Spaces:
Paused
Paused
import os | |
import sys | |
import textwrap | |
import types | |
import re | |
import warnings | |
from numpy.core.numerictypes import issubclass_, issubsctype, issubdtype | |
from numpy.core.overrides import set_module | |
from numpy.core import ndarray, ufunc, asarray | |
import numpy as np | |
__all__ = [ | |
'issubclass_', 'issubsctype', 'issubdtype', 'deprecate', | |
'deprecate_with_doc', 'get_include', 'info', 'source', 'who', | |
'lookfor', 'byte_bounds', 'safe_eval' | |
] | |
def get_include(): | |
""" | |
Return the directory that contains the NumPy \\*.h header files. | |
Extension modules that need to compile against NumPy should use this | |
function to locate the appropriate include directory. | |
Notes | |
----- | |
When using ``distutils``, for example in ``setup.py``. | |
:: | |
import numpy as np | |
... | |
Extension('extension_name', ... | |
include_dirs=[np.get_include()]) | |
... | |
""" | |
import numpy | |
if numpy.show_config is None: | |
# running from numpy source directory | |
d = os.path.join(os.path.dirname(numpy.__file__), 'core', 'include') | |
else: | |
# using installed numpy core headers | |
import numpy.core as core | |
d = os.path.join(os.path.dirname(core.__file__), 'include') | |
return d | |
def _set_function_name(func, name): | |
func.__name__ = name | |
return func | |
class _Deprecate: | |
""" | |
Decorator class to deprecate old functions. | |
Refer to `deprecate` for details. | |
See Also | |
-------- | |
deprecate | |
""" | |
def __init__(self, old_name=None, new_name=None, message=None): | |
self.old_name = old_name | |
self.new_name = new_name | |
self.message = message | |
def __call__(self, func, *args, **kwargs): | |
""" | |
Decorator call. Refer to ``decorate``. | |
""" | |
old_name = self.old_name | |
new_name = self.new_name | |
message = self.message | |
if old_name is None: | |
try: | |
old_name = func.__name__ | |
except AttributeError: | |
old_name = func.__name__ | |
if new_name is None: | |
depdoc = "`%s` is deprecated!" % old_name | |
else: | |
depdoc = "`%s` is deprecated, use `%s` instead!" % \ | |
(old_name, new_name) | |
if message is not None: | |
depdoc += "\n" + message | |
def newfunc(*args,**kwds): | |
"""`arrayrange` is deprecated, use `arange` instead!""" | |
warnings.warn(depdoc, DeprecationWarning, stacklevel=2) | |
return func(*args, **kwds) | |
newfunc = _set_function_name(newfunc, old_name) | |
doc = func.__doc__ | |
if doc is None: | |
doc = depdoc | |
else: | |
lines = doc.expandtabs().split('\n') | |
indent = _get_indent(lines[1:]) | |
if lines[0].lstrip(): | |
# Indent the original first line to let inspect.cleandoc() | |
# dedent the docstring despite the deprecation notice. | |
doc = indent * ' ' + doc | |
else: | |
# Remove the same leading blank lines as cleandoc() would. | |
skip = len(lines[0]) + 1 | |
for line in lines[1:]: | |
if len(line) > indent: | |
break | |
skip += len(line) + 1 | |
doc = doc[skip:] | |
depdoc = textwrap.indent(depdoc, ' ' * indent) | |
doc = '\n\n'.join([depdoc, doc]) | |
newfunc.__doc__ = doc | |
try: | |
d = func.__dict__ | |
except AttributeError: | |
pass | |
else: | |
newfunc.__dict__.update(d) | |
return newfunc | |
def _get_indent(lines): | |
""" | |
Determines the leading whitespace that could be removed from all the lines. | |
""" | |
indent = sys.maxsize | |
for line in lines: | |
content = len(line.lstrip()) | |
if content: | |
indent = min(indent, len(line) - content) | |
if indent == sys.maxsize: | |
indent = 0 | |
return indent | |
def deprecate(*args, **kwargs): | |
""" | |
Issues a DeprecationWarning, adds warning to `old_name`'s | |
docstring, rebinds ``old_name.__name__`` and returns the new | |
function object. | |
This function may also be used as a decorator. | |
Parameters | |
---------- | |
func : function | |
The function to be deprecated. | |
old_name : str, optional | |
The name of the function to be deprecated. Default is None, in | |
which case the name of `func` is used. | |
new_name : str, optional | |
The new name for the function. Default is None, in which case the | |
deprecation message is that `old_name` is deprecated. If given, the | |
deprecation message is that `old_name` is deprecated and `new_name` | |
should be used instead. | |
message : str, optional | |
Additional explanation of the deprecation. Displayed in the | |
docstring after the warning. | |
Returns | |
------- | |
old_func : function | |
The deprecated function. | |
Examples | |
-------- | |
Note that ``olduint`` returns a value after printing Deprecation | |
Warning: | |
>>> olduint = np.deprecate(np.uint) | |
DeprecationWarning: `uint64` is deprecated! # may vary | |
>>> olduint(6) | |
6 | |
""" | |
# Deprecate may be run as a function or as a decorator | |
# If run as a function, we initialise the decorator class | |
# and execute its __call__ method. | |
if args: | |
fn = args[0] | |
args = args[1:] | |
return _Deprecate(*args, **kwargs)(fn) | |
else: | |
return _Deprecate(*args, **kwargs) | |
def deprecate_with_doc(msg): | |
""" | |
Deprecates a function and includes the deprecation in its docstring. | |
This function is used as a decorator. It returns an object that can be | |
used to issue a DeprecationWarning, by passing the to-be decorated | |
function as argument, this adds warning to the to-be decorated function's | |
docstring and returns the new function object. | |
See Also | |
-------- | |
deprecate : Decorate a function such that it issues a `DeprecationWarning` | |
Parameters | |
---------- | |
msg : str | |
Additional explanation of the deprecation. Displayed in the | |
docstring after the warning. | |
Returns | |
------- | |
obj : object | |
""" | |
return _Deprecate(message=msg) | |
#-------------------------------------------- | |
# Determine if two arrays can share memory | |
#-------------------------------------------- | |
def byte_bounds(a): | |
""" | |
Returns pointers to the end-points of an array. | |
Parameters | |
---------- | |
a : ndarray | |
Input array. It must conform to the Python-side of the array | |
interface. | |
Returns | |
------- | |
(low, high) : tuple of 2 integers | |
The first integer is the first byte of the array, the second | |
integer is just past the last byte of the array. If `a` is not | |
contiguous it will not use every byte between the (`low`, `high`) | |
values. | |
Examples | |
-------- | |
>>> I = np.eye(2, dtype='f'); I.dtype | |
dtype('float32') | |
>>> low, high = np.byte_bounds(I) | |
>>> high - low == I.size*I.itemsize | |
True | |
>>> I = np.eye(2); I.dtype | |
dtype('float64') | |
>>> low, high = np.byte_bounds(I) | |
>>> high - low == I.size*I.itemsize | |
True | |
""" | |
ai = a.__array_interface__ | |
a_data = ai['data'][0] | |
astrides = ai['strides'] | |
ashape = ai['shape'] | |
bytes_a = asarray(a).dtype.itemsize | |
a_low = a_high = a_data | |
if astrides is None: | |
# contiguous case | |
a_high += a.size * bytes_a | |
else: | |
for shape, stride in zip(ashape, astrides): | |
if stride < 0: | |
a_low += (shape-1)*stride | |
else: | |
a_high += (shape-1)*stride | |
a_high += bytes_a | |
return a_low, a_high | |
#----------------------------------------------------------------------------- | |
# Function for output and information on the variables used. | |
#----------------------------------------------------------------------------- | |
def who(vardict=None): | |
""" | |
Print the NumPy arrays in the given dictionary. | |
If there is no dictionary passed in or `vardict` is None then returns | |
NumPy arrays in the globals() dictionary (all NumPy arrays in the | |
namespace). | |
Parameters | |
---------- | |
vardict : dict, optional | |
A dictionary possibly containing ndarrays. Default is globals(). | |
Returns | |
------- | |
out : None | |
Returns 'None'. | |
Notes | |
----- | |
Prints out the name, shape, bytes and type of all of the ndarrays | |
present in `vardict`. | |
Examples | |
-------- | |
>>> a = np.arange(10) | |
>>> b = np.ones(20) | |
>>> np.who() | |
Name Shape Bytes Type | |
=========================================================== | |
a 10 80 int64 | |
b 20 160 float64 | |
Upper bound on total bytes = 240 | |
>>> d = {'x': np.arange(2.0), 'y': np.arange(3.0), 'txt': 'Some str', | |
... 'idx':5} | |
>>> np.who(d) | |
Name Shape Bytes Type | |
=========================================================== | |
x 2 16 float64 | |
y 3 24 float64 | |
Upper bound on total bytes = 40 | |
""" | |
if vardict is None: | |
frame = sys._getframe().f_back | |
vardict = frame.f_globals | |
sta = [] | |
cache = {} | |
for name in vardict.keys(): | |
if isinstance(vardict[name], ndarray): | |
var = vardict[name] | |
idv = id(var) | |
if idv in cache.keys(): | |
namestr = name + " (%s)" % cache[idv] | |
original = 0 | |
else: | |
cache[idv] = name | |
namestr = name | |
original = 1 | |
shapestr = " x ".join(map(str, var.shape)) | |
bytestr = str(var.nbytes) | |
sta.append([namestr, shapestr, bytestr, var.dtype.name, | |
original]) | |
maxname = 0 | |
maxshape = 0 | |
maxbyte = 0 | |
totalbytes = 0 | |
for k in range(len(sta)): | |
val = sta[k] | |
if maxname < len(val[0]): | |
maxname = len(val[0]) | |
if maxshape < len(val[1]): | |
maxshape = len(val[1]) | |
if maxbyte < len(val[2]): | |
maxbyte = len(val[2]) | |
if val[4]: | |
totalbytes += int(val[2]) | |
if len(sta) > 0: | |
sp1 = max(10, maxname) | |
sp2 = max(10, maxshape) | |
sp3 = max(10, maxbyte) | |
prval = "Name %s Shape %s Bytes %s Type" % (sp1*' ', sp2*' ', sp3*' ') | |
print(prval + "\n" + "="*(len(prval)+5) + "\n") | |
for k in range(len(sta)): | |
val = sta[k] | |
print("%s %s %s %s %s %s %s" % (val[0], ' '*(sp1-len(val[0])+4), | |
val[1], ' '*(sp2-len(val[1])+5), | |
val[2], ' '*(sp3-len(val[2])+5), | |
val[3])) | |
print("\nUpper bound on total bytes = %d" % totalbytes) | |
return | |
#----------------------------------------------------------------------------- | |
# NOTE: pydoc defines a help function which works similarly to this | |
# except it uses a pager to take over the screen. | |
# combine name and arguments and split to multiple lines of width | |
# characters. End lines on a comma and begin argument list indented with | |
# the rest of the arguments. | |
def _split_line(name, arguments, width): | |
firstwidth = len(name) | |
k = firstwidth | |
newstr = name | |
sepstr = ", " | |
arglist = arguments.split(sepstr) | |
for argument in arglist: | |
if k == firstwidth: | |
addstr = "" | |
else: | |
addstr = sepstr | |
k = k + len(argument) + len(addstr) | |
if k > width: | |
k = firstwidth + 1 + len(argument) | |
newstr = newstr + ",\n" + " "*(firstwidth+2) + argument | |
else: | |
newstr = newstr + addstr + argument | |
return newstr | |
_namedict = None | |
_dictlist = None | |
# Traverse all module directories underneath globals | |
# to see if something is defined | |
def _makenamedict(module='numpy'): | |
module = __import__(module, globals(), locals(), []) | |
thedict = {module.__name__:module.__dict__} | |
dictlist = [module.__name__] | |
totraverse = [module.__dict__] | |
while True: | |
if len(totraverse) == 0: | |
break | |
thisdict = totraverse.pop(0) | |
for x in thisdict.keys(): | |
if isinstance(thisdict[x], types.ModuleType): | |
modname = thisdict[x].__name__ | |
if modname not in dictlist: | |
moddict = thisdict[x].__dict__ | |
dictlist.append(modname) | |
totraverse.append(moddict) | |
thedict[modname] = moddict | |
return thedict, dictlist | |
def _info(obj, output=sys.stdout): | |
"""Provide information about ndarray obj. | |
Parameters | |
---------- | |
obj : ndarray | |
Must be ndarray, not checked. | |
output | |
Where printed output goes. | |
Notes | |
----- | |
Copied over from the numarray module prior to its removal. | |
Adapted somewhat as only numpy is an option now. | |
Called by info. | |
""" | |
extra = "" | |
tic = "" | |
bp = lambda x: x | |
cls = getattr(obj, '__class__', type(obj)) | |
nm = getattr(cls, '__name__', cls) | |
strides = obj.strides | |
endian = obj.dtype.byteorder | |
print("class: ", nm, file=output) | |
print("shape: ", obj.shape, file=output) | |
print("strides: ", strides, file=output) | |
print("itemsize: ", obj.itemsize, file=output) | |
print("aligned: ", bp(obj.flags.aligned), file=output) | |
print("contiguous: ", bp(obj.flags.contiguous), file=output) | |
print("fortran: ", obj.flags.fortran, file=output) | |
print( | |
"data pointer: %s%s" % (hex(obj.ctypes._as_parameter_.value), extra), | |
file=output | |
) | |
print("byteorder: ", end=' ', file=output) | |
if endian in ['|', '=']: | |
print("%s%s%s" % (tic, sys.byteorder, tic), file=output) | |
byteswap = False | |
elif endian == '>': | |
print("%sbig%s" % (tic, tic), file=output) | |
byteswap = sys.byteorder != "big" | |
else: | |
print("%slittle%s" % (tic, tic), file=output) | |
byteswap = sys.byteorder != "little" | |
print("byteswap: ", bp(byteswap), file=output) | |
print("type: %s" % obj.dtype, file=output) | |
def info(object=None, maxwidth=76, output=sys.stdout, toplevel='numpy'): | |
""" | |
Get help information for a function, class, or module. | |
Parameters | |
---------- | |
object : object or str, optional | |
Input object or name to get information about. If `object` is a | |
numpy object, its docstring is given. If it is a string, available | |
modules are searched for matching objects. If None, information | |
about `info` itself is returned. | |
maxwidth : int, optional | |
Printing width. | |
output : file like object, optional | |
File like object that the output is written to, default is | |
``stdout``. The object has to be opened in 'w' or 'a' mode. | |
toplevel : str, optional | |
Start search at this level. | |
See Also | |
-------- | |
source, lookfor | |
Notes | |
----- | |
When used interactively with an object, ``np.info(obj)`` is equivalent | |
to ``help(obj)`` on the Python prompt or ``obj?`` on the IPython | |
prompt. | |
Examples | |
-------- | |
>>> np.info(np.polyval) # doctest: +SKIP | |
polyval(p, x) | |
Evaluate the polynomial p at x. | |
... | |
When using a string for `object` it is possible to get multiple results. | |
>>> np.info('fft') # doctest: +SKIP | |
*** Found in numpy *** | |
Core FFT routines | |
... | |
*** Found in numpy.fft *** | |
fft(a, n=None, axis=-1) | |
... | |
*** Repeat reference found in numpy.fft.fftpack *** | |
*** Total of 3 references found. *** | |
""" | |
global _namedict, _dictlist | |
# Local import to speed up numpy's import time. | |
import pydoc | |
import inspect | |
if (hasattr(object, '_ppimport_importer') or | |
hasattr(object, '_ppimport_module')): | |
object = object._ppimport_module | |
elif hasattr(object, '_ppimport_attr'): | |
object = object._ppimport_attr | |
if object is None: | |
info(info) | |
elif isinstance(object, ndarray): | |
_info(object, output=output) | |
elif isinstance(object, str): | |
if _namedict is None: | |
_namedict, _dictlist = _makenamedict(toplevel) | |
numfound = 0 | |
objlist = [] | |
for namestr in _dictlist: | |
try: | |
obj = _namedict[namestr][object] | |
if id(obj) in objlist: | |
print("\n " | |
"*** Repeat reference found in %s *** " % namestr, | |
file=output | |
) | |
else: | |
objlist.append(id(obj)) | |
print(" *** Found in %s ***" % namestr, file=output) | |
info(obj) | |
print("-"*maxwidth, file=output) | |
numfound += 1 | |
except KeyError: | |
pass | |
if numfound == 0: | |
print("Help for %s not found." % object, file=output) | |
else: | |
print("\n " | |
"*** Total of %d references found. ***" % numfound, | |
file=output | |
) | |
elif inspect.isfunction(object) or inspect.ismethod(object): | |
name = object.__name__ | |
try: | |
arguments = str(inspect.signature(object)) | |
except Exception: | |
arguments = "()" | |
if len(name+arguments) > maxwidth: | |
argstr = _split_line(name, arguments, maxwidth) | |
else: | |
argstr = name + arguments | |
print(" " + argstr + "\n", file=output) | |
print(inspect.getdoc(object), file=output) | |
elif inspect.isclass(object): | |
name = object.__name__ | |
try: | |
arguments = str(inspect.signature(object)) | |
except Exception: | |
arguments = "()" | |
if len(name+arguments) > maxwidth: | |
argstr = _split_line(name, arguments, maxwidth) | |
else: | |
argstr = name + arguments | |
print(" " + argstr + "\n", file=output) | |
doc1 = inspect.getdoc(object) | |
if doc1 is None: | |
if hasattr(object, '__init__'): | |
print(inspect.getdoc(object.__init__), file=output) | |
else: | |
print(inspect.getdoc(object), file=output) | |
methods = pydoc.allmethods(object) | |
public_methods = [meth for meth in methods if meth[0] != '_'] | |
if public_methods: | |
print("\n\nMethods:\n", file=output) | |
for meth in public_methods: | |
thisobj = getattr(object, meth, None) | |
if thisobj is not None: | |
methstr, other = pydoc.splitdoc( | |
inspect.getdoc(thisobj) or "None" | |
) | |
print(" %s -- %s" % (meth, methstr), file=output) | |
elif hasattr(object, '__doc__'): | |
print(inspect.getdoc(object), file=output) | |
def source(object, output=sys.stdout): | |
""" | |
Print or write to a file the source code for a NumPy object. | |
The source code is only returned for objects written in Python. Many | |
functions and classes are defined in C and will therefore not return | |
useful information. | |
Parameters | |
---------- | |
object : numpy object | |
Input object. This can be any object (function, class, module, | |
...). | |
output : file object, optional | |
If `output` not supplied then source code is printed to screen | |
(sys.stdout). File object must be created with either write 'w' or | |
append 'a' modes. | |
See Also | |
-------- | |
lookfor, info | |
Examples | |
-------- | |
>>> np.source(np.interp) #doctest: +SKIP | |
In file: /usr/lib/python2.6/dist-packages/numpy/lib/function_base.py | |
def interp(x, xp, fp, left=None, right=None): | |
\"\"\".... (full docstring printed)\"\"\" | |
if isinstance(x, (float, int, number)): | |
return compiled_interp([x], xp, fp, left, right).item() | |
else: | |
return compiled_interp(x, xp, fp, left, right) | |
The source code is only returned for objects written in Python. | |
>>> np.source(np.array) #doctest: +SKIP | |
Not available for this object. | |
""" | |
# Local import to speed up numpy's import time. | |
import inspect | |
try: | |
print("In file: %s\n" % inspect.getsourcefile(object), file=output) | |
print(inspect.getsource(object), file=output) | |
except Exception: | |
print("Not available for this object.", file=output) | |
# Cache for lookfor: {id(module): {name: (docstring, kind, index), ...}...} | |
# where kind: "func", "class", "module", "object" | |
# and index: index in breadth-first namespace traversal | |
_lookfor_caches = {} | |
# regexp whose match indicates that the string may contain a function | |
# signature | |
_function_signature_re = re.compile(r"[a-z0-9_]+\(.*[,=].*\)", re.I) | |
def lookfor(what, module=None, import_modules=True, regenerate=False, | |
output=None): | |
""" | |
Do a keyword search on docstrings. | |
A list of objects that matched the search is displayed, | |
sorted by relevance. All given keywords need to be found in the | |
docstring for it to be returned as a result, but the order does | |
not matter. | |
Parameters | |
---------- | |
what : str | |
String containing words to look for. | |
module : str or list, optional | |
Name of module(s) whose docstrings to go through. | |
import_modules : bool, optional | |
Whether to import sub-modules in packages. Default is True. | |
regenerate : bool, optional | |
Whether to re-generate the docstring cache. Default is False. | |
output : file-like, optional | |
File-like object to write the output to. If omitted, use a pager. | |
See Also | |
-------- | |
source, info | |
Notes | |
----- | |
Relevance is determined only roughly, by checking if the keywords occur | |
in the function name, at the start of a docstring, etc. | |
Examples | |
-------- | |
>>> np.lookfor('binary representation') # doctest: +SKIP | |
Search results for 'binary representation' | |
------------------------------------------ | |
numpy.binary_repr | |
Return the binary representation of the input number as a string. | |
numpy.core.setup_common.long_double_representation | |
Given a binary dump as given by GNU od -b, look for long double | |
numpy.base_repr | |
Return a string representation of a number in the given base system. | |
... | |
""" | |
import pydoc | |
# Cache | |
cache = _lookfor_generate_cache(module, import_modules, regenerate) | |
# Search | |
# XXX: maybe using a real stemming search engine would be better? | |
found = [] | |
whats = str(what).lower().split() | |
if not whats: | |
return | |
for name, (docstring, kind, index) in cache.items(): | |
if kind in ('module', 'object'): | |
# don't show modules or objects | |
continue | |
doc = docstring.lower() | |
if all(w in doc for w in whats): | |
found.append(name) | |
# Relevance sort | |
# XXX: this is full Harrison-Stetson heuristics now, | |
# XXX: it probably could be improved | |
kind_relevance = {'func': 1000, 'class': 1000, | |
'module': -1000, 'object': -1000} | |
def relevance(name, docstr, kind, index): | |
r = 0 | |
# do the keywords occur within the start of the docstring? | |
first_doc = "\n".join(docstr.lower().strip().split("\n")[:3]) | |
r += sum([200 for w in whats if w in first_doc]) | |
# do the keywords occur in the function name? | |
r += sum([30 for w in whats if w in name]) | |
# is the full name long? | |
r += -len(name) * 5 | |
# is the object of bad type? | |
r += kind_relevance.get(kind, -1000) | |
# is the object deep in namespace hierarchy? | |
r += -name.count('.') * 10 | |
r += max(-index / 100, -100) | |
return r | |
def relevance_value(a): | |
return relevance(a, *cache[a]) | |
found.sort(key=relevance_value) | |
# Pretty-print | |
s = "Search results for '%s'" % (' '.join(whats)) | |
help_text = [s, "-"*len(s)] | |
for name in found[::-1]: | |
doc, kind, ix = cache[name] | |
doclines = [line.strip() for line in doc.strip().split("\n") | |
if line.strip()] | |
# find a suitable short description | |
try: | |
first_doc = doclines[0].strip() | |
if _function_signature_re.search(first_doc): | |
first_doc = doclines[1].strip() | |
except IndexError: | |
first_doc = "" | |
help_text.append("%s\n %s" % (name, first_doc)) | |
if not found: | |
help_text.append("Nothing found.") | |
# Output | |
if output is not None: | |
output.write("\n".join(help_text)) | |
elif len(help_text) > 10: | |
pager = pydoc.getpager() | |
pager("\n".join(help_text)) | |
else: | |
print("\n".join(help_text)) | |
def _lookfor_generate_cache(module, import_modules, regenerate): | |
""" | |
Generate docstring cache for given module. | |
Parameters | |
---------- | |
module : str, None, module | |
Module for which to generate docstring cache | |
import_modules : bool | |
Whether to import sub-modules in packages. | |
regenerate : bool | |
Re-generate the docstring cache | |
Returns | |
------- | |
cache : dict {obj_full_name: (docstring, kind, index), ...} | |
Docstring cache for the module, either cached one (regenerate=False) | |
or newly generated. | |
""" | |
# Local import to speed up numpy's import time. | |
import inspect | |
from io import StringIO | |
if module is None: | |
module = "numpy" | |
if isinstance(module, str): | |
try: | |
__import__(module) | |
except ImportError: | |
return {} | |
module = sys.modules[module] | |
elif isinstance(module, list) or isinstance(module, tuple): | |
cache = {} | |
for mod in module: | |
cache.update(_lookfor_generate_cache(mod, import_modules, | |
regenerate)) | |
return cache | |
if id(module) in _lookfor_caches and not regenerate: | |
return _lookfor_caches[id(module)] | |
# walk items and collect docstrings | |
cache = {} | |
_lookfor_caches[id(module)] = cache | |
seen = {} | |
index = 0 | |
stack = [(module.__name__, module)] | |
while stack: | |
name, item = stack.pop(0) | |
if id(item) in seen: | |
continue | |
seen[id(item)] = True | |
index += 1 | |
kind = "object" | |
if inspect.ismodule(item): | |
kind = "module" | |
try: | |
_all = item.__all__ | |
except AttributeError: | |
_all = None | |
# import sub-packages | |
if import_modules and hasattr(item, '__path__'): | |
for pth in item.__path__: | |
for mod_path in os.listdir(pth): | |
this_py = os.path.join(pth, mod_path) | |
init_py = os.path.join(pth, mod_path, '__init__.py') | |
if (os.path.isfile(this_py) and | |
mod_path.endswith('.py')): | |
to_import = mod_path[:-3] | |
elif os.path.isfile(init_py): | |
to_import = mod_path | |
else: | |
continue | |
if to_import == '__init__': | |
continue | |
try: | |
old_stdout = sys.stdout | |
old_stderr = sys.stderr | |
try: | |
sys.stdout = StringIO() | |
sys.stderr = StringIO() | |
__import__("%s.%s" % (name, to_import)) | |
finally: | |
sys.stdout = old_stdout | |
sys.stderr = old_stderr | |
# Catch SystemExit, too | |
except BaseException: | |
continue | |
for n, v in _getmembers(item): | |
try: | |
item_name = getattr(v, '__name__', "%s.%s" % (name, n)) | |
mod_name = getattr(v, '__module__', None) | |
except NameError: | |
# ref. SWIG's global cvars | |
# NameError: Unknown C global variable | |
item_name = "%s.%s" % (name, n) | |
mod_name = None | |
if '.' not in item_name and mod_name: | |
item_name = "%s.%s" % (mod_name, item_name) | |
if not item_name.startswith(name + '.'): | |
# don't crawl "foreign" objects | |
if isinstance(v, ufunc): | |
# ... unless they are ufuncs | |
pass | |
else: | |
continue | |
elif not (inspect.ismodule(v) or _all is None or n in _all): | |
continue | |
stack.append(("%s.%s" % (name, n), v)) | |
elif inspect.isclass(item): | |
kind = "class" | |
for n, v in _getmembers(item): | |
stack.append(("%s.%s" % (name, n), v)) | |
elif hasattr(item, "__call__"): | |
kind = "func" | |
try: | |
doc = inspect.getdoc(item) | |
except NameError: | |
# ref SWIG's NameError: Unknown C global variable | |
doc = None | |
if doc is not None: | |
cache[name] = (doc, kind, index) | |
return cache | |
def _getmembers(item): | |
import inspect | |
try: | |
members = inspect.getmembers(item) | |
except Exception: | |
members = [(x, getattr(item, x)) for x in dir(item) | |
if hasattr(item, x)] | |
return members | |
def safe_eval(source): | |
""" | |
Protected string evaluation. | |
Evaluate a string containing a Python literal expression without | |
allowing the execution of arbitrary non-literal code. | |
Parameters | |
---------- | |
source : str | |
The string to evaluate. | |
Returns | |
------- | |
obj : object | |
The result of evaluating `source`. | |
Raises | |
------ | |
SyntaxError | |
If the code has invalid Python syntax, or if it contains | |
non-literal code. | |
Examples | |
-------- | |
>>> np.safe_eval('1') | |
1 | |
>>> np.safe_eval('[1, 2, 3]') | |
[1, 2, 3] | |
>>> np.safe_eval('{"foo": ("bar", 10.0)}') | |
{'foo': ('bar', 10.0)} | |
>>> np.safe_eval('import os') | |
Traceback (most recent call last): | |
... | |
SyntaxError: invalid syntax | |
>>> np.safe_eval('open("/home/user/.ssh/id_dsa").read()') | |
Traceback (most recent call last): | |
... | |
ValueError: malformed node or string: <_ast.Call object at 0x...> | |
""" | |
# Local import to speed up numpy's import time. | |
import ast | |
return ast.literal_eval(source) | |
def _median_nancheck(data, result, axis, out): | |
""" | |
Utility function to check median result from data for NaN values at the end | |
and return NaN in that case. Input result can also be a MaskedArray. | |
Parameters | |
---------- | |
data : array | |
Input data to median function | |
result : Array or MaskedArray | |
Result of median function | |
axis : int | |
Axis along which the median was computed. | |
out : ndarray, optional | |
Output array in which to place the result. | |
Returns | |
------- | |
median : scalar or ndarray | |
Median or NaN in axes which contained NaN in the input. | |
""" | |
if data.size == 0: | |
return result | |
n = np.isnan(data.take(-1, axis=axis)) | |
# masked NaN values are ok | |
if np.ma.isMaskedArray(n): | |
n = n.filled(False) | |
if result.ndim == 0: | |
if n == True: | |
if out is not None: | |
out[...] = data.dtype.type(np.nan) | |
result = out | |
else: | |
result = data.dtype.type(np.nan) | |
elif np.count_nonzero(n.ravel()) > 0: | |
result[n] = np.nan | |
return result | |
def _opt_info(): | |
""" | |
Returns a string contains the supported CPU features by the current build. | |
The string format can be explained as follows: | |
- dispatched features that are supported by the running machine | |
end with `*`. | |
- dispatched features that are "not" supported by the running machine | |
end with `?`. | |
- remained features are representing the baseline. | |
""" | |
from numpy.core._multiarray_umath import ( | |
__cpu_features__, __cpu_baseline__, __cpu_dispatch__ | |
) | |
if len(__cpu_baseline__) == 0 and len(__cpu_dispatch__) == 0: | |
return '' | |
enabled_features = ' '.join(__cpu_baseline__) | |
for feature in __cpu_dispatch__: | |
if __cpu_features__[feature]: | |
enabled_features += f" {feature}*" | |
else: | |
enabled_features += f" {feature}?" | |
return enabled_features | |
#----------------------------------------------------------------------------- | |