Spaces:
Paused
Paused
import numpy as np | |
from numpy.testing import ( | |
assert_, assert_equal, assert_array_equal, assert_almost_equal, | |
assert_array_almost_equal, assert_raises, assert_allclose | |
) | |
class TestPolynomial: | |
def test_poly1d_str_and_repr(self): | |
p = np.poly1d([1., 2, 3]) | |
assert_equal(repr(p), 'poly1d([1., 2., 3.])') | |
assert_equal(str(p), | |
' 2\n' | |
'1 x + 2 x + 3') | |
q = np.poly1d([3., 2, 1]) | |
assert_equal(repr(q), 'poly1d([3., 2., 1.])') | |
assert_equal(str(q), | |
' 2\n' | |
'3 x + 2 x + 1') | |
r = np.poly1d([1.89999 + 2j, -3j, -5.12345678, 2 + 1j]) | |
assert_equal(str(r), | |
' 3 2\n' | |
'(1.9 + 2j) x - 3j x - 5.123 x + (2 + 1j)') | |
assert_equal(str(np.poly1d([-3, -2, -1])), | |
' 2\n' | |
'-3 x - 2 x - 1') | |
def test_poly1d_resolution(self): | |
p = np.poly1d([1., 2, 3]) | |
q = np.poly1d([3., 2, 1]) | |
assert_equal(p(0), 3.0) | |
assert_equal(p(5), 38.0) | |
assert_equal(q(0), 1.0) | |
assert_equal(q(5), 86.0) | |
def test_poly1d_math(self): | |
# here we use some simple coeffs to make calculations easier | |
p = np.poly1d([1., 2, 4]) | |
q = np.poly1d([4., 2, 1]) | |
assert_equal(p/q, (np.poly1d([0.25]), np.poly1d([1.5, 3.75]))) | |
assert_equal(p.integ(), np.poly1d([1/3, 1., 4., 0.])) | |
assert_equal(p.integ(1), np.poly1d([1/3, 1., 4., 0.])) | |
p = np.poly1d([1., 2, 3]) | |
q = np.poly1d([3., 2, 1]) | |
assert_equal(p * q, np.poly1d([3., 8., 14., 8., 3.])) | |
assert_equal(p + q, np.poly1d([4., 4., 4.])) | |
assert_equal(p - q, np.poly1d([-2., 0., 2.])) | |
assert_equal(p ** 4, np.poly1d([1., 8., 36., 104., 214., 312., 324., 216., 81.])) | |
assert_equal(p(q), np.poly1d([9., 12., 16., 8., 6.])) | |
assert_equal(q(p), np.poly1d([3., 12., 32., 40., 34.])) | |
assert_equal(p.deriv(), np.poly1d([2., 2.])) | |
assert_equal(p.deriv(2), np.poly1d([2.])) | |
assert_equal(np.polydiv(np.poly1d([1, 0, -1]), np.poly1d([1, 1])), | |
(np.poly1d([1., -1.]), np.poly1d([0.]))) | |
def test_poly1d_misc(self): | |
p = np.poly1d([1., 2, 3]) | |
assert_equal(np.asarray(p), np.array([1., 2., 3.])) | |
assert_equal(len(p), 2) | |
assert_equal((p[0], p[1], p[2], p[3]), (3.0, 2.0, 1.0, 0)) | |
def test_poly1d_variable_arg(self): | |
q = np.poly1d([1., 2, 3], variable='y') | |
assert_equal(str(q), | |
' 2\n' | |
'1 y + 2 y + 3') | |
q = np.poly1d([1., 2, 3], variable='lambda') | |
assert_equal(str(q), | |
' 2\n' | |
'1 lambda + 2 lambda + 3') | |
def test_poly(self): | |
assert_array_almost_equal(np.poly([3, -np.sqrt(2), np.sqrt(2)]), | |
[1, -3, -2, 6]) | |
# From matlab docs | |
A = [[1, 2, 3], [4, 5, 6], [7, 8, 0]] | |
assert_array_almost_equal(np.poly(A), [1, -6, -72, -27]) | |
# Should produce real output for perfect conjugates | |
assert_(np.isrealobj(np.poly([+1.082j, +2.613j, -2.613j, -1.082j]))) | |
assert_(np.isrealobj(np.poly([0+1j, -0+-1j, 1+2j, | |
1-2j, 1.+3.5j, 1-3.5j]))) | |
assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j, 1+3j, 1-3.j]))) | |
assert_(np.isrealobj(np.poly([1j, -1j, 1+2j, 1-2j]))) | |
assert_(np.isrealobj(np.poly([1j, -1j, 2j, -2j]))) | |
assert_(np.isrealobj(np.poly([1j, -1j]))) | |
assert_(np.isrealobj(np.poly([1, -1]))) | |
assert_(np.iscomplexobj(np.poly([1j, -1.0000001j]))) | |
np.random.seed(42) | |
a = np.random.randn(100) + 1j*np.random.randn(100) | |
assert_(np.isrealobj(np.poly(np.concatenate((a, np.conjugate(a)))))) | |
def test_roots(self): | |
assert_array_equal(np.roots([1, 0, 0]), [0, 0]) | |
def test_str_leading_zeros(self): | |
p = np.poly1d([4, 3, 2, 1]) | |
p[3] = 0 | |
assert_equal(str(p), | |
" 2\n" | |
"3 x + 2 x + 1") | |
p = np.poly1d([1, 2]) | |
p[0] = 0 | |
p[1] = 0 | |
assert_equal(str(p), " \n0") | |
def test_polyfit(self): | |
c = np.array([3., 2., 1.]) | |
x = np.linspace(0, 2, 7) | |
y = np.polyval(c, x) | |
err = [1, -1, 1, -1, 1, -1, 1] | |
weights = np.arange(8, 1, -1)**2/7.0 | |
# Check exception when too few points for variance estimate. Note that | |
# the estimate requires the number of data points to exceed | |
# degree + 1 | |
assert_raises(ValueError, np.polyfit, | |
[1], [1], deg=0, cov=True) | |
# check 1D case | |
m, cov = np.polyfit(x, y+err, 2, cov=True) | |
est = [3.8571, 0.2857, 1.619] | |
assert_almost_equal(est, m, decimal=4) | |
val0 = [[ 1.4694, -2.9388, 0.8163], | |
[-2.9388, 6.3673, -2.1224], | |
[ 0.8163, -2.1224, 1.161 ]] | |
assert_almost_equal(val0, cov, decimal=4) | |
m2, cov2 = np.polyfit(x, y+err, 2, w=weights, cov=True) | |
assert_almost_equal([4.8927, -1.0177, 1.7768], m2, decimal=4) | |
val = [[ 4.3964, -5.0052, 0.4878], | |
[-5.0052, 6.8067, -0.9089], | |
[ 0.4878, -0.9089, 0.3337]] | |
assert_almost_equal(val, cov2, decimal=4) | |
m3, cov3 = np.polyfit(x, y+err, 2, w=weights, cov="unscaled") | |
assert_almost_equal([4.8927, -1.0177, 1.7768], m3, decimal=4) | |
val = [[ 0.1473, -0.1677, 0.0163], | |
[-0.1677, 0.228 , -0.0304], | |
[ 0.0163, -0.0304, 0.0112]] | |
assert_almost_equal(val, cov3, decimal=4) | |
# check 2D (n,1) case | |
y = y[:, np.newaxis] | |
c = c[:, np.newaxis] | |
assert_almost_equal(c, np.polyfit(x, y, 2)) | |
# check 2D (n,2) case | |
yy = np.concatenate((y, y), axis=1) | |
cc = np.concatenate((c, c), axis=1) | |
assert_almost_equal(cc, np.polyfit(x, yy, 2)) | |
m, cov = np.polyfit(x, yy + np.array(err)[:, np.newaxis], 2, cov=True) | |
assert_almost_equal(est, m[:, 0], decimal=4) | |
assert_almost_equal(est, m[:, 1], decimal=4) | |
assert_almost_equal(val0, cov[:, :, 0], decimal=4) | |
assert_almost_equal(val0, cov[:, :, 1], decimal=4) | |
# check order 1 (deg=0) case, were the analytic results are simple | |
np.random.seed(123) | |
y = np.random.normal(size=(4, 10000)) | |
mean, cov = np.polyfit(np.zeros(y.shape[0]), y, deg=0, cov=True) | |
# Should get sigma_mean = sigma/sqrt(N) = 1./sqrt(4) = 0.5. | |
assert_allclose(mean.std(), 0.5, atol=0.01) | |
assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01) | |
# Without scaling, since reduced chi2 is 1, the result should be the same. | |
mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=np.ones(y.shape[0]), | |
deg=0, cov="unscaled") | |
assert_allclose(mean.std(), 0.5, atol=0.01) | |
assert_almost_equal(np.sqrt(cov.mean()), 0.5) | |
# If we estimate our errors wrong, no change with scaling: | |
w = np.full(y.shape[0], 1./0.5) | |
mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov=True) | |
assert_allclose(mean.std(), 0.5, atol=0.01) | |
assert_allclose(np.sqrt(cov.mean()), 0.5, atol=0.01) | |
# But if we do not scale, our estimate for the error in the mean will | |
# differ. | |
mean, cov = np.polyfit(np.zeros(y.shape[0]), y, w=w, deg=0, cov="unscaled") | |
assert_allclose(mean.std(), 0.5, atol=0.01) | |
assert_almost_equal(np.sqrt(cov.mean()), 0.25) | |
def test_objects(self): | |
from decimal import Decimal | |
p = np.poly1d([Decimal('4.0'), Decimal('3.0'), Decimal('2.0')]) | |
p2 = p * Decimal('1.333333333333333') | |
assert_(p2[1] == Decimal("3.9999999999999990")) | |
p2 = p.deriv() | |
assert_(p2[1] == Decimal('8.0')) | |
p2 = p.integ() | |
assert_(p2[3] == Decimal("1.333333333333333333333333333")) | |
assert_(p2[2] == Decimal('1.5')) | |
assert_(np.issubdtype(p2.coeffs.dtype, np.object_)) | |
p = np.poly([Decimal(1), Decimal(2)]) | |
assert_equal(np.poly([Decimal(1), Decimal(2)]), | |
[1, Decimal(-3), Decimal(2)]) | |
def test_complex(self): | |
p = np.poly1d([3j, 2j, 1j]) | |
p2 = p.integ() | |
assert_((p2.coeffs == [1j, 1j, 1j, 0]).all()) | |
p2 = p.deriv() | |
assert_((p2.coeffs == [6j, 2j]).all()) | |
def test_integ_coeffs(self): | |
p = np.poly1d([3, 2, 1]) | |
p2 = p.integ(3, k=[9, 7, 6]) | |
assert_( | |
(p2.coeffs == [1/4./5., 1/3./4., 1/2./3., 9/1./2., 7, 6]).all()) | |
def test_zero_dims(self): | |
try: | |
np.poly(np.zeros((0, 0))) | |
except ValueError: | |
pass | |
def test_poly_int_overflow(self): | |
""" | |
Regression test for gh-5096. | |
""" | |
v = np.arange(1, 21) | |
assert_almost_equal(np.poly(v), np.poly(np.diag(v))) | |
def test_zero_poly_dtype(self): | |
""" | |
Regression test for gh-16354. | |
""" | |
z = np.array([0, 0, 0]) | |
p = np.poly1d(z.astype(np.int64)) | |
assert_equal(p.coeffs.dtype, np.int64) | |
p = np.poly1d(z.astype(np.float32)) | |
assert_equal(p.coeffs.dtype, np.float32) | |
p = np.poly1d(z.astype(np.complex64)) | |
assert_equal(p.coeffs.dtype, np.complex64) | |
def test_poly_eq(self): | |
p = np.poly1d([1, 2, 3]) | |
p2 = np.poly1d([1, 2, 4]) | |
assert_equal(p == None, False) | |
assert_equal(p != None, True) | |
assert_equal(p == p, True) | |
assert_equal(p == p2, False) | |
assert_equal(p != p2, True) | |
def test_polydiv(self): | |
b = np.poly1d([2, 6, 6, 1]) | |
a = np.poly1d([-1j, (1+2j), -(2+1j), 1]) | |
q, r = np.polydiv(b, a) | |
assert_equal(q.coeffs.dtype, np.complex128) | |
assert_equal(r.coeffs.dtype, np.complex128) | |
assert_equal(q*a + r, b) | |
c = [1, 2, 3] | |
d = np.poly1d([1, 2, 3]) | |
s, t = np.polydiv(c, d) | |
assert isinstance(s, np.poly1d) | |
assert isinstance(t, np.poly1d) | |
u, v = np.polydiv(d, c) | |
assert isinstance(u, np.poly1d) | |
assert isinstance(v, np.poly1d) | |
def test_poly_coeffs_mutable(self): | |
""" Coefficients should be modifiable """ | |
p = np.poly1d([1, 2, 3]) | |
p.coeffs += 1 | |
assert_equal(p.coeffs, [2, 3, 4]) | |
p.coeffs[2] += 10 | |
assert_equal(p.coeffs, [2, 3, 14]) | |
# this never used to be allowed - let's not add features to deprecated | |
# APIs | |
assert_raises(AttributeError, setattr, p, 'coeffs', np.array(1)) | |