.5) | |
assert_equal(np.percentile(range(11), 51, | |
interpolation='midpoint'), 5.5) | |
assert_equal(np.percentile(range(11), 50, | |
interpolation='midpoint'), 5) | |
def test_nearest(self): | |
assert_equal(np.percentile(range(10), 51, | |
interpolation='nearest'), 5) | |
assert_equal(np.percentile(range(10), 49, | |
interpolation='nearest'), 4) | |
def test_sequence(self): | |
x = np.arange(8) * 0.5 | |
assert_equal(np.percentile(x, [0, 100, 50]), [0, 3.5, 1.75]) | |
def test_axis(self): | |
x = np.arange(12).reshape(3, 4) | |
assert_equal(np.percentile(x, (25, 50, 100)), [2.75, 5.5, 11.0]) | |
r0 = [[2, 3, 4, 5], [4, 5, 6, 7], [8, 9, 10, 11]] | |
assert_equal(np.percentile(x, (25, 50, 100), axis=0), r0) | |
r1 = [[0.75, 1.5, 3], [4.75, 5.5, 7], [8.75, 9.5, 11]] | |
assert_equal(np.percentile(x, (25, 50, 100), axis=1), np.array(r1).T) | |
# ensure qth axis is always first as with np.array(old_percentile(..)) | |
x = np.arange(3 * 4 * 5 * 6).reshape(3, 4, 5, 6) | |
assert_equal(np.percentile(x, (25, 50)).shape, (2,)) | |
assert_equal(np.percentile(x, (25, 50, 75)).shape, (3,)) | |
assert_equal(np.percentile(x, (25, 50), axis=0).shape, (2, 4, 5, 6)) | |
assert_equal(np.percentile(x, (25, 50), axis=1).shape, (2, 3, 5, 6)) | |
assert_equal(np.percentile(x, (25, 50), axis=2).shape, (2, 3, 4, 6)) | |
assert_equal(np.percentile(x, (25, 50), axis=3).shape, (2, 3, 4, 5)) | |
assert_equal( | |
np.percentile(x, (25, 50, 75), axis=1).shape, (3, 3, 5, 6)) | |
assert_equal(np.percentile(x, (25, 50), | |
interpolation="higher").shape, (2,)) | |
assert_equal(np.percentile(x, (25, 50, 75), | |
interpolation="higher").shape, (3,)) | |
assert_equal(np.percentile(x, (25, 50), axis=0, | |
interpolation="higher").shape, (2, 4, 5, 6)) | |
assert_equal(np.percentile(x, (25, 50), axis=1, | |
interpolation="higher").shape, (2, 3, 5, 6)) | |
assert_equal(np.percentile(x, (25, 50), axis=2, | |
interpolation="higher").shape, (2, 3, 4, 6)) | |
assert_equal(np.percentile(x, (25, 50), axis=3, | |
interpolation="higher").shape, (2, 3, 4, 5)) | |
assert_equal(np.percentile(x, (25, 50, 75), axis=1, | |
interpolation="higher").shape, (3, 3, 5, 6)) | |
def test_scalar_q(self): | |
# test for no empty dimensions for compatibility with old percentile | |
x = np.arange(12).reshape(3, 4) | |
assert_equal(np.percentile(x, 50), 5.5) | |
assert_(np.isscalar(np.percentile(x, 50))) | |
r0 = np.array([4., 5., 6., 7.]) | |
assert_equal(np.percentile(x, 50, axis=0), r0) | |
assert_equal(np.percentile(x, 50, axis=0).shape, r0.shape) | |
r1 = np.array([1.5, 5.5, 9.5]) | |
assert_almost_equal(np.percentile(x, 50, axis=1), r1) | |
assert_equal(np.percentile(x, 50, axis=1).shape, r1.shape) | |
out = np.empty(1) | |
assert_equal(np.percentile(x, 50, out=out), 5.5) | |
assert_equal(out, 5.5) | |
out = np.empty(4) | |
assert_equal(np.percentile(x, 50, axis=0, out=out), r0) | |
assert_equal(out, r0) | |
out = np.empty(3) | |
assert_equal(np.percentile(x, 50, axis=1, out=out), r1) | |
assert_equal(out, r1) | |
# test for no empty dimensions for compatibility with old percentile | |
x = np.arange(12).reshape(3, 4) | |
assert_equal(np.percentile(x, 50, interpolation='lower'), 5.) | |
assert_(np.isscalar(np.percentile(x, 50))) | |
r0 = np.array([4., 5., 6., 7.]) | |
c0 = np.percentile(x, 50, interpolation='lower', axis=0) | |
assert_equal(c0, r0) | |
assert_equal(c0.shape, r0.shape) | |
r1 = np.array([1., 5., 9.]) | |
c1 = np.percentile(x, 50, interpolation='lower', axis=1) | |
assert_almost_equal(c1, r1) | |
assert_equal(c1.shape, r1.shape) | |
out = np.empty((), dtype=x.dtype) | |
c = np.percentile(x, 50, interpolation='lower', out=out) | |
assert_equal(c, 5) | |
assert_equal(out, 5) | |
out = np.empty(4, dtype=x.dtype) | |
c = np.percentile(x, 50, interpolation='lower', axis=0, out=out) | |
assert_equal(c, r0) | |
assert_equal(out, r0) | |
out = np.empty(3, dtype=x.dtype) | |
c = np.percentile(x, 50, interpolation='lower', axis=1, out=out) | |
assert_equal(c, r1) | |
assert_equal(out, r1) | |
def test_exception(self): | |
assert_raises(ValueError, np.percentile, [1, 2], 56, | |
interpolation='foobar') | |
assert_raises(ValueError, np.percentile, [1], 101) | |
assert_raises(ValueError, np.percentile, [1], -1) | |
assert_raises(ValueError, np.percentile, [1], list(range(50)) + [101]) | |
assert_raises(ValueError, np.percentile, [1], list(range(50)) + [-0.1]) | |
def test_percentile_list(self): | |
assert_equal(np.percentile([1, 2, 3], 0), 1) | |
def test_percentile_out(self): | |
x = np.array([1, 2, 3]) | |
y = np.zeros((3,)) | |
p = (1, 2, 3) | |
np.percentile(x, p, out=y) | |
assert_equal(y, np.percentile(x, p)) | |
x = np.array([[1, 2, 3], | |
[4, 5, 6]]) | |
y = np.zeros((3, 3)) | |
np.percentile(x, p, axis=0, out=y) | |
assert_equal(y, np.percentile(x, p, axis=0)) | |
y = np.zeros((3, 2)) | |
np.percentile(x, p, axis=1, out=y) | |
assert_equal(y, np.percentile(x, p, axis=1)) | |
x = np.arange(12).reshape(3, 4) | |
# q.dim > 1, float | |
r0 = np.array([[2., 3., 4., 5.], [4., 5., 6., 7.]]) | |
out = np.empty((2, 4)) | |
assert_equal(np.percentile(x, (25, 50), axis=0, out=out), r0) | |
assert_equal(out, r0) | |
r1 = np.array([[0.75, 4.75, 8.75], [1.5, 5.5, 9.5]]) | |
out = np.empty((2, 3)) | |
assert_equal(np.percentile(x, (25, 50), axis=1, out=out), r1) | |
assert_equal(out, r1) | |
# q.dim > 1, int | |
r0 = np.array([[0, 1, 2, 3], [4, 5, 6, 7]]) | |
out = np.empty((2, 4), dtype=x.dtype) | |
c = np.percentile(x, (25, 50), interpolation='lower', axis=0, out=out) | |
assert_equal(c, r0) | |
assert_equal(out, r0) | |
r1 = np.array([[0, 4, 8], [1, 5, 9]]) | |
out = np.empty((2, 3), dtype=x.dtype) | |
c = np.percentile(x, (25, 50), interpolation='lower', axis=1, out=out) | |
assert_equal(c, r1) | |
assert_equal(out, r1) | |
def test_percentile_empty_dim(self): | |
# empty dims are preserved | |
d = np.arange(11 * 2).reshape(11, 1, 2, 1) | |
assert_array_equal(np.percentile(d, 50, axis=0).shape, (1, 2, 1)) | |
assert_array_equal(np.percentile(d, 50, axis=1).shape, (11, 2, 1)) | |
assert_array_equal(np.percentile(d, 50, axis=2).shape, (11, 1, 1)) | |
assert_array_equal(np.percentile(d, 50, axis=3).shape, (11, 1, 2)) | |
assert_array_equal(np.percentile(d, 50, axis=-1).shape, (11, 1, 2)) | |
assert_array_equal(np.percentile(d, 50, axis=-2).shape, (11, 1, 1)) | |
assert_array_equal(np.percentile(d, 50, axis=-3).shape, (11, 2, 1)) | |
assert_array_equal(np.percentile(d, 50, axis=-4).shape, (1, 2, 1)) | |
assert_array_equal(np.percentile(d, 50, axis=2, | |
interpolation='midpoint').shape, | |
(11, 1, 1)) | |
assert_array_equal(np.percentile(d, 50, axis=-2, | |
interpolation='midpoint').shape, | |
(11, 1, 1)) | |
assert_array_equal(np.array(np.percentile(d, [10, 50], axis=0)).shape, | |
(2, 1, 2, 1)) | |
assert_array_equal(np.array(np.percentile(d, [10, 50], axis=1)).shape, | |
(2, 11, 2, 1)) | |
assert_array_equal(np.array(np.percentile(d, [10, 50], axis=2)).shape, | |
(2, 11, 1, 1)) | |
assert_array_equal(np.array(np.percentile(d, [10, 50], axis=3)).shape, | |
(2, 11, 1, 2)) | |
def test_percentile_no_overwrite(self): | |
a = np.array([2, 3, 4, 1]) | |
np.percentile(a, [50], overwrite_input=False) | |
assert_equal(a, np.array([2, 3, 4, 1])) | |
a = np.array([2, 3, 4, 1]) | |
np.percentile(a, [50]) | |
assert_equal(a, np.array([2, 3, 4, 1])) | |
def test_no_p_overwrite(self): | |
p = np.linspace(0., 100., num=5) | |
np.percentile(np.arange(100.), p, interpolation="midpoint") | |
assert_array_equal(p, np.linspace(0., 100., num=5)) | |
p = np.linspace(0., 100., num=5).tolist() | |
np.percentile(np.arange(100.), p, interpolation="midpoint") | |
assert_array_equal(p, np.linspace(0., 100., num=5).tolist()) | |
def test_percentile_overwrite(self): | |
a = np.array([2, 3, 4, 1]) | |
b = np.percentile(a, [50], overwrite_input=True) | |
assert_equal(b, np.array([2.5])) | |
b = np.percentile([2, 3, 4, 1], [50], overwrite_input=True) | |
assert_equal(b, np.array([2.5])) | |
def test_extended_axis(self): | |
o = np.random.normal(size=(71, 23)) | |
x = np.dstack([o] * 10) | |
assert_equal(np.percentile(x, 30, axis=(0, 1)), np.percentile(o, 30)) | |
x = np.moveaxis(x, -1, 0) | |
assert_equal(np.percentile(x, 30, axis=(-2, -1)), np.percentile(o, 30)) | |
x = x.swapaxes(0, 1).copy() | |
assert_equal(np.percentile(x, 30, axis=(0, -1)), np.percentile(o, 30)) | |
x = x.swapaxes(0, 1).copy() | |
assert_equal(np.percentile(x, [25, 60], axis=(0, 1, 2)), | |
np.percentile(x, [25, 60], axis=None)) | |
assert_equal(np.percentile(x, [25, 60], axis=(0,)), | |
np.percentile(x, [25, 60], axis=0)) | |
d = np.arange(3 * 5 * 7 * 11).reshape((3, 5, 7, 11)) | |
np.random.shuffle(d.ravel()) | |
assert_equal(np.percentile(d, 25, axis=(0, 1, 2))[0], | |
np.percentile(d[:,:,:, 0].flatten(), 25)) | |
assert_equal(np.percentile(d, [10, 90], axis=(0, 1, 3))[:, 1], | |
np.percentile(d[:,:, 1,:].flatten(), [10, 90])) | |
assert_equal(np.percentile(d, 25, axis=(3, 1, -4))[2], | |
np.percentile(d[:,:, 2,:].flatten(), 25)) | |
assert_equal(np.percentile(d, 25, axis=(3, 1, 2))[2], | |
np.percentile(d[2,:,:,:].flatten(), 25)) | |
assert_equal(np.percentile(d, 25, axis=(3, 2))[2, 1], | |
np.percentile(d[2, 1,:,:].flatten(), 25)) | |
assert_equal(np.percentile(d, 25, axis=(1, -2))[2, 1], | |
np.percentile(d[2,:,:, 1].flatten(), 25)) | |
assert_equal(np.percentile(d, 25, axis=(1, 3))[2, 2], | |
np.percentile(d[2,:, 2,:].flatten(), 25)) | |
def test_extended_axis_invalid(self): | |
d = np.ones((3, 5, 7, 11)) | |
assert_raises(np.AxisError, np.percentile, d, axis=-5, q=25) | |
assert_raises(np.AxisError, np.percentile, d, axis=(0, -5), q=25) | |
assert_raises(np.AxisError, np.percentile, d, axis=4, q=25) | |
assert_raises(np.AxisError, np.percentile, d, axis=(0, 4), q=25) | |
# each of these refers to the same axis twice | |
assert_raises(ValueError, np.percentile, d, axis=(1, 1), q=25) | |
assert_raises(ValueError, np.percentile, d, axis=(-1, -1), q=25) | |
assert_raises(ValueError, np.percentile, d, axis=(3, -1), q=25) | |
def test_keepdims(self): | |
d = np.ones((3, 5, 7, 11)) | |
assert_equal(np.percentile(d, 7, axis=None, keepdims=True).shape, | |
(1, 1, 1, 1)) | |
assert_equal(np.percentile(d, 7, axis=(0, 1), keepdims=True).shape, | |
(1, 1, 7, 11)) | |
assert_equal(np.percentile(d, 7, axis=(0, 3), keepdims=True).shape, | |
(1, 5, 7, 1)) | |
assert_equal(np.percentile(d, 7, axis=(1,), keepdims=True).shape, | |
(3, 1, 7, 11)) | |
assert_equal(np.percentile(d, 7, (0, 1, 2, 3), keepdims=True).shape, | |
(1, 1, 1, 1)) | |
assert_equal(np.percentile(d, 7, axis=(0, 1, 3), keepdims=True).shape, | |
(1, 1, 7, 1)) | |
assert_equal(np.percentile(d, [1, 7], axis=(0, 1, 3), | |
keepdims=True).shape, (2, 1, 1, 7, 1)) | |
assert_equal(np.percentile(d, [1, 7], axis=(0, 3), | |
keepdims=True).shape, (2, 1, 5, 7, 1)) | |
def test_out(self): | |
o = np.zeros((4,)) | |
d = np.ones((3, 4)) | |
assert_equal(np.percentile(d, 0, 0, out=o), o) | |
assert_equal(np.percentile(d, 0, 0, interpolation='nearest', out=o), o) | |
o = np.zeros((3,)) | |
assert_equal(np.percentile(d, 1, 1, out=o), o) | |
assert_equal(np.percentile(d, 1, 1, interpolation='nearest', out=o), o) | |
o = np.zeros(()) | |
assert_equal(np.percentile(d, 2, out=o), o) | |
assert_equal(np.percentile(d, 2, interpolation='nearest', out=o), o) | |
def test_out_nan(self): | |
with warnings.catch_warnings(record=True): | |
warnings.filterwarnings('always', '', RuntimeWarning) | |
o = np.zeros((4,)) | |
d = np.ones((3, 4)) | |
d[2, 1] = np.nan | |
assert_equal(np.percentile(d, 0, 0, out=o), o) | |
assert_equal( | |
np.percentile(d, 0, 0, interpolation='nearest', out=o), o) | |
o = np.zeros((3,)) | |
assert_equal(np.percentile(d, 1, 1, out=o), o) | |
assert_equal( | |
np.percentile(d, 1, 1, interpolation='nearest', out=o), o) | |
o = np.zeros(()) | |
assert_equal(np.percentile(d, 1, out=o), o) | |
assert_equal( | |
np.percentile(d, 1, interpolation='nearest', out=o), o) | |
def test_nan_behavior(self): | |
a = np.arange(24, dtype=float) | |
a[2] = np.nan | |
assert_equal(np.percentile(a, 0.3), np.nan) | |
assert_equal(np.percentile(a, 0.3, axis=0), np.nan) | |
assert_equal(np.percentile(a, [0.3, 0.6], axis=0), | |
np.array([np.nan] * 2)) | |
a = np.arange(24, dtype=float).reshape(2, 3, 4) | |
a[1, 2, 3] = np.nan | |
a[1, 1, 2] = np.nan | |
# no axis | |
assert_equal(np.percentile(a, 0.3), np.nan) | |
assert_equal(np.percentile(a, 0.3).ndim, 0) | |
# axis0 zerod | |
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 0) | |
b[2, 3] = np.nan | |
b[1, 2] = np.nan | |
assert_equal(np.percentile(a, 0.3, 0), b) | |
# axis0 not zerod | |
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), | |
[0.3, 0.6], 0) | |
b[:, 2, 3] = np.nan | |
b[:, 1, 2] = np.nan | |
assert_equal(np.percentile(a, [0.3, 0.6], 0), b) | |
# axis1 zerod | |
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, 1) | |
b[1, 3] = np.nan | |
b[1, 2] = np.nan | |
assert_equal(np.percentile(a, 0.3, 1), b) | |
# axis1 not zerod | |
b = np.percentile( | |
np.arange(24, dtype=float).reshape(2, 3, 4), [0.3, 0.6], 1) | |
b[:, 1, 3] = np.nan | |
b[:, 1, 2] = np.nan | |
assert_equal(np.percentile(a, [0.3, 0.6], 1), b) | |
# axis02 zerod | |
b = np.percentile( | |
np.arange(24, dtype=float).reshape(2, 3, 4), 0.3, (0, 2)) | |
b[1] = np.nan | |
b[2] = np.nan | |
assert_equal(np.percentile(a, 0.3, (0, 2)), b) | |
# axis02 not zerod | |
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), | |
[0.3, 0.6], (0, 2)) | |
b[:, 1] = np.nan | |
b[:, 2] = np.nan | |
assert_equal(np.percentile(a, [0.3, 0.6], (0, 2)), b) | |
# axis02 not zerod with nearest interpolation | |
b = np.percentile(np.arange(24, dtype=float).reshape(2, 3, 4), | |
[0.3, 0.6], (0, 2), interpolation='nearest') | |
b[:, 1] = np.nan | |
b[:, 2] = np.nan | |
assert_equal(np.percentile( | |
a, [0.3, 0.6], (0, 2), interpolation='nearest'), b) | |
def test_nan_q(self): | |
# GH18830 | |
with pytest.raises(ValueError, match="Percentiles must be in"): | |
np.percentile([1, 2, 3, 4.0], np.nan) | |
with pytest.raises(ValueError, match="Percentiles must be in"): | |
np.percentile([1, 2, 3, 4.0], [np.nan]) | |
q = np.linspace(1.0, 99.0, 16) | |
q[0] = np.nan | |
with pytest.raises(ValueError, match="Percentiles must be in"): | |
np.percentile([1, 2, 3, 4.0], q) | |
class TestQuantile: | |
# most of this is already tested by TestPercentile | |
def test_basic(self): | |
x = np.arange(8) * 0.5 | |
assert_equal(np.quantile(x, 0), 0.) | |
assert_equal(np.quantile(x, 1), 3.5) | |
assert_equal(np.quantile(x, 0.5), 1.75) | |
def test_correct_quantile_value(self): | |
a = np.array([True]) | |
tf_quant = np.quantile(True, False) | |
assert_equal(tf_quant, a[0]) | |
assert_equal(type(tf_quant), a.dtype) | |
a = np.array([False, True, True]) | |
quant_res = np.quantile(a, a) | |
assert_array_equal(quant_res, a) | |
assert_equal(a.dtype, quant_res.dtype) | |
def test_fraction(self): | |
# fractional input, integral quantile | |
x = [Fraction(i, 2) for i in range(8)] | |
q = np.quantile(x, 0) | |
assert_equal(q, 0) | |
assert_equal(type(q), Fraction) | |
q = np.quantile(x, 1) | |
assert_equal(q, Fraction(7, 2)) | |
assert_equal(type(q), Fraction) | |
q = np.quantile(x, Fraction(1, 2)) | |
assert_equal(q, Fraction(7, 4)) | |
assert_equal(type(q), Fraction) | |
q = np.quantile(x, [Fraction(1, 2)]) | |
assert_equal(q, np.array([Fraction(7, 4)])) | |
assert_equal(type(q), np.ndarray) | |
q = np.quantile(x, [[Fraction(1, 2)]]) | |
assert_equal(q, np.array([[Fraction(7, 4)]])) | |
assert_equal(type(q), np.ndarray) | |
# repeat with integral input but fractional quantile | |
x = np.arange(8) | |
assert_equal(np.quantile(x, Fraction(1, 2)), Fraction(7, 2)) | |
def test_no_p_overwrite(self): | |
# this is worth retesting, because quantile does not make a copy | |
p0 = np.array([0, 0.75, 0.25, 0.5, 1.0]) | |
p = p0.copy() | |
np.quantile(np.arange(100.), p, interpolation="midpoint") | |
assert_array_equal(p, p0) | |
p0 = p0.tolist() | |
p = p.tolist() | |
np.quantile(np.arange(100.), p, interpolation="midpoint") | |
assert_array_equal(p, p0) | |
def test_quantile_monotonic(self): | |
# GH 14685 | |
# test that the return value of quantile is monotonic if p0 is ordered | |
p0 = np.arange(0, 1, 0.01) | |
quantile = np.quantile(np.array([0, 1, 1, 2, 2, 3, 3, 4, 5, 5, 1, 1, 9, 9, 9, | |
8, 8, 7]) * 0.1, p0) | |
assert_equal(np.sort(quantile), quantile) | |
def test_quantile_monotonic_hypo(self, arr): | |
p0 = np.arange(0, 1, 0.01) | |
quantile = np.quantile(arr, p0) | |
assert_equal(np.sort(quantile), quantile) | |
class TestLerp: | |
def test_lerp_monotonic(self, t0, t1, a, b): | |
l0 = np.lib.function_base._lerp(a, b, t0) | |
l1 = np.lib.function_base._lerp(a, b, t1) | |
if t0 == t1 or a == b: | |
assert l0 == l1 # uninteresting | |
elif (t0 < t1) == (a < b): | |
assert l0 <= l1 | |
else: | |
assert l0 >= l1 | |
def test_lerp_bounded(self, t, a, b): | |
if a <= b: | |
assert a <= np.lib.function_base._lerp(a, b, t) <= b | |
else: | |
assert b <= np.lib.function_base._lerp(a, b, t) <= a | |
def test_lerp_symmetric(self, t, a, b): | |
# double subtraction is needed to remove the extra precision of t < 0.5 | |
left = np.lib.function_base._lerp(a, b, 1 - (1 - t)) | |
right = np.lib.function_base._lerp(b, a, 1 - t) | |
assert left == right | |
def test_lerp_0d_inputs(self): | |
a = np.array(2) | |
b = np.array(5) | |
t = np.array(0.2) | |
assert np.lib.function_base._lerp(a, b, t) == 2.6 | |
class TestMedian: | |
def test_basic(self): | |
a0 = np.array(1) | |
a1 = np.arange(2) | |
a2 = np.arange(6).reshape(2, 3) | |
assert_equal(np.median(a0), 1) | |
assert_allclose(np.median(a1), 0.5) | |
assert_allclose(np.median(a2), 2.5) | |
assert_allclose(np.median(a2, axis=0), [1.5, 2.5, 3.5]) | |
assert_equal(np.median(a2, axis=1), [1, 4]) | |
assert_allclose(np.median(a2, axis=None), 2.5) | |
a = np.array([0.0444502, 0.0463301, 0.141249, 0.0606775]) | |
assert_almost_equal((a[1] + a[3]) / 2., np.median(a)) | |
a = np.array([0.0463301, 0.0444502, 0.141249]) | |
assert_equal(a[0], np.median(a)) | |
a = np.array([0.0444502, 0.141249, 0.0463301]) | |
assert_equal(a[-1], np.median(a)) | |
# check array scalar result | |
assert_equal(np.median(a).ndim, 0) | |
a[1] = np.nan | |
assert_equal(np.median(a).ndim, 0) | |
def test_axis_keyword(self): | |
a3 = np.array([[2, 3], | |
[0, 1], | |
[6, 7], | |
[4, 5]]) | |
for a in [a3, np.random.randint(0, 100, size=(2, 3, 4))]: | |
orig = a.copy() | |
np.median(a, axis=None) | |
for ax in range(a.ndim): | |
np.median(a, axis=ax) | |
assert_array_equal(a, orig) | |
assert_allclose(np.median(a3, axis=0), [3, 4]) | |
assert_allclose(np.median(a3.T, axis=1), [3, 4]) | |
assert_allclose(np.median(a3), 3.5) | |
assert_allclose(np.median(a3, axis=None), 3.5) | |
assert_allclose(np.median(a3.T), 3.5) | |
def test_overwrite_keyword(self): | |
a3 = np.array([[2, 3], | |
[0, 1], | |
[6, 7], | |
[4, 5]]) | |
a0 = np.array(1) | |
a1 = np.arange(2) | |
a2 = np.arange(6).reshape(2, 3) | |
assert_allclose(np.median(a0.copy(), overwrite_input=True), 1) | |
assert_allclose(np.median(a1.copy(), overwrite_input=True), 0.5) | |
assert_allclose(np.median(a2.copy(), overwrite_input=True), 2.5) | |
assert_allclose(np.median(a2.copy(), overwrite_input=True, axis=0), | |
[1.5, 2.5, 3.5]) | |
assert_allclose( | |
np.median(a2.copy(), overwrite_input=True, axis=1), [1, 4]) | |
assert_allclose( | |
np.median(a2.copy(), overwrite_input=True, axis=None), 2.5) | |
assert_allclose( | |
np.median(a3.copy(), overwrite_input=True, axis=0), [3, 4]) | |
assert_allclose(np.median(a3.T.copy(), overwrite_input=True, axis=1), | |
[3, 4]) | |
a4 = np.arange(3 * 4 * 5, dtype=np.float32).reshape((3, 4, 5)) | |
np.random.shuffle(a4.ravel()) | |
assert_allclose(np.median(a4, axis=None), | |
np.median(a4.copy(), axis=None, overwrite_input=True)) | |
assert_allclose(np.median(a4, axis=0), | |
np.median(a4.copy(), axis=0, overwrite_input=True)) | |
assert_allclose(np.median(a4, axis=1), | |
np.median(a4.copy(), axis=1, overwrite_input=True)) | |
assert_allclose(np.median(a4, axis=2), | |
np.median(a4.copy(), axis=2, overwrite_input=True)) | |
def test_array_like(self): | |
x = [1, 2, 3] | |
assert_almost_equal(np.median(x), 2) | |
x2 = [x] | |
assert_almost_equal(np.median(x2), 2) | |
assert_allclose(np.median(x2, axis=0), x) | |
def test_subclass(self): | |
# gh-3846 | |
class MySubClass(np.ndarray): | |
def __new__(cls, input_array, info=None): | |
obj = np.asarray(input_array).view(cls) | |
obj.info = info | |
return obj | |
def mean(self, axis=None, dtype=None, out=None): | |
return -7 | |
a = MySubClass([1, 2, 3]) | |
assert_equal(np.median(a), -7) | |
def test_out(self): | |
o = np.zeros((4,)) | |
d = np.ones((3, 4)) | |
assert_equal(np.median(d, 0, out=o), o) | |
o = np.zeros((3,)) | |
assert_equal(np.median(d, 1, out=o), o) | |
o = np.zeros(()) | |
assert_equal(np.median(d, out=o), o) | |
def test_out_nan(self): | |
with warnings.catch_warnings(record=True): | |
warnings.filterwarnings('always', '', RuntimeWarning) | |
o = np.zeros((4,)) | |
d = np.ones((3, 4)) | |
d[2, 1] = np.nan | |
assert_equal(np.median(d, 0, out=o), o) | |
o = np.zeros((3,)) | |
assert_equal(np.median(d, 1, out=o), o) | |
o = np.zeros(()) | |
assert_equal(np.median(d, out=o), o) | |
def test_nan_behavior(self): | |
a = np.arange(24, dtype=float) | |
a[2] = np.nan | |
assert_equal(np.median(a), np.nan) | |
assert_equal(np.median(a, axis=0), np.nan) | |
a = np.arange(24, dtype=float).reshape(2, 3, 4) | |
a[1, 2, 3] = np.nan | |
a[1, 1, 2] = np.nan | |
# no axis | |
assert_equal(np.median(a), np.nan) | |
assert_equal(np.median(a).ndim, 0) | |
# axis0 | |
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 0) | |
b[2, 3] = np.nan | |
b[1, 2] = np.nan | |
assert_equal(np.median(a, 0), b) | |
# axis1 | |
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), 1) | |
b[1, 3] = np.nan | |
b[1, 2] = np.nan | |
assert_equal(np.median(a, 1), b) | |
# axis02 | |
b = np.median(np.arange(24, dtype=float).reshape(2, 3, 4), (0, 2)) | |
b[1] = np.nan | |
b[2] = np.nan | |
assert_equal(np.median(a, (0, 2)), b) | |
def test_empty(self): | |
# mean(empty array) emits two warnings: empty slice and divide by 0 | |
a = np.array([], dtype=float) | |
with warnings.catch_warnings(record=True) as w: | |
warnings.filterwarnings('always', '', RuntimeWarning) | |
assert_equal(np.median(a), np.nan) | |
assert_(w[0].category is RuntimeWarning) | |
assert_equal(len(w), 2) | |
# multiple dimensions | |
a = np.array([], dtype=float, ndmin=3) | |
# no axis | |
with warnings.catch_warnings(record=True) as w: | |
warnings.filterwarnings('always', '', RuntimeWarning) | |
assert_equal(np.median(a), np.nan) | |
assert_(w[0].category is RuntimeWarning) | |
# axis 0 and 1 | |
b = np.array([], dtype=float, ndmin=2) | |
assert_equal(np.median(a, axis=0), b) | |
assert_equal(np.median(a, axis=1), b) | |
# axis 2 | |
b = np.array(np.nan, dtype=float, ndmin=2) | |
with warnings.catch_warnings(record=True) as w: | |
warnings.filterwarnings('always', '', RuntimeWarning) | |
assert_equal(np.median(a, axis=2), b) | |
assert_(w[0].category is RuntimeWarning) | |
def test_object(self): | |
o = np.arange(7.) | |
assert_(type(np.median(o.astype(object))), float) | |
o[2] = np.nan | |
assert_(type(np.median(o.astype(object))), float) | |
def test_extended_axis(self): | |
o = np.random.normal(size=(71, 23)) | |
x = np.dstack([o] * 10) | |
assert_equal(np.median(x, axis=(0, 1)), np.median(o)) | |
x = np.moveaxis(x, -1, 0) | |
assert_equal(np.median(x, axis=(-2, -1)), np.median(o)) | |
x = x.swapaxes(0, 1).copy() | |
assert_equal(np.median(x, axis=(0, -1)), np.median(o)) | |
assert_equal(np.median(x, axis=(0, 1, 2)), np.median(x, axis=None)) | |
assert_equal(np.median(x, axis=(0, )), np.median(x, axis=0)) | |
assert_equal(np.median(x, axis=(-1, )), np.median(x, axis=-1)) | |
d = np.arange(3 * 5 * 7 * 11).reshape((3, 5, 7, 11)) | |
np.random.shuffle(d.ravel()) | |
assert_equal(np.median(d, axis=(0, 1, 2))[0], | |
np.median(d[:,:,:, 0].flatten())) | |
assert_equal(np.median(d, axis=(0, 1, 3))[1], | |
np.median(d[:,:, 1,:].flatten())) | |
assert_equal(np.median(d, axis=(3, 1, -4))[2], | |
np.median(d[:,:, 2,:].flatten())) | |
assert_equal(np.median(d, axis=(3, 1, 2))[2], | |
np.median(d[2,:,:,:].flatten())) | |
assert_equal(np.median(d, axis=(3, 2))[2, 1], | |
np.median(d[2, 1,:,:].flatten())) | |
assert_equal(np.median(d, axis=(1, -2))[2, 1], | |
np.median(d[2,:,:, 1].flatten())) | |
assert_equal(np.median(d, axis=(1, 3))[2, 2], | |
np.median(d[2,:, 2,:].flatten())) | |
def test_extended_axis_invalid(self): | |
d = np.ones((3, 5, 7, 11)) | |
assert_raises(np.AxisError, np.median, d, axis=-5) | |
assert_raises(np.AxisError, np.median, d, axis=(0, -5)) | |
assert_raises(np.AxisError, np.median, d, axis=4) | |
assert_raises(np.AxisError, np.median, d, axis=(0, 4)) | |
assert_raises(ValueError, np.median, d, axis=(1, 1)) | |
def test_keepdims(self): | |
d = np.ones((3, 5, 7, 11)) | |
assert_equal(np.median(d, axis=None, keepdims=True).shape, | |
(1, 1, 1, 1)) | |
assert_equal(np.median(d, axis=(0, 1), keepdims=True).shape, | |
(1, 1, 7, 11)) | |
assert_equal(np.median(d, axis=(0, 3), keepdims=True).shape, | |
(1, 5, 7, 1)) | |
assert_equal(np.median(d, axis=(1,), keepdims=True).shape, | |
(3, 1, 7, 11)) | |
assert_equal(np.median(d, axis=(0, 1, 2, 3), keepdims=True).shape, | |
(1, 1, 1, 1)) | |
assert_equal(np.median(d, axis=(0, 1, 3), keepdims=True).shape, | |
(1, 1, 7, 1)) | |
class TestAdd_newdoc_ufunc: | |
def test_ufunc_arg(self): | |
assert_raises(TypeError, add_newdoc_ufunc, 2, "blah") | |
assert_raises(ValueError, add_newdoc_ufunc, np.add, "blah") | |
def test_string_arg(self): | |
assert_raises(TypeError, add_newdoc_ufunc, np.add, 3) | |
class TestAdd_newdoc: | |
def test_add_doc(self): | |
# test that np.add_newdoc did attach a docstring successfully: | |
tgt = "Current flat index into the array." | |
assert_equal(np.core.flatiter.index.__doc__[:len(tgt)], tgt) | |
assert_(len(np.core.ufunc.identity.__doc__) > 300) | |
assert_(len(np.lib.index_tricks.mgrid.__doc__) > 300) | |
def test_errors_are_ignored(self): | |
prev_doc = np.core.flatiter.index.__doc__ | |
# nothing changed, but error ignored, this should probably | |
# give a warning (or even error) in the future. | |
np.add_newdoc("numpy.core", "flatiter", ("index", "bad docstring")) | |
assert prev_doc == np.core.flatiter.index.__doc__ | |
class TestAddDocstring(): | |
# Test should possibly be moved, but it also fits to be close to | |
# the newdoc tests... | |
def test_add_same_docstring(self): | |
# test for attributes (which are C-level defined) | |
np.add_docstring(np.ndarray.flat, np.ndarray.flat.__doc__) | |
# And typical functions: | |
def func(): | |
"""docstring""" | |
return | |
np.add_docstring(func, func.__doc__) | |
def test_different_docstring_fails(self): | |
# test for attributes (which are C-level defined) | |
with assert_raises(RuntimeError): | |
np.add_docstring(np.ndarray.flat, "different docstring") | |
# And typical functions: | |
def func(): | |
"""docstring""" | |
return | |
with assert_raises(RuntimeError): | |
np.add_docstring(func, "different docstring") | |
class TestSortComplex: | |
def test_sort_real(self, type_in, type_out): | |
# sort_complex() type casting for real input types | |
a = np.array([5, 3, 6, 2, 1], dtype=type_in) | |
actual = np.sort_complex(a) | |
expected = np.sort(a).astype(type_out) | |
assert_equal(actual, expected) | |
assert_equal(actual.dtype, expected.dtype) | |
def test_sort_complex(self): | |
# sort_complex() handling of complex input | |
a = np.array([2 + 3j, 1 - 2j, 1 - 3j, 2 + 1j], dtype='D') | |
expected = np.array([1 - 3j, 1 - 2j, 2 + 1j, 2 + 3j], dtype='D') | |
actual = np.sort_complex(a) | |
assert_equal(actual, expected) | |
assert_equal(actual.dtype, expected.dtype) | |