Kano001 commited on
Commit
864affd
1 Parent(s): 49cd62a

Upload 462 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. MLPY/Lib/site-packages/torchaudio-2.3.1.dist-info/INSTALLER +1 -0
  3. MLPY/Lib/site-packages/torchaudio-2.3.1.dist-info/LICENSE +25 -0
  4. MLPY/Lib/site-packages/torchaudio-2.3.1.dist-info/METADATA +113 -0
  5. MLPY/Lib/site-packages/torchaudio-2.3.1.dist-info/RECORD +277 -0
  6. MLPY/Lib/site-packages/torchaudio-2.3.1.dist-info/REQUESTED +0 -0
  7. MLPY/Lib/site-packages/torchaudio-2.3.1.dist-info/WHEEL +5 -0
  8. MLPY/Lib/site-packages/torchaudio-2.3.1.dist-info/top_level.txt +2 -0
  9. MLPY/Lib/site-packages/torchaudio/__init__.py +53 -0
  10. MLPY/Lib/site-packages/torchaudio/__pycache__/__init__.cpython-39.pyc +0 -0
  11. MLPY/Lib/site-packages/torchaudio/__pycache__/kaldi_io.cpython-39.pyc +0 -0
  12. MLPY/Lib/site-packages/torchaudio/__pycache__/version.cpython-39.pyc +0 -0
  13. MLPY/Lib/site-packages/torchaudio/_backend/__init__.py +61 -0
  14. MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/__init__.cpython-39.pyc +0 -0
  15. MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/backend.cpython-39.pyc +0 -0
  16. MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/common.cpython-39.pyc +0 -0
  17. MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/ffmpeg.cpython-39.pyc +0 -0
  18. MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/soundfile.cpython-39.pyc +0 -0
  19. MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/soundfile_backend.cpython-39.pyc +0 -0
  20. MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/sox.cpython-39.pyc +0 -0
  21. MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/utils.cpython-39.pyc +0 -0
  22. MLPY/Lib/site-packages/torchaudio/_backend/backend.py +53 -0
  23. MLPY/Lib/site-packages/torchaudio/_backend/common.py +52 -0
  24. MLPY/Lib/site-packages/torchaudio/_backend/ffmpeg.py +334 -0
  25. MLPY/Lib/site-packages/torchaudio/_backend/soundfile.py +54 -0
  26. MLPY/Lib/site-packages/torchaudio/_backend/soundfile_backend.py +457 -0
  27. MLPY/Lib/site-packages/torchaudio/_backend/sox.py +91 -0
  28. MLPY/Lib/site-packages/torchaudio/_backend/utils.py +317 -0
  29. MLPY/Lib/site-packages/torchaudio/_extension/__init__.py +74 -0
  30. MLPY/Lib/site-packages/torchaudio/_extension/__pycache__/__init__.cpython-39.pyc +0 -0
  31. MLPY/Lib/site-packages/torchaudio/_extension/__pycache__/utils.cpython-39.pyc +0 -0
  32. MLPY/Lib/site-packages/torchaudio/_extension/utils.py +180 -0
  33. MLPY/Lib/site-packages/torchaudio/_internal/__init__.py +10 -0
  34. MLPY/Lib/site-packages/torchaudio/_internal/__pycache__/__init__.cpython-39.pyc +0 -0
  35. MLPY/Lib/site-packages/torchaudio/_internal/__pycache__/module_utils.cpython-39.pyc +0 -0
  36. MLPY/Lib/site-packages/torchaudio/_internal/module_utils.py +113 -0
  37. MLPY/Lib/site-packages/torchaudio/backend/__init__.py +8 -0
  38. MLPY/Lib/site-packages/torchaudio/backend/__pycache__/__init__.cpython-39.pyc +0 -0
  39. MLPY/Lib/site-packages/torchaudio/backend/__pycache__/_no_backend.cpython-39.pyc +0 -0
  40. MLPY/Lib/site-packages/torchaudio/backend/__pycache__/_sox_io_backend.cpython-39.pyc +0 -0
  41. MLPY/Lib/site-packages/torchaudio/backend/__pycache__/common.cpython-39.pyc +0 -0
  42. MLPY/Lib/site-packages/torchaudio/backend/__pycache__/no_backend.cpython-39.pyc +0 -0
  43. MLPY/Lib/site-packages/torchaudio/backend/__pycache__/soundfile_backend.cpython-39.pyc +0 -0
  44. MLPY/Lib/site-packages/torchaudio/backend/__pycache__/sox_io_backend.cpython-39.pyc +0 -0
  45. MLPY/Lib/site-packages/torchaudio/backend/_no_backend.py +25 -0
  46. MLPY/Lib/site-packages/torchaudio/backend/_sox_io_backend.py +294 -0
  47. MLPY/Lib/site-packages/torchaudio/backend/common.py +13 -0
  48. MLPY/Lib/site-packages/torchaudio/backend/no_backend.py +14 -0
  49. MLPY/Lib/site-packages/torchaudio/backend/soundfile_backend.py +14 -0
  50. MLPY/Lib/site-packages/torchaudio/backend/sox_io_backend.py +14 -0
.gitattributes CHANGED
@@ -101,3 +101,4 @@ MLPY/Lib/site-packages/torch/lib/torch_cpu.dll filter=lfs diff=lfs merge=lfs -te
101
  MLPY/Lib/site-packages/torch/lib/torch_cpu.lib filter=lfs diff=lfs merge=lfs -text
102
  MLPY/Lib/site-packages/torch/lib/torch_python.dll filter=lfs diff=lfs merge=lfs -text
103
  MLPY/Lib/site-packages/torch/lib/XNNPACK.lib filter=lfs diff=lfs merge=lfs -text
 
 
101
  MLPY/Lib/site-packages/torch/lib/torch_cpu.lib filter=lfs diff=lfs merge=lfs -text
102
  MLPY/Lib/site-packages/torch/lib/torch_python.dll filter=lfs diff=lfs merge=lfs -text
103
  MLPY/Lib/site-packages/torch/lib/XNNPACK.lib filter=lfs diff=lfs merge=lfs -text
104
+ MLPY/Lib/site-packages/torchaudio/lib/libtorchaudio.pyd filter=lfs diff=lfs merge=lfs -text
MLPY/Lib/site-packages/torchaudio-2.3.1.dist-info/INSTALLER ADDED
@@ -0,0 +1 @@
 
 
1
+ pip
MLPY/Lib/site-packages/torchaudio-2.3.1.dist-info/LICENSE ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ BSD 2-Clause License
2
+
3
+ Copyright (c) 2017 Facebook Inc. (Soumith Chintala),
4
+ All rights reserved.
5
+
6
+ Redistribution and use in source and binary forms, with or without
7
+ modification, are permitted provided that the following conditions are met:
8
+
9
+ * Redistributions of source code must retain the above copyright notice, this
10
+ list of conditions and the following disclaimer.
11
+
12
+ * Redistributions in binary form must reproduce the above copyright notice,
13
+ this list of conditions and the following disclaimer in the documentation
14
+ and/or other materials provided with the distribution.
15
+
16
+ THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
17
+ AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18
+ IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19
+ DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
20
+ FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21
+ DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22
+ SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23
+ CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24
+ OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25
+ OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
MLPY/Lib/site-packages/torchaudio-2.3.1.dist-info/METADATA ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Metadata-Version: 2.1
2
+ Name: torchaudio
3
+ Version: 2.3.1
4
+ Summary: An audio package for PyTorch
5
+ Home-page: https://github.com/pytorch/audio
6
+ Author: Soumith Chintala, David Pollack, Sean Naren, Peter Goldsborough, Moto Hira, Caroline Chen, Jeff Hwang, Zhaoheng Ni, Xiaohui Zhang
7
+ Author-email: [email protected]
8
+ Maintainer: Moto Hira, Caroline Chen, Jeff Hwang, Zhaoheng Ni, Xiaohui Zhang
9
+ Maintainer-email: [email protected]
10
+ Classifier: Environment :: Plugins
11
+ Classifier: Intended Audience :: Developers
12
+ Classifier: Intended Audience :: Science/Research
13
+ Classifier: License :: OSI Approved :: BSD License
14
+ Classifier: Operating System :: MacOS :: MacOS X
15
+ Classifier: Operating System :: Microsoft :: Windows
16
+ Classifier: Operating System :: POSIX
17
+ Classifier: Programming Language :: C++
18
+ Classifier: Programming Language :: Python :: 3.8
19
+ Classifier: Programming Language :: Python :: 3.9
20
+ Classifier: Programming Language :: Python :: 3.10
21
+ Classifier: Programming Language :: Python :: 3.11
22
+ Classifier: Programming Language :: Python :: Implementation :: CPython
23
+ Classifier: Topic :: Multimedia :: Sound/Audio
24
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
25
+ Description-Content-Type: text/markdown
26
+ License-File: LICENSE
27
+ Requires-Dist: torch (==2.3.1)
28
+
29
+ torchaudio: an audio library for PyTorch
30
+ ========================================
31
+
32
+ [![Documentation](https://img.shields.io/badge/dynamic/json.svg?label=docs&url=https%3A%2F%2Fpypi.org%2Fpypi%2Ftorchaudio%2Fjson&query=%24.info.version&colorB=brightgreen&prefix=v)](https://pytorch.org/audio/main/)
33
+ [![Anaconda Badge](https://anaconda.org/pytorch/torchaudio/badges/downloads.svg)](https://anaconda.org/pytorch/torchaudio)
34
+ [![Anaconda-Server Badge](https://anaconda.org/pytorch/torchaudio/badges/platforms.svg)](https://anaconda.org/pytorch/torchaudio)
35
+
36
+ ![TorchAudio Logo](docs/source/_static/img/logo.png)
37
+
38
+ The aim of torchaudio is to apply [PyTorch](https://github.com/pytorch/pytorch) to
39
+ the audio domain. By supporting PyTorch, torchaudio follows the same philosophy
40
+ of providing strong GPU acceleration, having a focus on trainable features through
41
+ the autograd system, and having consistent style (tensor names and dimension names).
42
+ Therefore, it is primarily a machine learning library and not a general signal
43
+ processing library. The benefits of PyTorch can be seen in torchaudio through
44
+ having all the computations be through PyTorch operations which makes it easy
45
+ to use and feel like a natural extension.
46
+
47
+ - [Support audio I/O (Load files, Save files)](http://pytorch.org/audio/main/)
48
+ - Load a variety of audio formats, such as `wav`, `mp3`, `ogg`, `flac`, `opus`, `sphere`, into a torch Tensor using SoX
49
+ - [Kaldi (ark/scp)](http://pytorch.org/audio/main/kaldi_io.html)
50
+ - [Dataloaders for common audio datasets](http://pytorch.org/audio/main/datasets.html)
51
+ - Audio and speech processing functions
52
+ - [forced_align](https://pytorch.org/audio/main/generated/torchaudio.functional.forced_align.html)
53
+ - Common audio transforms
54
+ - [Spectrogram, AmplitudeToDB, MelScale, MelSpectrogram, MFCC, MuLawEncoding, MuLawDecoding, Resample](http://pytorch.org/audio/main/transforms.html)
55
+ - Compliance interfaces: Run code using PyTorch that align with other libraries
56
+ - [Kaldi: spectrogram, fbank, mfcc](https://pytorch.org/audio/main/compliance.kaldi.html)
57
+
58
+ Installation
59
+ ------------
60
+
61
+ Please refer to https://pytorch.org/audio/main/installation.html for installation and build process of TorchAudio.
62
+
63
+
64
+ API Reference
65
+ -------------
66
+
67
+ API Reference is located here: http://pytorch.org/audio/main/
68
+
69
+ Contributing Guidelines
70
+ -----------------------
71
+
72
+ Please refer to [CONTRIBUTING.md](./CONTRIBUTING.md)
73
+
74
+ Citation
75
+ --------
76
+
77
+ If you find this package useful, please cite as:
78
+
79
+ ```bibtex
80
+ @article{yang2021torchaudio,
81
+ title={TorchAudio: Building Blocks for Audio and Speech Processing},
82
+ author={Yao-Yuan Yang and Moto Hira and Zhaoheng Ni and Anjali Chourdia and Artyom Astafurov and Caroline Chen and Ching-Feng Yeh and Christian Puhrsch and David Pollack and Dmitriy Genzel and Donny Greenberg and Edward Z. Yang and Jason Lian and Jay Mahadeokar and Jeff Hwang and Ji Chen and Peter Goldsborough and Prabhat Roy and Sean Narenthiran and Shinji Watanabe and Soumith Chintala and Vincent Quenneville-Bélair and Yangyang Shi},
83
+ journal={arXiv preprint arXiv:2110.15018},
84
+ year={2021}
85
+ }
86
+ ```
87
+
88
+ ```bibtex
89
+ @misc{hwang2023torchaudio,
90
+ title={TorchAudio 2.1: Advancing speech recognition, self-supervised learning, and audio processing components for PyTorch},
91
+ author={Jeff Hwang and Moto Hira and Caroline Chen and Xiaohui Zhang and Zhaoheng Ni and Guangzhi Sun and Pingchuan Ma and Ruizhe Huang and Vineel Pratap and Yuekai Zhang and Anurag Kumar and Chin-Yun Yu and Chuang Zhu and Chunxi Liu and Jacob Kahn and Mirco Ravanelli and Peng Sun and Shinji Watanabe and Yangyang Shi and Yumeng Tao and Robin Scheibler and Samuele Cornell and Sean Kim and Stavros Petridis},
92
+ year={2023},
93
+ eprint={2310.17864},
94
+ archivePrefix={arXiv},
95
+ primaryClass={eess.AS}
96
+ }
97
+ ```
98
+
99
+ Disclaimer on Datasets
100
+ ----------------------
101
+
102
+ This is a utility library that downloads and prepares public datasets. We do not host or distribute these datasets, vouch for their quality or fairness, or claim that you have license to use the dataset. It is your responsibility to determine whether you have permission to use the dataset under the dataset's license.
103
+
104
+ If you're a dataset owner and wish to update any part of it (description, citation, etc.), or do not want your dataset to be included in this library, please get in touch through a GitHub issue. Thanks for your contribution to the ML community!
105
+
106
+ Pre-trained Model License
107
+ -------------------------
108
+
109
+ The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.
110
+
111
+ For instance, SquimSubjective model is released under the Creative Commons Attribution Non Commercial 4.0 International (CC-BY-NC 4.0) license. See [the link](https://zenodo.org/record/4660670#.ZBtWPOxuerN) for additional details.
112
+
113
+ Other pre-trained models that have different license are noted in documentation. Please checkout the [documentation page](https://pytorch.org/audio/main/).
MLPY/Lib/site-packages/torchaudio-2.3.1.dist-info/RECORD ADDED
@@ -0,0 +1,277 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ torchaudio-2.3.1.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
2
+ torchaudio-2.3.1.dist-info/LICENSE,sha256=MmOOF5kxv-VR6r9nsOZ6E7SD4Wa1jdcmNjSrf4nzlvU,1363
3
+ torchaudio-2.3.1.dist-info/METADATA,sha256=bn96zltasEUWCzMa6jcqOUW2YAvCuLLFKzwGjxbjxL0,6351
4
+ torchaudio-2.3.1.dist-info/RECORD,,
5
+ torchaudio-2.3.1.dist-info/REQUESTED,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
+ torchaudio-2.3.1.dist-info/WHEEL,sha256=fVcVlLzi8CGi_Ul8vjMdn8gER25dn5GBg9E6k9z41-Y,100
7
+ torchaudio-2.3.1.dist-info/top_level.txt,sha256=GT0MktEbHKoLnvd-6ii7_dhJVvshupOujk840BcHU4U,17
8
+ torchaudio/__init__.py,sha256=kUWnkwcKERMj7m-B4E826aGZWGa5sJs1DEpLP6LZoEs,945
9
+ torchaudio/__pycache__/__init__.cpython-39.pyc,,
10
+ torchaudio/__pycache__/kaldi_io.cpython-39.pyc,,
11
+ torchaudio/__pycache__/version.cpython-39.pyc,,
12
+ torchaudio/_backend/__init__.py,sha256=2bMTZ3tG2_5nvnqAAmvEnGBInO5a9DdUPNoyXEnX1M0,1692
13
+ torchaudio/_backend/__pycache__/__init__.cpython-39.pyc,,
14
+ torchaudio/_backend/__pycache__/backend.cpython-39.pyc,,
15
+ torchaudio/_backend/__pycache__/common.cpython-39.pyc,,
16
+ torchaudio/_backend/__pycache__/ffmpeg.cpython-39.pyc,,
17
+ torchaudio/_backend/__pycache__/soundfile.cpython-39.pyc,,
18
+ torchaudio/_backend/__pycache__/soundfile_backend.cpython-39.pyc,,
19
+ torchaudio/_backend/__pycache__/sox.cpython-39.pyc,,
20
+ torchaudio/_backend/__pycache__/utils.cpython-39.pyc,,
21
+ torchaudio/_backend/backend.py,sha256=CakqB9z_4ZtLsQTyMZbEbB0kTqpUe_gidHgObv9acyQ,1618
22
+ torchaudio/_backend/common.py,sha256=h9R29RTTW2lqOiKYByETXfXWsrTH65uHxGDKw3bWj-s,1835
23
+ torchaudio/_backend/ffmpeg.py,sha256=b6dr67sWg47uFJxIyWLXCtrdPMlgjYdWmj7n919Ph1M,11628
24
+ torchaudio/_backend/soundfile.py,sha256=Dd-K6Tg_G3ze08hImvnAsO5lpAERpmUd9oxkNsGJUno,1757
25
+ torchaudio/_backend/soundfile_backend.py,sha256=sVSEM2On6PMY7AbPqpfvE1u1Bg2_0aiSrZ4TclAFi_w,17833
26
+ torchaudio/_backend/sox.py,sha256=UGF352HA_5kXebHEdxOlvyNgruYacxDkeJy4ErggRhI,3451
27
+ torchaudio/_backend/utils.py,sha256=8HkmV_GCHZhD-XaKNQ60nGFsu7rVgr1SOhasN6v91aI,13616
28
+ torchaudio/_extension/__init__.py,sha256=s6AzXocDcuh0mtYVUCOOjZ_mCmSCno8jbZN750YI-Ps,2276
29
+ torchaudio/_extension/__pycache__/__init__.cpython-39.pyc,,
30
+ torchaudio/_extension/__pycache__/utils.cpython-39.pyc,,
31
+ torchaudio/_extension/utils.py,sha256=wFDF8B6Q22UL3zyX8swZ-JjlDgm9-VdjeraslQr2yIY,6438
32
+ torchaudio/_internal/__init__.py,sha256=80cpJfTS8977YYrU3q5p4DRAGAkqEJrmG9Lq2hEDpoo,251
33
+ torchaudio/_internal/__pycache__/__init__.cpython-39.pyc,,
34
+ torchaudio/_internal/__pycache__/module_utils.cpython-39.pyc,,
35
+ torchaudio/_internal/module_utils.py,sha256=d0Gf_DhaA-fEtxKHjWhDwYrBsH6CCk41eUi_9THhQ9k,3675
36
+ torchaudio/backend/__init__.py,sha256=ckKT_tmcmc_Z43ZTlqJ39fwUbmv-j-mAP2BWp0sU4Tg,289
37
+ torchaudio/backend/__pycache__/__init__.cpython-39.pyc,,
38
+ torchaudio/backend/__pycache__/_no_backend.cpython-39.pyc,,
39
+ torchaudio/backend/__pycache__/_sox_io_backend.cpython-39.pyc,,
40
+ torchaudio/backend/__pycache__/common.cpython-39.pyc,,
41
+ torchaudio/backend/__pycache__/no_backend.cpython-39.pyc,,
42
+ torchaudio/backend/__pycache__/soundfile_backend.cpython-39.pyc,,
43
+ torchaudio/backend/__pycache__/sox_io_backend.cpython-39.pyc,,
44
+ torchaudio/backend/_no_backend.py,sha256=CEpYJ0bZi937Z0q2JHdRVnDKd7HWlCUVR7rEVHE_xmE,782
45
+ torchaudio/backend/_sox_io_backend.py,sha256=Ut3-QaqzaJ0MvNc7NdpMTST7_mZy1xSixGbDC7418Qk,11750
46
+ torchaudio/backend/common.py,sha256=mn0l6GBwet7DvRQPURhYIHF-HrQFvEFVKM23PawfbH8,456
47
+ torchaudio/backend/no_backend.py,sha256=xc-k0kqzYOEM6dvcIwiMDEaLutKrYXXCsCXF1IVFNHM,483
48
+ torchaudio/backend/soundfile_backend.py,sha256=NFHAQcz8kwlgI7qIG1bYrbgzsjtDCkNn_Gmip6vBL6g,513
49
+ torchaudio/backend/sox_io_backend.py,sha256=_DD1_6y4eV4MsIl2Clcxnq96k_EXT0XMu5p2Z61gnEs,491
50
+ torchaudio/compliance/__init__.py,sha256=JNH_-dTQVmm55YwcVMuVvUYFWdXhGn4C__9S8IUsNoU,53
51
+ torchaudio/compliance/__pycache__/__init__.cpython-39.pyc,,
52
+ torchaudio/compliance/__pycache__/kaldi.cpython-39.pyc,,
53
+ torchaudio/compliance/kaldi.py,sha256=bS7qJgS3k8FK1RkMiNEoP3q0xhjeV_V4RHQ9jo_rqOM,37479
54
+ torchaudio/datasets/__init__.py,sha256=hdHldm3OzoQLbI0kHj8tLxqwDhzMfedq0_t1kAK7ORg,1218
55
+ torchaudio/datasets/__pycache__/__init__.cpython-39.pyc,,
56
+ torchaudio/datasets/__pycache__/cmuarctic.cpython-39.pyc,,
57
+ torchaudio/datasets/__pycache__/cmudict.cpython-39.pyc,,
58
+ torchaudio/datasets/__pycache__/commonvoice.cpython-39.pyc,,
59
+ torchaudio/datasets/__pycache__/dr_vctk.cpython-39.pyc,,
60
+ torchaudio/datasets/__pycache__/fluentcommands.cpython-39.pyc,,
61
+ torchaudio/datasets/__pycache__/gtzan.cpython-39.pyc,,
62
+ torchaudio/datasets/__pycache__/iemocap.cpython-39.pyc,,
63
+ torchaudio/datasets/__pycache__/librilight_limited.cpython-39.pyc,,
64
+ torchaudio/datasets/__pycache__/librimix.cpython-39.pyc,,
65
+ torchaudio/datasets/__pycache__/librispeech.cpython-39.pyc,,
66
+ torchaudio/datasets/__pycache__/librispeech_biasing.cpython-39.pyc,,
67
+ torchaudio/datasets/__pycache__/libritts.cpython-39.pyc,,
68
+ torchaudio/datasets/__pycache__/ljspeech.cpython-39.pyc,,
69
+ torchaudio/datasets/__pycache__/musdb_hq.cpython-39.pyc,,
70
+ torchaudio/datasets/__pycache__/quesst14.cpython-39.pyc,,
71
+ torchaudio/datasets/__pycache__/snips.cpython-39.pyc,,
72
+ torchaudio/datasets/__pycache__/speechcommands.cpython-39.pyc,,
73
+ torchaudio/datasets/__pycache__/tedlium.cpython-39.pyc,,
74
+ torchaudio/datasets/__pycache__/utils.cpython-39.pyc,,
75
+ torchaudio/datasets/__pycache__/vctk.cpython-39.pyc,,
76
+ torchaudio/datasets/__pycache__/voxceleb1.cpython-39.pyc,,
77
+ torchaudio/datasets/__pycache__/yesno.cpython-39.pyc,,
78
+ torchaudio/datasets/cmuarctic.py,sha256=xEHBtO8oh5ub8VbLa1qcL-meFhYeg4EQpMUdiGaelGA,7254
79
+ torchaudio/datasets/cmudict.py,sha256=_9vTz7_8BFVrcHeA61_-h2XLOl6IsdWCptkMWziOW7U,6176
80
+ torchaudio/datasets/commonvoice.py,sha256=OcFn-nG4YfBIz0YIpH91xH9rFka8yFJmrxy4vFZkC4I,2849
81
+ torchaudio/datasets/dr_vctk.py,sha256=Ayf85prDNr1LcWQ4bysVWdRVPry2JALjv6Mtq-6iBpY,4498
82
+ torchaudio/datasets/fluentcommands.py,sha256=KnmH1Y28k5PhqQX6eV-75MqwTRxiHSUUcvAsa-K954s,3353
83
+ torchaudio/datasets/gtzan.py,sha256=kt25Ly9qDGuiiVXgsXhS05tGi6laRhRko81-BQ4sZ-w,25475
84
+ torchaudio/datasets/iemocap.py,sha256=ZMMG_FpcWcMHEbhuRYRQaUWi_DoegjxCrnVyCg5EEVE,5077
85
+ torchaudio/datasets/librilight_limited.py,sha256=iwZBlSKVLrXzhZvaqjuVRGO6czxX4fpdzd8wWe5feWQ,4290
86
+ torchaudio/datasets/librimix.py,sha256=AncE671AOl04dRPsajNZW-ZxxI_PwA2sjBftdBg4Q-k,5249
87
+ torchaudio/datasets/librispeech.py,sha256=ys769I0UzG07UEmyZ_KDwATh4yc08hFUuCayK8tYIGg,6482
88
+ torchaudio/datasets/librispeech_biasing.py,sha256=KEGplRU_wpgb0VqrT-t42kvtC7lg4uMssZcosVvvPhg,7147
89
+ torchaudio/datasets/libritts.py,sha256=91Ep2Mq3OySre25GniXBLmRzTwEPiKmMaqXnzirn0xY,6038
90
+ torchaudio/datasets/ljspeech.py,sha256=l09BSBQH76I-LhYkIRF0u18tTi-4yysaF4gj2GSZaxw,3601
91
+ torchaudio/datasets/musdb_hq.py,sha256=FVlKsGEBHiT50y9GLswnt2QFph2PjiI6yCy1MxiG6f8,5214
92
+ torchaudio/datasets/quesst14.py,sha256=3y6H3T3g78jkDqca8jORQBOViZhH1RhlsfuY8HJ2OcU,4591
93
+ torchaudio/datasets/snips.py,sha256=mwVc5KsbMlPQJ87eyYgjnQ5S4EFXoQvm13dO0rXpJuE,5165
94
+ torchaudio/datasets/speechcommands.py,sha256=_wmrKSiEe0COO7uk0JVXypBmNxu0urnceHuFQ6zMOk0,7664
95
+ torchaudio/datasets/tedlium.py,sha256=UQZUaeUqmFntZWcH9HXOpGeW6tsCcG81bPjX2_CWxbg,8916
96
+ torchaudio/datasets/utils.py,sha256=m-sBYgQb0JxgGVfsVpekKFDI_7PGXCTma6N2ymfJl0g,1743
97
+ torchaudio/datasets/vctk.py,sha256=vN_VzxTLyHW11I_rzfzMVA3h5JW917FaU3NCnR-zcL0,5842
98
+ torchaudio/datasets/voxceleb1.py,sha256=JlYkbyYOAFUFhGLULe3lgucANWf_G7qGqw47YjiX2IM,12034
99
+ torchaudio/datasets/yesno.py,sha256=B3hRNUazvB8V8SwOUlQzliB9vI9gMkl9SEl-dZ4PEaw,3115
100
+ torchaudio/functional/__init__.py,sha256=NwlPoWjNravX4itCZy-dzN-BkCFdDHFRwvPle8JjBRo,2484
101
+ torchaudio/functional/__pycache__/__init__.cpython-39.pyc,,
102
+ torchaudio/functional/__pycache__/_alignment.cpython-39.pyc,,
103
+ torchaudio/functional/__pycache__/filtering.cpython-39.pyc,,
104
+ torchaudio/functional/__pycache__/functional.cpython-39.pyc,,
105
+ torchaudio/functional/_alignment.py,sha256=46GhuEYUqI1gE-2UKSu9BIQF1QpZ5yunUS8JZGZJuss,4823
106
+ torchaudio/functional/filtering.py,sha256=L3PaGnp7QKXwL4JECNSAhAVP92rrR8BGfdXoybSrHFU,63114
107
+ torchaudio/functional/functional.py,sha256=qjdU3kILy69-jQL3lQ2EO1y_dpLDif_jAp99hBRJnPo,98541
108
+ torchaudio/io/__init__.py,sha256=5U3MlGVGw5vPTZqCZ-7N25oVfwssA6KUtluj-9rNRMM,310
109
+ torchaudio/io/__pycache__/__init__.cpython-39.pyc,,
110
+ torchaudio/io/__pycache__/_effector.cpython-39.pyc,,
111
+ torchaudio/io/__pycache__/_playback.cpython-39.pyc,,
112
+ torchaudio/io/_effector.py,sha256=5Kh7br-ZuLzmoRSVXk5JNQ8NkwcGUiY_mrt7d_1W1eg,12217
113
+ torchaudio/io/_playback.py,sha256=UpPb-m35XUlYL2lybQGXAJAvfmUPT_Kqx4jpYArIAz0,2393
114
+ torchaudio/kaldi_io.py,sha256=acwysr6fASV9IcOTF0AbVPCo_VQTu1M2AOn1SXm3GPE,5217
115
+ torchaudio/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
116
+ torchaudio/lib/__pycache__/__init__.cpython-39.pyc,,
117
+ torchaudio/lib/_torchaudio.pyd,sha256=WV5FJJ0zngA8tfjY5dGw8UE-ul0KATMLjORqNkSLpak,747520
118
+ torchaudio/lib/libtorchaudio.pyd,sha256=ls9OvefkxpldUFhB-ngN1c7IAI8tIZwy6Q8jN8cLY00,1052672
119
+ torchaudio/models/__init__.py,sha256=Gi3UQvxjwTLW9wfKlF42O3Vup70d0bk2x-rZS89ASwI,2080
120
+ torchaudio/models/__pycache__/__init__.cpython-39.pyc,,
121
+ torchaudio/models/__pycache__/_hdemucs.cpython-39.pyc,,
122
+ torchaudio/models/__pycache__/conformer.cpython-39.pyc,,
123
+ torchaudio/models/__pycache__/conv_tasnet.cpython-39.pyc,,
124
+ torchaudio/models/__pycache__/deepspeech.cpython-39.pyc,,
125
+ torchaudio/models/__pycache__/emformer.cpython-39.pyc,,
126
+ torchaudio/models/__pycache__/rnnt.cpython-39.pyc,,
127
+ torchaudio/models/__pycache__/rnnt_decoder.cpython-39.pyc,,
128
+ torchaudio/models/__pycache__/tacotron2.cpython-39.pyc,,
129
+ torchaudio/models/__pycache__/wav2letter.cpython-39.pyc,,
130
+ torchaudio/models/__pycache__/wavernn.cpython-39.pyc,,
131
+ torchaudio/models/_hdemucs.py,sha256=ipAj7965PO_WEZqQwW1om9gQj90UhQOeU6HU3Lpvzwo,39250
132
+ torchaudio/models/conformer.py,sha256=gVrOYeJkPlVaX-4eZpVzNUe_r3k7g1Y6NaaQ8JZP-r4,10361
133
+ torchaudio/models/conv_tasnet.py,sha256=D7Y10sOzLe03gygfN1J5R73SIHkIGVQOkqKQ6Ni3o_s,12870
134
+ torchaudio/models/decoder/__init__.py,sha256=WMh4udN8CGF-SvgN6JBXSNMjhZqm1et7FyMrsk6V6RM,1252
135
+ torchaudio/models/decoder/__pycache__/__init__.cpython-39.pyc,,
136
+ torchaudio/models/decoder/__pycache__/_ctc_decoder.cpython-39.pyc,,
137
+ torchaudio/models/decoder/__pycache__/_cuda_ctc_decoder.cpython-39.pyc,,
138
+ torchaudio/models/decoder/_ctc_decoder.py,sha256=woyUaDCuaMQqPTQ7uLuc99lxMAOsJj5AxWwS9hf6JNY,20650
139
+ torchaudio/models/decoder/_cuda_ctc_decoder.py,sha256=BZCjAdZ50umWW171nJYHy24YZ5CxM8a2JfMIeO4S3BM,7373
140
+ torchaudio/models/deepspeech.py,sha256=nVYc2xwWpFO6gu5CR0mbqLiAzJn8lAfHcdcP92i22mo,2830
141
+ torchaudio/models/emformer.py,sha256=WbaeZcrPFOOLn4igqweE0AfuF_SQZpqg7XPGEhl7C8c,38650
142
+ torchaudio/models/rnnt.py,sha256=PNJpZd3vH6wRq8TEf4UlPtVHbte9wOJ-bRMEug6gp08,36357
143
+ torchaudio/models/rnnt_decoder.py,sha256=CBBMZhhq5Bgax0_3p3SZD-Os3S1LFHB91oTgVED4bmY,13178
144
+ torchaudio/models/squim/__init__.py,sha256=eQox8kPviOthKulpzZvPK0a66NHW7MzYE4aOF7va_kU,357
145
+ torchaudio/models/squim/__pycache__/__init__.cpython-39.pyc,,
146
+ torchaudio/models/squim/__pycache__/objective.cpython-39.pyc,,
147
+ torchaudio/models/squim/__pycache__/subjective.cpython-39.pyc,,
148
+ torchaudio/models/squim/objective.py,sha256=0Dsio0cQ_NBHg7t0YFbBamyiWPpocfaErddnBttu8b0,12615
149
+ torchaudio/models/squim/subjective.py,sha256=1_gK9O3nvrjiikpP46IdsMzKduSTt91kKklA69wQqiw,5947
150
+ torchaudio/models/tacotron2.py,sha256=mZ5lLSa75oqc0hgkc3sIm5_gK-knhtgX3dmg9-oLQao,46960
151
+ torchaudio/models/wav2letter.py,sha256=oetxpH5RG0TadYB75IOmYOrnraaPvSlcSNpRZb2FE_A,3350
152
+ torchaudio/models/wav2vec2/__init__.py,sha256=j5FdQFfuIpdIKYwoMLop4Ba70GGoS-lK61tU-oNG5wg,972
153
+ torchaudio/models/wav2vec2/__pycache__/__init__.cpython-39.pyc,,
154
+ torchaudio/models/wav2vec2/__pycache__/components.cpython-39.pyc,,
155
+ torchaudio/models/wav2vec2/__pycache__/model.cpython-39.pyc,,
156
+ torchaudio/models/wav2vec2/__pycache__/wavlm_attention.cpython-39.pyc,,
157
+ torchaudio/models/wav2vec2/components.py,sha256=EzmuGc5qHVPrHCGqYVHTvdjqP2gCrBfnHSoTK9GsZ1w,48244
158
+ torchaudio/models/wav2vec2/model.py,sha256=kP6QKsF1PjleyUMhaPjydi0pCRy4GGUArRWBzfDJmdE,61671
159
+ torchaudio/models/wav2vec2/utils/__init__.py,sha256=1eowaOEKRbp7JajFNv_r47REJqnMmXidukS7Mrwp_5Q,188
160
+ torchaudio/models/wav2vec2/utils/__pycache__/__init__.cpython-39.pyc,,
161
+ torchaudio/models/wav2vec2/utils/__pycache__/import_fairseq.cpython-39.pyc,,
162
+ torchaudio/models/wav2vec2/utils/__pycache__/import_huggingface.cpython-39.pyc,,
163
+ torchaudio/models/wav2vec2/utils/import_fairseq.py,sha256=so7T-otDNCsTUtzJRUFFGWyd0caWl3RY_UbFMxJ4DJE,9411
164
+ torchaudio/models/wav2vec2/utils/import_huggingface.py,sha256=NMK6YrAIDfOw8j1tV-3XTwx_mwbJHvg8ldTrAWRztIM,6080
165
+ torchaudio/models/wav2vec2/wavlm_attention.py,sha256=iYde9grsb_RaEs87FI5ykyN3z0Ix1plqpsMNvakAiWM,11058
166
+ torchaudio/models/wavernn.py,sha256=LRgL36jA6WzI1PAzBY6P52oCMGSTOraXB8fEgkwpSxw,15855
167
+ torchaudio/pipelines/__init__.py,sha256=oMwOu-1T_ugJmhdaoI5NrCDrUAGrpDOlJQO8h-bLAW4,2847
168
+ torchaudio/pipelines/__pycache__/__init__.cpython-39.pyc,,
169
+ torchaudio/pipelines/__pycache__/_source_separation_pipeline.cpython-39.pyc,,
170
+ torchaudio/pipelines/__pycache__/_squim_pipeline.cpython-39.pyc,,
171
+ torchaudio/pipelines/__pycache__/rnnt_pipeline.cpython-39.pyc,,
172
+ torchaudio/pipelines/_source_separation_pipeline.py,sha256=WAjiWSlk73VS985GpKweDAfk2aKwQWI6jnGNwYHiRi8,4333
173
+ torchaudio/pipelines/_squim_pipeline.py,sha256=ChaNVSQwwT8ge6XEDJCppu2W5Cz7Ng1Y9PkHhPlVwRg,7346
174
+ torchaudio/pipelines/_tts/__init__.py,sha256=WKc5c06b_M9MvEohJZghJJWAL7vXvfwRIkdy85UCh04,442
175
+ torchaudio/pipelines/_tts/__pycache__/__init__.cpython-39.pyc,,
176
+ torchaudio/pipelines/_tts/__pycache__/impl.cpython-39.pyc,,
177
+ torchaudio/pipelines/_tts/__pycache__/interface.cpython-39.pyc,,
178
+ torchaudio/pipelines/_tts/__pycache__/utils.cpython-39.pyc,,
179
+ torchaudio/pipelines/_tts/impl.py,sha256=wwrTyTEEkew22AnzB_ZklapGaAstJSUBawhA7bOcGXM,15759
180
+ torchaudio/pipelines/_tts/interface.py,sha256=y1mU0446Vy2hHpCwMqRZt1UI4ZXl-C4tJp92EylwHh0,10479
181
+ torchaudio/pipelines/_tts/utils.py,sha256=ZqqD-TXI6zkKvYtdAHlZikKlpEO00otvOKJTTjXFOGI,4844
182
+ torchaudio/pipelines/_wav2vec2/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
183
+ torchaudio/pipelines/_wav2vec2/__pycache__/__init__.cpython-39.pyc,,
184
+ torchaudio/pipelines/_wav2vec2/__pycache__/aligner.cpython-39.pyc,,
185
+ torchaudio/pipelines/_wav2vec2/__pycache__/impl.cpython-39.pyc,,
186
+ torchaudio/pipelines/_wav2vec2/__pycache__/utils.cpython-39.pyc,,
187
+ torchaudio/pipelines/_wav2vec2/aligner.py,sha256=HOcthFgup97QMx9ZXCmkv6jdw_zxdRT-e_SilXEujNU,2796
188
+ torchaudio/pipelines/_wav2vec2/impl.py,sha256=I6htNo4Wt5LPxX9Z8rmxarFE8BZOZBUFIU9T9k1k2Po,67260
189
+ torchaudio/pipelines/_wav2vec2/utils.py,sha256=CVawfXmVGWY8mj-_6r4KO907BpF67WAVWHEHhycFIaM,7317
190
+ torchaudio/pipelines/rnnt_pipeline.py,sha256=S0DLMPbt-lqNBWOcjG5KP2IfU1X_oTv95CVmSjxYJ2g,14129
191
+ torchaudio/prototype/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
192
+ torchaudio/prototype/__pycache__/__init__.cpython-39.pyc,,
193
+ torchaudio/prototype/datasets/__init__.py,sha256=l2k9V6ujGOiiPUXtJqMT0sao0zIUqKOg-243PAVs7NM,51
194
+ torchaudio/prototype/datasets/__pycache__/__init__.cpython-39.pyc,,
195
+ torchaudio/prototype/datasets/__pycache__/musan.cpython-39.pyc,,
196
+ torchaudio/prototype/datasets/musan.py,sha256=eNwoPahmHFqdllmFY10D5L6ko6ZjHQI9ZdvJJ8b6vDU,2163
197
+ torchaudio/prototype/functional/__init__.py,sha256=C5uPqrnwc_VJ9ajJpudsBAmxt6-RKrHirIJa3RHLlfs,588
198
+ torchaudio/prototype/functional/__pycache__/__init__.cpython-39.pyc,,
199
+ torchaudio/prototype/functional/__pycache__/_dsp.cpython-39.pyc,,
200
+ torchaudio/prototype/functional/__pycache__/_rir.cpython-39.pyc,,
201
+ torchaudio/prototype/functional/__pycache__/functional.cpython-39.pyc,,
202
+ torchaudio/prototype/functional/_dsp.py,sha256=8mjlYBWIcqDidflvvZYtUI1Icx5hEBkyQE4XErDcHKw,17071
203
+ torchaudio/prototype/functional/_rir.py,sha256=56To55TZ9J8zTXmGEb3N14df6ADpuXAWfdfxRCe8OEA,17634
204
+ torchaudio/prototype/functional/functional.py,sha256=1alp81YX8x9DHBrIHz5RgxYrW-DEvPI59Io9p19kb64,6654
205
+ torchaudio/prototype/models/__init__.py,sha256=Yuebowh-ukX2wxlU-rGc00BVjgChr_8Wf43wpTXTLus,1290
206
+ torchaudio/prototype/models/__pycache__/__init__.cpython-39.pyc,,
207
+ torchaudio/prototype/models/__pycache__/_conformer_wav2vec2.cpython-39.pyc,,
208
+ torchaudio/prototype/models/__pycache__/_emformer_hubert.cpython-39.pyc,,
209
+ torchaudio/prototype/models/__pycache__/conv_emformer.cpython-39.pyc,,
210
+ torchaudio/prototype/models/__pycache__/hifi_gan.cpython-39.pyc,,
211
+ torchaudio/prototype/models/__pycache__/rnnt.cpython-39.pyc,,
212
+ torchaudio/prototype/models/__pycache__/rnnt_decoder.cpython-39.pyc,,
213
+ torchaudio/prototype/models/_conformer_wav2vec2.py,sha256=9Je5xp87iTzD86xUQ3h4cs0XXQYp-NLAC-tHgdiljjo,30316
214
+ torchaudio/prototype/models/_emformer_hubert.py,sha256=Uz_hKOOzK8ul5rpBx__15_oy_pklocl8SvRgmjTg7hI,13831
215
+ torchaudio/prototype/models/conv_emformer.py,sha256=txtyonaqdXG6fli91WN1mkAc6SFFzUZ3fFcY713P5VM,23601
216
+ torchaudio/prototype/models/hifi_gan.py,sha256=X8mN04yQpzbOKxKmE98nFimltOOKp4FmtT2Ipxc4N3k,12816
217
+ torchaudio/prototype/models/rnnt.py,sha256=3-O5pYW35ffEG8KwCVDQfhGp-Kj0OsP4wjzdTkdQEzo,31570
218
+ torchaudio/prototype/models/rnnt_decoder.py,sha256=CO8yo1OsIi0EQSn3GRTysPoUzQN-aiNWyrrv_86rzc4,16134
219
+ torchaudio/prototype/pipelines/__init__.py,sha256=6x8q20JhZrPYx-GtJpLzeqetS0U6xBt70Qn6ctGpuUE,394
220
+ torchaudio/prototype/pipelines/__pycache__/__init__.cpython-39.pyc,,
221
+ torchaudio/prototype/pipelines/__pycache__/hifigan_pipeline.cpython-39.pyc,,
222
+ torchaudio/prototype/pipelines/__pycache__/rnnt_pipeline.cpython-39.pyc,,
223
+ torchaudio/prototype/pipelines/_vggish/__init__.py,sha256=pkGI6k0g21XZYg6H80RO6EavTOFBNUyQkFOanr8cwtY,92
224
+ torchaudio/prototype/pipelines/_vggish/__pycache__/__init__.cpython-39.pyc,,
225
+ torchaudio/prototype/pipelines/_vggish/__pycache__/_vggish_impl.cpython-39.pyc,,
226
+ torchaudio/prototype/pipelines/_vggish/__pycache__/_vggish_pipeline.cpython-39.pyc,,
227
+ torchaudio/prototype/pipelines/_vggish/_vggish_impl.py,sha256=2elMGpd6-RCFLBS4WkEQSErGWVNK6iFTNMz95PpTIZ4,8730
228
+ torchaudio/prototype/pipelines/_vggish/_vggish_pipeline.py,sha256=Gssicwkm7Wffnk1xUUoFPSUm9_5Na0J3MZAS5OdYfGo,2795
229
+ torchaudio/prototype/pipelines/hifigan_pipeline.py,sha256=-HcU3w5AcCEcjVeXpIddVLJmeu52psCO4oTIOgw50WA,9882
230
+ torchaudio/prototype/pipelines/rnnt_pipeline.py,sha256=6zeezoHIPo-9Sc0B19cFoJrQMybmDP1MDoUZzMFheOo,2242
231
+ torchaudio/prototype/transforms/__init__.py,sha256=a-LNmupvUQvpo3CrTvqXudgY8G6cRGI1zy6j9oWST_o,234
232
+ torchaudio/prototype/transforms/__pycache__/__init__.cpython-39.pyc,,
233
+ torchaudio/prototype/transforms/__pycache__/_transforms.cpython-39.pyc,,
234
+ torchaudio/prototype/transforms/_transforms.py,sha256=DSktWkL7elGrNrNWCzZ0kaB7DNZmpX0gu_8kTJzXkf8,19600
235
+ torchaudio/sox_effects/__init__.py,sha256=NVN6rAkHxizmOsZgLnxjMX5qXcPkABzLE-hvTMaSbEw,272
236
+ torchaudio/sox_effects/__pycache__/__init__.cpython-39.pyc,,
237
+ torchaudio/sox_effects/__pycache__/sox_effects.cpython-39.pyc,,
238
+ torchaudio/sox_effects/sox_effects.py,sha256=1K7Ngy5E1i1keSMiX0GJZbVh6n8ONH7TCb_606vqBxg,11253
239
+ torchaudio/transforms/__init__.py,sha256=GYkPl29GcVu_QzUfnlw1QnfNsqiqgjtn1ZmfhAAMACo,1345
240
+ torchaudio/transforms/__pycache__/__init__.cpython-39.pyc,,
241
+ torchaudio/transforms/__pycache__/_multi_channel.cpython-39.pyc,,
242
+ torchaudio/transforms/__pycache__/_transforms.cpython-39.pyc,,
243
+ torchaudio/transforms/_multi_channel.py,sha256=Musw7dTu25HNjKeIcKHUDuqBmj_GC2e3TaakqJcffW8,22688
244
+ torchaudio/transforms/_transforms.py,sha256=YFbbZ8nV1fBR0EGiNS3GOtFM-rLkyDUpXdPh8zNab40,89009
245
+ torchaudio/utils/__init__.py,sha256=h4Jvrb4vzdxzgJqgzA-TOUqLSZ2mRVALERR8am7BlvQ,185
246
+ torchaudio/utils/__pycache__/__init__.cpython-39.pyc,,
247
+ torchaudio/utils/__pycache__/download.cpython-39.pyc,,
248
+ torchaudio/utils/__pycache__/ffmpeg_utils.cpython-39.pyc,,
249
+ torchaudio/utils/__pycache__/sox_utils.cpython-39.pyc,,
250
+ torchaudio/utils/download.py,sha256=QlO5md3u0bUBFTWjZpSBMaMeeqgZKm9LmwzdB5Ip7_c,2971
251
+ torchaudio/utils/ffmpeg_utils.py,sha256=1r5cdbhz9ZCY5jW-5_gQ5G360a2fEwd--GBFMq_TxVk,330
252
+ torchaudio/utils/sox_utils.py,sha256=Wpu9cEL3EcsovNnWKWIcosRSA_LmP1XqbZ7_9ti5imI,2520
253
+ torchaudio/version.py,sha256=sx7VDGP3v5EEWJRaR1j4udJclNQC7ql5ZZM_VGZ6skU,85
254
+ torio/__init__.py,sha256=6Rz28GL44aSOszXJewvjdcm8Fp47TgphNMPtsIBd2aE,119
255
+ torio/__pycache__/__init__.cpython-39.pyc,,
256
+ torio/_extension/__init__.py,sha256=9GnFiLWPCViTbUUNio9At1M0ALGqKtZ9lFOuPUn1Sc8,326
257
+ torio/_extension/__pycache__/__init__.cpython-39.pyc,,
258
+ torio/_extension/__pycache__/utils.cpython-39.pyc,,
259
+ torio/_extension/utils.py,sha256=ppIGBFk868z7QbfSjawHUkSO3yZ7ML2jHFgE-j6GymI,5051
260
+ torio/io/__init__.py,sha256=GSt-4DRzgiuVmNN3WwjDAMACztJidmEP5ghVOlW6OQI,235
261
+ torio/io/__pycache__/__init__.cpython-39.pyc,,
262
+ torio/io/__pycache__/_streaming_media_decoder.cpython-39.pyc,,
263
+ torio/io/__pycache__/_streaming_media_encoder.cpython-39.pyc,,
264
+ torio/io/_streaming_media_decoder.py,sha256=dx0K8PD2PZY7yRY1G_As-_8-LyQDLdYfRZPW1kmrJg0,35354
265
+ torio/io/_streaming_media_encoder.py,sha256=C4zIasotf7GlkQqtRK3vMCt2aN6FkG6NK2KUw0ZdHHo,20224
266
+ torio/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
267
+ torio/lib/__pycache__/__init__.cpython-39.pyc,,
268
+ torio/lib/_torio_ffmpeg4.pyd,sha256=FEzc9-479g0lidzNahehJyGK44pMmbKrJVGenEZEgJA,1710080
269
+ torio/lib/_torio_ffmpeg5.pyd,sha256=yKkS3AaRtlB1sg673VF5RrUtpJYA-0fM0x_n1qLqRkw,1710080
270
+ torio/lib/_torio_ffmpeg6.pyd,sha256=pU2aQrr2SfXXWYYvSZ48OGO2NOK0TZV6MfrjkJLwM4c,1710080
271
+ torio/lib/libtorio_ffmpeg4.pyd,sha256=2D0wyPqd2ZIVxEqmNd2AAYTmL5vKOz3qs9aKO4FF8pU,964096
272
+ torio/lib/libtorio_ffmpeg5.pyd,sha256=F3AcMUfSITxcaWFnJNqONIDWh1YBrsK9kiL1_sBdFsQ,964096
273
+ torio/lib/libtorio_ffmpeg6.pyd,sha256=-P_lsD_grPs8354Qk4Iqo0BI8KEqR44lzrspy1_FfZg,964096
274
+ torio/utils/__init__.py,sha256=uQV58SlyikUr6yF4HITASCvuX-_fnzbeDxFRzFucQE4,60
275
+ torio/utils/__pycache__/__init__.cpython-39.pyc,,
276
+ torio/utils/__pycache__/ffmpeg_utils.cpython-39.pyc,,
277
+ torio/utils/ffmpeg_utils.py,sha256=2-7XS7CEZB0-M9-Ls5Tki4v7aXGJiVg7WouAUZjt3XI,8273
MLPY/Lib/site-packages/torchaudio-2.3.1.dist-info/REQUESTED ADDED
File without changes
MLPY/Lib/site-packages/torchaudio-2.3.1.dist-info/WHEEL ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ Wheel-Version: 1.0
2
+ Generator: bdist_wheel (0.37.1)
3
+ Root-Is-Purelib: false
4
+ Tag: cp39-cp39-win_amd64
5
+
MLPY/Lib/site-packages/torchaudio-2.3.1.dist-info/top_level.txt ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ torchaudio
2
+ torio
MLPY/Lib/site-packages/torchaudio/__init__.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Initialize extension and backend first
2
+ from . import _extension # noqa # usort: skip
3
+ from ._backend import ( # noqa # usort: skip
4
+ AudioMetaData,
5
+ get_audio_backend,
6
+ info,
7
+ list_audio_backends,
8
+ load,
9
+ save,
10
+ set_audio_backend,
11
+ )
12
+
13
+ from . import ( # noqa: F401
14
+ compliance,
15
+ datasets,
16
+ functional,
17
+ io,
18
+ kaldi_io,
19
+ models,
20
+ pipelines,
21
+ sox_effects,
22
+ transforms,
23
+ utils,
24
+ )
25
+
26
+ # For BC
27
+ from . import backend # noqa # usort: skip
28
+
29
+ try:
30
+ from .version import __version__, git_version # noqa: F401
31
+ except ImportError:
32
+ pass
33
+
34
+
35
+ __all__ = [
36
+ "AudioMetaData",
37
+ "load",
38
+ "info",
39
+ "save",
40
+ "io",
41
+ "compliance",
42
+ "datasets",
43
+ "functional",
44
+ "models",
45
+ "pipelines",
46
+ "kaldi_io",
47
+ "utils",
48
+ "sox_effects",
49
+ "transforms",
50
+ "list_audio_backends",
51
+ "get_audio_backend",
52
+ "set_audio_backend",
53
+ ]
MLPY/Lib/site-packages/torchaudio/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (804 Bytes). View file
 
MLPY/Lib/site-packages/torchaudio/__pycache__/kaldi_io.cpython-39.pyc ADDED
Binary file (4.53 kB). View file
 
MLPY/Lib/site-packages/torchaudio/__pycache__/version.cpython-39.pyc ADDED
Binary file (232 Bytes). View file
 
MLPY/Lib/site-packages/torchaudio/_backend/__init__.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import List, Optional
2
+
3
+ from torchaudio._internal.module_utils import deprecated
4
+
5
+ from . import utils
6
+ from .common import AudioMetaData
7
+
8
+ __all__ = [
9
+ "AudioMetaData",
10
+ "load",
11
+ "info",
12
+ "save",
13
+ "list_audio_backends",
14
+ "get_audio_backend",
15
+ "set_audio_backend",
16
+ ]
17
+
18
+
19
+ info = utils.get_info_func()
20
+ load = utils.get_load_func()
21
+ save = utils.get_save_func()
22
+
23
+
24
+ def list_audio_backends() -> List[str]:
25
+ """List available backends
26
+
27
+ Returns:
28
+ list of str: The list of available backends.
29
+
30
+ The possible values are; ``"ffmpeg"``, ``"sox"`` and ``"soundfile"``.
31
+ """
32
+
33
+ return list(utils.get_available_backends().keys())
34
+
35
+
36
+ # Temporary until global backend is removed
37
+ @deprecated("With dispatcher enabled, this function is no-op. You can remove the function call.")
38
+ def get_audio_backend() -> Optional[str]:
39
+ """Get the name of the current global backend
40
+
41
+ Returns:
42
+ str or None:
43
+ If dispatcher mode is enabled, returns ``None`` otherwise,
44
+ the name of current backend or ``None`` (no backend is set).
45
+ """
46
+ return None
47
+
48
+
49
+ # Temporary until global backend is removed
50
+ @deprecated("With dispatcher enabled, this function is no-op. You can remove the function call.")
51
+ def set_audio_backend(backend: Optional[str]): # noqa
52
+ """Set the global backend.
53
+
54
+ This is a no-op when dispatcher mode is enabled.
55
+
56
+ Args:
57
+ backend (str or None): Name of the backend.
58
+ One of ``"sox_io"`` or ``"soundfile"`` based on availability
59
+ of the system. If ``None`` is provided the current backend is unassigned.
60
+ """
61
+ pass
MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (1.77 kB). View file
 
MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/backend.cpython-39.pyc ADDED
Binary file (1.98 kB). View file
 
MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/common.cpython-39.pyc ADDED
Binary file (1.94 kB). View file
 
MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/ffmpeg.cpython-39.pyc ADDED
Binary file (8.03 kB). View file
 
MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/soundfile.cpython-39.pyc ADDED
Binary file (2.11 kB). View file
 
MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/soundfile_backend.cpython-39.pyc ADDED
Binary file (13.4 kB). View file
 
MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/sox.cpython-39.pyc ADDED
Binary file (3.1 kB). View file
 
MLPY/Lib/site-packages/torchaudio/_backend/__pycache__/utils.cpython-39.pyc ADDED
Binary file (12.9 kB). View file
 
MLPY/Lib/site-packages/torchaudio/_backend/backend.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from abc import ABC, abstractmethod
3
+ from typing import BinaryIO, Optional, Tuple, Union
4
+
5
+ from torch import Tensor
6
+ from torchaudio.io import CodecConfig
7
+
8
+ from .common import AudioMetaData
9
+
10
+
11
+ class Backend(ABC):
12
+ @staticmethod
13
+ @abstractmethod
14
+ def info(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str], buffer_size: int = 4096) -> AudioMetaData:
15
+ raise NotImplementedError
16
+
17
+ @staticmethod
18
+ @abstractmethod
19
+ def load(
20
+ uri: Union[BinaryIO, str, os.PathLike],
21
+ frame_offset: int = 0,
22
+ num_frames: int = -1,
23
+ normalize: bool = True,
24
+ channels_first: bool = True,
25
+ format: Optional[str] = None,
26
+ buffer_size: int = 4096,
27
+ ) -> Tuple[Tensor, int]:
28
+ raise NotImplementedError
29
+
30
+ @staticmethod
31
+ @abstractmethod
32
+ def save(
33
+ uri: Union[BinaryIO, str, os.PathLike],
34
+ src: Tensor,
35
+ sample_rate: int,
36
+ channels_first: bool = True,
37
+ format: Optional[str] = None,
38
+ encoding: Optional[str] = None,
39
+ bits_per_sample: Optional[int] = None,
40
+ buffer_size: int = 4096,
41
+ compression: Optional[Union[CodecConfig, float, int]] = None,
42
+ ) -> None:
43
+ raise NotImplementedError
44
+
45
+ @staticmethod
46
+ @abstractmethod
47
+ def can_decode(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str]) -> bool:
48
+ raise NotImplementedError
49
+
50
+ @staticmethod
51
+ @abstractmethod
52
+ def can_encode(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str]) -> bool:
53
+ raise NotImplementedError
MLPY/Lib/site-packages/torchaudio/_backend/common.py ADDED
@@ -0,0 +1,52 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ class AudioMetaData:
2
+ """AudioMetaData()
3
+
4
+ Return type of ``torchaudio.info`` function.
5
+
6
+ :ivar int sample_rate: Sample rate
7
+ :ivar int num_frames: The number of frames
8
+ :ivar int num_channels: The number of channels
9
+ :ivar int bits_per_sample: The number of bits per sample. This is 0 for lossy formats,
10
+ or when it cannot be accurately inferred.
11
+ :ivar str encoding: Audio encoding
12
+ The values encoding can take are one of the following:
13
+
14
+ * ``PCM_S``: Signed integer linear PCM
15
+ * ``PCM_U``: Unsigned integer linear PCM
16
+ * ``PCM_F``: Floating point linear PCM
17
+ * ``FLAC``: Flac, Free Lossless Audio Codec
18
+ * ``ULAW``: Mu-law
19
+ * ``ALAW``: A-law
20
+ * ``MP3`` : MP3, MPEG-1 Audio Layer III
21
+ * ``VORBIS``: OGG Vorbis
22
+ * ``AMR_WB``: Adaptive Multi-Rate Wideband
23
+ * ``AMR_NB``: Adaptive Multi-Rate Narrowband
24
+ * ``OPUS``: Opus
25
+ * ``HTK``: Single channel 16-bit PCM
26
+ * ``UNKNOWN`` : None of above
27
+ """
28
+
29
+ def __init__(
30
+ self,
31
+ sample_rate: int,
32
+ num_frames: int,
33
+ num_channels: int,
34
+ bits_per_sample: int,
35
+ encoding: str,
36
+ ):
37
+ self.sample_rate = sample_rate
38
+ self.num_frames = num_frames
39
+ self.num_channels = num_channels
40
+ self.bits_per_sample = bits_per_sample
41
+ self.encoding = encoding
42
+
43
+ def __str__(self):
44
+ return (
45
+ f"AudioMetaData("
46
+ f"sample_rate={self.sample_rate}, "
47
+ f"num_frames={self.num_frames}, "
48
+ f"num_channels={self.num_channels}, "
49
+ f"bits_per_sample={self.bits_per_sample}, "
50
+ f"encoding={self.encoding}"
51
+ f")"
52
+ )
MLPY/Lib/site-packages/torchaudio/_backend/ffmpeg.py ADDED
@@ -0,0 +1,334 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import re
3
+ import sys
4
+ from typing import BinaryIO, Optional, Tuple, Union
5
+
6
+ import torch
7
+ import torchaudio
8
+
9
+ from .backend import Backend
10
+ from .common import AudioMetaData
11
+
12
+ InputType = Union[BinaryIO, str, os.PathLike]
13
+
14
+
15
+ def info_audio(
16
+ src: InputType,
17
+ format: Optional[str],
18
+ buffer_size: int = 4096,
19
+ ) -> AudioMetaData:
20
+ s = torchaudio.io.StreamReader(src, format, None, buffer_size)
21
+ sinfo = s.get_src_stream_info(s.default_audio_stream)
22
+ if sinfo.num_frames == 0:
23
+ waveform = _load_audio(s)
24
+ num_frames = waveform.size(1)
25
+ else:
26
+ num_frames = sinfo.num_frames
27
+ return AudioMetaData(
28
+ int(sinfo.sample_rate),
29
+ num_frames,
30
+ sinfo.num_channels,
31
+ sinfo.bits_per_sample,
32
+ sinfo.codec.upper(),
33
+ )
34
+
35
+
36
+ def _get_load_filter(
37
+ frame_offset: int = 0,
38
+ num_frames: int = -1,
39
+ convert: bool = True,
40
+ ) -> Optional[str]:
41
+ if frame_offset < 0:
42
+ raise RuntimeError("Invalid argument: frame_offset must be non-negative. Found: {}".format(frame_offset))
43
+ if num_frames == 0 or num_frames < -1:
44
+ raise RuntimeError("Invalid argument: num_frames must be -1 or greater than 0. Found: {}".format(num_frames))
45
+
46
+ # All default values -> no filter
47
+ if frame_offset == 0 and num_frames == -1 and not convert:
48
+ return None
49
+ # Only convert
50
+ aformat = "aformat=sample_fmts=fltp"
51
+ if frame_offset == 0 and num_frames == -1 and convert:
52
+ return aformat
53
+ # At least one of frame_offset or num_frames has non-default value
54
+ if num_frames > 0:
55
+ atrim = "atrim=start_sample={}:end_sample={}".format(frame_offset, frame_offset + num_frames)
56
+ else:
57
+ atrim = "atrim=start_sample={}".format(frame_offset)
58
+ if not convert:
59
+ return atrim
60
+ return "{},{}".format(atrim, aformat)
61
+
62
+
63
+ def _load_audio(
64
+ s: "torchaudio.io.StreamReader",
65
+ filter: Optional[str] = None,
66
+ channels_first: bool = True,
67
+ ) -> torch.Tensor:
68
+ s.add_audio_stream(-1, -1, filter_desc=filter)
69
+ s.process_all_packets()
70
+ chunk = s.pop_chunks()[0]
71
+ if chunk is None:
72
+ raise RuntimeError("Failed to decode audio.")
73
+ waveform = chunk._elem
74
+ return waveform.T if channels_first else waveform
75
+
76
+
77
+ def load_audio(
78
+ src: InputType,
79
+ frame_offset: int = 0,
80
+ num_frames: int = -1,
81
+ convert: bool = True,
82
+ channels_first: bool = True,
83
+ format: Optional[str] = None,
84
+ buffer_size: int = 4096,
85
+ ) -> Tuple[torch.Tensor, int]:
86
+ if hasattr(src, "read") and format == "vorbis":
87
+ format = "ogg"
88
+ s = torchaudio.io.StreamReader(src, format, None, buffer_size)
89
+ sample_rate = int(s.get_src_stream_info(s.default_audio_stream).sample_rate)
90
+ filter = _get_load_filter(frame_offset, num_frames, convert)
91
+ waveform = _load_audio(s, filter, channels_first)
92
+ return waveform, sample_rate
93
+
94
+
95
+ def _get_sample_format(dtype: torch.dtype) -> str:
96
+ dtype_to_format = {
97
+ torch.uint8: "u8",
98
+ torch.int16: "s16",
99
+ torch.int32: "s32",
100
+ torch.int64: "s64",
101
+ torch.float32: "flt",
102
+ torch.float64: "dbl",
103
+ }
104
+ format = dtype_to_format.get(dtype)
105
+ if format is None:
106
+ raise ValueError(f"No format found for dtype {dtype}; dtype must be one of {list(dtype_to_format.keys())}.")
107
+ return format
108
+
109
+
110
+ def _native_endianness() -> str:
111
+ if sys.byteorder == "little":
112
+ return "le"
113
+ else:
114
+ return "be"
115
+
116
+
117
+ def _get_encoder_for_wav(encoding: str, bits_per_sample: int) -> str:
118
+ if bits_per_sample not in {None, 8, 16, 24, 32, 64}:
119
+ raise ValueError(f"Invalid bits_per_sample {bits_per_sample} for WAV encoding.")
120
+ endianness = _native_endianness()
121
+ if not encoding:
122
+ if not bits_per_sample:
123
+ # default to PCM S16
124
+ return f"pcm_s16{endianness}"
125
+ if bits_per_sample == 8:
126
+ return "pcm_u8"
127
+ return f"pcm_s{bits_per_sample}{endianness}"
128
+ if encoding == "PCM_S":
129
+ if not bits_per_sample:
130
+ bits_per_sample = 16
131
+ if bits_per_sample == 8:
132
+ raise ValueError("For WAV signed PCM, 8-bit encoding is not supported.")
133
+ return f"pcm_s{bits_per_sample}{endianness}"
134
+ if encoding == "PCM_U":
135
+ if bits_per_sample in (None, 8):
136
+ return "pcm_u8"
137
+ raise ValueError("For WAV unsigned PCM, only 8-bit encoding is supported.")
138
+ if encoding == "PCM_F":
139
+ if not bits_per_sample:
140
+ bits_per_sample = 32
141
+ if bits_per_sample in (32, 64):
142
+ return f"pcm_f{bits_per_sample}{endianness}"
143
+ raise ValueError("For WAV float PCM, only 32- and 64-bit encodings are supported.")
144
+ if encoding == "ULAW":
145
+ if bits_per_sample in (None, 8):
146
+ return "pcm_mulaw"
147
+ raise ValueError("For WAV PCM mu-law, only 8-bit encoding is supported.")
148
+ if encoding == "ALAW":
149
+ if bits_per_sample in (None, 8):
150
+ return "pcm_alaw"
151
+ raise ValueError("For WAV PCM A-law, only 8-bit encoding is supported.")
152
+ raise ValueError(f"WAV encoding {encoding} is not supported.")
153
+
154
+
155
+ def _get_flac_sample_fmt(bps):
156
+ if bps is None or bps == 16:
157
+ return "s16"
158
+ if bps == 24:
159
+ return "s32"
160
+ raise ValueError(f"FLAC only supports bits_per_sample values of 16 and 24 ({bps} specified).")
161
+
162
+
163
+ def _parse_save_args(
164
+ ext: Optional[str],
165
+ format: Optional[str],
166
+ encoding: Optional[str],
167
+ bps: Optional[int],
168
+ ):
169
+ # torchaudio's save function accepts the followings, which do not 1to1 map
170
+ # to FFmpeg.
171
+ #
172
+ # - format: audio format
173
+ # - bits_per_sample: encoder sample format
174
+ # - encoding: such as PCM_U8.
175
+ #
176
+ # In FFmpeg, format is specified with the following three (and more)
177
+ #
178
+ # - muxer: could be audio format or container format.
179
+ # the one we passed to the constructor of StreamWriter
180
+ # - encoder: the audio encoder used to encode audio
181
+ # - encoder sample format: the format used by encoder to encode audio.
182
+ #
183
+ # If encoder sample format is different from source sample format, StreamWriter
184
+ # will insert a filter automatically.
185
+ #
186
+ def _type(spec):
187
+ # either format is exactly the specified one
188
+ # or extension matches to the spec AND there is no format override.
189
+ return format == spec or (format is None and ext == spec)
190
+
191
+ if _type("wav") or _type("amb"):
192
+ # wav is special because it supports different encoding through encoders
193
+ # each encoder only supports one encoder format
194
+ #
195
+ # amb format is a special case originated from libsox.
196
+ # It is basically a WAV format, with slight modification.
197
+ # https://github.com/chirlu/sox/commit/4a4ea33edbca5972a1ed8933cc3512c7302fa67a#diff-39171191a858add9df87f5f210a34a776ac2c026842ae6db6ce97f5e68836795
198
+ # It is a format so that decoders will recognize it as ambisonic.
199
+ # https://www.ambisonia.com/Members/mleese/file-format-for-b-format/
200
+ # FFmpeg does not recognize amb because it is basically a WAV format.
201
+ muxer = "wav"
202
+ encoder = _get_encoder_for_wav(encoding, bps)
203
+ sample_fmt = None
204
+ elif _type("vorbis"):
205
+ # FFpmeg does not recognize vorbis extension, while libsox used to do.
206
+ # For the sake of bakward compatibility, (and the simplicity),
207
+ # we support the case where users want to do save("foo.vorbis")
208
+ muxer = "ogg"
209
+ encoder = "vorbis"
210
+ sample_fmt = None
211
+ else:
212
+ muxer = format
213
+ encoder = None
214
+ sample_fmt = None
215
+ if _type("flac"):
216
+ sample_fmt = _get_flac_sample_fmt(bps)
217
+ if _type("ogg"):
218
+ sample_fmt = _get_flac_sample_fmt(bps)
219
+ return muxer, encoder, sample_fmt
220
+
221
+
222
+ def save_audio(
223
+ uri: InputType,
224
+ src: torch.Tensor,
225
+ sample_rate: int,
226
+ channels_first: bool = True,
227
+ format: Optional[str] = None,
228
+ encoding: Optional[str] = None,
229
+ bits_per_sample: Optional[int] = None,
230
+ buffer_size: int = 4096,
231
+ compression: Optional[torchaudio.io.CodecConfig] = None,
232
+ ) -> None:
233
+ ext = None
234
+ if hasattr(uri, "write"):
235
+ if format is None:
236
+ raise RuntimeError("'format' is required when saving to file object.")
237
+ else:
238
+ uri = os.path.normpath(uri)
239
+ if tokens := str(uri).split(".")[1:]:
240
+ ext = tokens[-1].lower()
241
+
242
+ muxer, encoder, enc_fmt = _parse_save_args(ext, format, encoding, bits_per_sample)
243
+
244
+ if channels_first:
245
+ src = src.T
246
+
247
+ s = torchaudio.io.StreamWriter(uri, format=muxer, buffer_size=buffer_size)
248
+ s.add_audio_stream(
249
+ sample_rate,
250
+ num_channels=src.size(-1),
251
+ format=_get_sample_format(src.dtype),
252
+ encoder=encoder,
253
+ encoder_format=enc_fmt,
254
+ codec_config=compression,
255
+ )
256
+ with s.open():
257
+ s.write_audio_chunk(0, src)
258
+
259
+
260
+ def _map_encoding(encoding: str) -> str:
261
+ for dst in ["PCM_S", "PCM_U", "PCM_F"]:
262
+ if dst in encoding:
263
+ return dst
264
+ if encoding == "PCM_MULAW":
265
+ return "ULAW"
266
+ elif encoding == "PCM_ALAW":
267
+ return "ALAW"
268
+ return encoding
269
+
270
+
271
+ def _get_bits_per_sample(encoding: str, bits_per_sample: int) -> str:
272
+ if m := re.search(r"PCM_\w(\d+)\w*", encoding):
273
+ return int(m.group(1))
274
+ elif encoding in ["PCM_ALAW", "PCM_MULAW"]:
275
+ return 8
276
+ return bits_per_sample
277
+
278
+
279
+ class FFmpegBackend(Backend):
280
+ @staticmethod
281
+ def info(uri: InputType, format: Optional[str], buffer_size: int = 4096) -> AudioMetaData:
282
+ metadata = info_audio(uri, format, buffer_size)
283
+ metadata.bits_per_sample = _get_bits_per_sample(metadata.encoding, metadata.bits_per_sample)
284
+ metadata.encoding = _map_encoding(metadata.encoding)
285
+ return metadata
286
+
287
+ @staticmethod
288
+ def load(
289
+ uri: InputType,
290
+ frame_offset: int = 0,
291
+ num_frames: int = -1,
292
+ normalize: bool = True,
293
+ channels_first: bool = True,
294
+ format: Optional[str] = None,
295
+ buffer_size: int = 4096,
296
+ ) -> Tuple[torch.Tensor, int]:
297
+ return load_audio(uri, frame_offset, num_frames, normalize, channels_first, format)
298
+
299
+ @staticmethod
300
+ def save(
301
+ uri: InputType,
302
+ src: torch.Tensor,
303
+ sample_rate: int,
304
+ channels_first: bool = True,
305
+ format: Optional[str] = None,
306
+ encoding: Optional[str] = None,
307
+ bits_per_sample: Optional[int] = None,
308
+ buffer_size: int = 4096,
309
+ compression: Optional[Union[torchaudio.io.CodecConfig, float, int]] = None,
310
+ ) -> None:
311
+ if not isinstance(compression, (torchaudio.io.CodecConfig, type(None))):
312
+ raise ValueError(
313
+ "FFmpeg backend expects non-`None` value for argument `compression` to be of ",
314
+ f"type `torchaudio.io.CodecConfig`, but received value of type {type(compression)}",
315
+ )
316
+ save_audio(
317
+ uri,
318
+ src,
319
+ sample_rate,
320
+ channels_first,
321
+ format,
322
+ encoding,
323
+ bits_per_sample,
324
+ buffer_size,
325
+ compression,
326
+ )
327
+
328
+ @staticmethod
329
+ def can_decode(uri: InputType, format: Optional[str]) -> bool:
330
+ return True
331
+
332
+ @staticmethod
333
+ def can_encode(uri: InputType, format: Optional[str]) -> bool:
334
+ return True
MLPY/Lib/site-packages/torchaudio/_backend/soundfile.py ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import BinaryIO, Optional, Tuple, Union
3
+
4
+ import torch
5
+ from torchaudio.io import CodecConfig
6
+
7
+ from . import soundfile_backend
8
+ from .backend import Backend
9
+ from .common import AudioMetaData
10
+
11
+
12
+ class SoundfileBackend(Backend):
13
+ @staticmethod
14
+ def info(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str], buffer_size: int = 4096) -> AudioMetaData:
15
+ return soundfile_backend.info(uri, format)
16
+
17
+ @staticmethod
18
+ def load(
19
+ uri: Union[BinaryIO, str, os.PathLike],
20
+ frame_offset: int = 0,
21
+ num_frames: int = -1,
22
+ normalize: bool = True,
23
+ channels_first: bool = True,
24
+ format: Optional[str] = None,
25
+ buffer_size: int = 4096,
26
+ ) -> Tuple[torch.Tensor, int]:
27
+ return soundfile_backend.load(uri, frame_offset, num_frames, normalize, channels_first, format)
28
+
29
+ @staticmethod
30
+ def save(
31
+ uri: Union[BinaryIO, str, os.PathLike],
32
+ src: torch.Tensor,
33
+ sample_rate: int,
34
+ channels_first: bool = True,
35
+ format: Optional[str] = None,
36
+ encoding: Optional[str] = None,
37
+ bits_per_sample: Optional[int] = None,
38
+ buffer_size: int = 4096,
39
+ compression: Optional[Union[CodecConfig, float, int]] = None,
40
+ ) -> None:
41
+ if compression:
42
+ raise ValueError("soundfile backend does not support argument `compression`.")
43
+
44
+ soundfile_backend.save(
45
+ uri, src, sample_rate, channels_first, format=format, encoding=encoding, bits_per_sample=bits_per_sample
46
+ )
47
+
48
+ @staticmethod
49
+ def can_decode(uri, format) -> bool:
50
+ return True
51
+
52
+ @staticmethod
53
+ def can_encode(uri, format) -> bool:
54
+ return True
MLPY/Lib/site-packages/torchaudio/_backend/soundfile_backend.py ADDED
@@ -0,0 +1,457 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """The new soundfile backend which will become default in 0.8.0 onward"""
2
+ import warnings
3
+ from typing import Optional, Tuple
4
+
5
+ import torch
6
+ from torchaudio._internal import module_utils as _mod_utils
7
+
8
+ from .common import AudioMetaData
9
+
10
+
11
+ _IS_SOUNDFILE_AVAILABLE = False
12
+
13
+ # TODO: import soundfile only when it is used.
14
+ if _mod_utils.is_module_available("soundfile"):
15
+ try:
16
+ import soundfile
17
+
18
+ _requires_soundfile = _mod_utils.no_op
19
+ _IS_SOUNDFILE_AVAILABLE = True
20
+ except Exception:
21
+ _requires_soundfile = _mod_utils.fail_with_message(
22
+ "requires soundfile, but we failed to import it. Please check the installation of soundfile."
23
+ )
24
+ else:
25
+ _requires_soundfile = _mod_utils.fail_with_message(
26
+ "requires soundfile, but it is not installed. Please install soundfile."
27
+ )
28
+
29
+
30
+ # Mapping from soundfile subtype to number of bits per sample.
31
+ # This is mostly heuristical and the value is set to 0 when it is irrelevant
32
+ # (lossy formats) or when it can't be inferred.
33
+ # For ADPCM (and G72X) subtypes, it's hard to infer the bit depth because it's not part of the standard:
34
+ # According to https://en.wikipedia.org/wiki/Adaptive_differential_pulse-code_modulation#In_telephony,
35
+ # the default seems to be 8 bits but it can be compressed further to 4 bits.
36
+ # The dict is inspired from
37
+ # https://github.com/bastibe/python-soundfile/blob/744efb4b01abc72498a96b09115b42a4cabd85e4/soundfile.py#L66-L94
38
+ _SUBTYPE_TO_BITS_PER_SAMPLE = {
39
+ "PCM_S8": 8, # Signed 8 bit data
40
+ "PCM_16": 16, # Signed 16 bit data
41
+ "PCM_24": 24, # Signed 24 bit data
42
+ "PCM_32": 32, # Signed 32 bit data
43
+ "PCM_U8": 8, # Unsigned 8 bit data (WAV and RAW only)
44
+ "FLOAT": 32, # 32 bit float data
45
+ "DOUBLE": 64, # 64 bit float data
46
+ "ULAW": 8, # U-Law encoded. See https://en.wikipedia.org/wiki/G.711#Types
47
+ "ALAW": 8, # A-Law encoded. See https://en.wikipedia.org/wiki/G.711#Types
48
+ "IMA_ADPCM": 0, # IMA ADPCM.
49
+ "MS_ADPCM": 0, # Microsoft ADPCM.
50
+ "GSM610": 0, # GSM 6.10 encoding. (Wikipedia says 1.625 bit depth?? https://en.wikipedia.org/wiki/Full_Rate)
51
+ "VOX_ADPCM": 0, # OKI / Dialogix ADPCM
52
+ "G721_32": 0, # 32kbs G721 ADPCM encoding.
53
+ "G723_24": 0, # 24kbs G723 ADPCM encoding.
54
+ "G723_40": 0, # 40kbs G723 ADPCM encoding.
55
+ "DWVW_12": 12, # 12 bit Delta Width Variable Word encoding.
56
+ "DWVW_16": 16, # 16 bit Delta Width Variable Word encoding.
57
+ "DWVW_24": 24, # 24 bit Delta Width Variable Word encoding.
58
+ "DWVW_N": 0, # N bit Delta Width Variable Word encoding.
59
+ "DPCM_8": 8, # 8 bit differential PCM (XI only)
60
+ "DPCM_16": 16, # 16 bit differential PCM (XI only)
61
+ "VORBIS": 0, # Xiph Vorbis encoding. (lossy)
62
+ "ALAC_16": 16, # Apple Lossless Audio Codec (16 bit).
63
+ "ALAC_20": 20, # Apple Lossless Audio Codec (20 bit).
64
+ "ALAC_24": 24, # Apple Lossless Audio Codec (24 bit).
65
+ "ALAC_32": 32, # Apple Lossless Audio Codec (32 bit).
66
+ }
67
+
68
+
69
+ def _get_bit_depth(subtype):
70
+ if subtype not in _SUBTYPE_TO_BITS_PER_SAMPLE:
71
+ warnings.warn(
72
+ f"The {subtype} subtype is unknown to TorchAudio. As a result, the bits_per_sample "
73
+ "attribute will be set to 0. If you are seeing this warning, please "
74
+ "report by opening an issue on github (after checking for existing/closed ones). "
75
+ "You may otherwise ignore this warning."
76
+ )
77
+ return _SUBTYPE_TO_BITS_PER_SAMPLE.get(subtype, 0)
78
+
79
+
80
+ _SUBTYPE_TO_ENCODING = {
81
+ "PCM_S8": "PCM_S",
82
+ "PCM_16": "PCM_S",
83
+ "PCM_24": "PCM_S",
84
+ "PCM_32": "PCM_S",
85
+ "PCM_U8": "PCM_U",
86
+ "FLOAT": "PCM_F",
87
+ "DOUBLE": "PCM_F",
88
+ "ULAW": "ULAW",
89
+ "ALAW": "ALAW",
90
+ "VORBIS": "VORBIS",
91
+ }
92
+
93
+
94
+ def _get_encoding(format: str, subtype: str):
95
+ if format == "FLAC":
96
+ return "FLAC"
97
+ return _SUBTYPE_TO_ENCODING.get(subtype, "UNKNOWN")
98
+
99
+
100
+ @_requires_soundfile
101
+ def info(filepath: str, format: Optional[str] = None) -> AudioMetaData:
102
+ """Get signal information of an audio file.
103
+
104
+ Note:
105
+ ``filepath`` argument is intentionally annotated as ``str`` only, even though it accepts
106
+ ``pathlib.Path`` object as well. This is for the consistency with ``"sox_io"`` backend,
107
+ which has a restriction on type annotation due to TorchScript compiler compatiblity.
108
+
109
+ Args:
110
+ filepath (path-like object or file-like object):
111
+ Source of audio data.
112
+ format (str or None, optional):
113
+ Not used. PySoundFile does not accept format hint.
114
+
115
+ Returns:
116
+ AudioMetaData: meta data of the given audio.
117
+
118
+ """
119
+ sinfo = soundfile.info(filepath)
120
+ return AudioMetaData(
121
+ sinfo.samplerate,
122
+ sinfo.frames,
123
+ sinfo.channels,
124
+ bits_per_sample=_get_bit_depth(sinfo.subtype),
125
+ encoding=_get_encoding(sinfo.format, sinfo.subtype),
126
+ )
127
+
128
+
129
+ _SUBTYPE2DTYPE = {
130
+ "PCM_S8": "int8",
131
+ "PCM_U8": "uint8",
132
+ "PCM_16": "int16",
133
+ "PCM_32": "int32",
134
+ "FLOAT": "float32",
135
+ "DOUBLE": "float64",
136
+ }
137
+
138
+
139
+ @_requires_soundfile
140
+ def load(
141
+ filepath: str,
142
+ frame_offset: int = 0,
143
+ num_frames: int = -1,
144
+ normalize: bool = True,
145
+ channels_first: bool = True,
146
+ format: Optional[str] = None,
147
+ ) -> Tuple[torch.Tensor, int]:
148
+ """Load audio data from file.
149
+
150
+ Note:
151
+ The formats this function can handle depend on the soundfile installation.
152
+ This function is tested on the following formats;
153
+
154
+ * WAV
155
+
156
+ * 32-bit floating-point
157
+ * 32-bit signed integer
158
+ * 16-bit signed integer
159
+ * 8-bit unsigned integer
160
+
161
+ * FLAC
162
+ * OGG/VORBIS
163
+ * SPHERE
164
+
165
+ By default (``normalize=True``, ``channels_first=True``), this function returns Tensor with
166
+ ``float32`` dtype, and the shape of `[channel, time]`.
167
+
168
+ .. warning::
169
+
170
+ ``normalize`` argument does not perform volume normalization.
171
+ It only converts the sample type to `torch.float32` from the native sample
172
+ type.
173
+
174
+ When the input format is WAV with integer type, such as 32-bit signed integer, 16-bit
175
+ signed integer, 24-bit signed integer, and 8-bit unsigned integer, by providing ``normalize=False``,
176
+ this function can return integer Tensor, where the samples are expressed within the whole range
177
+ of the corresponding dtype, that is, ``int32`` tensor for 32-bit signed PCM,
178
+ ``int16`` for 16-bit signed PCM and ``uint8`` for 8-bit unsigned PCM. Since torch does not
179
+ support ``int24`` dtype, 24-bit signed PCM are converted to ``int32`` tensors.
180
+
181
+ ``normalize`` argument has no effect on 32-bit floating-point WAV and other formats, such as
182
+ ``flac`` and ``mp3``.
183
+
184
+ For these formats, this function always returns ``float32`` Tensor with values.
185
+
186
+ Note:
187
+ ``filepath`` argument is intentionally annotated as ``str`` only, even though it accepts
188
+ ``pathlib.Path`` object as well. This is for the consistency with ``"sox_io"`` backend,
189
+ which has a restriction on type annotation due to TorchScript compiler compatiblity.
190
+
191
+ Args:
192
+ filepath (path-like object or file-like object):
193
+ Source of audio data.
194
+ frame_offset (int, optional):
195
+ Number of frames to skip before start reading data.
196
+ num_frames (int, optional):
197
+ Maximum number of frames to read. ``-1`` reads all the remaining samples,
198
+ starting from ``frame_offset``.
199
+ This function may return the less number of frames if there is not enough
200
+ frames in the given file.
201
+ normalize (bool, optional):
202
+ When ``True``, this function converts the native sample type to ``float32``.
203
+ Default: ``True``.
204
+
205
+ If input file is integer WAV, giving ``False`` will change the resulting Tensor type to
206
+ integer type.
207
+ This argument has no effect for formats other than integer WAV type.
208
+
209
+ channels_first (bool, optional):
210
+ When True, the returned Tensor has dimension `[channel, time]`.
211
+ Otherwise, the returned Tensor's dimension is `[time, channel]`.
212
+ format (str or None, optional):
213
+ Not used. PySoundFile does not accept format hint.
214
+
215
+ Returns:
216
+ (torch.Tensor, int): Resulting Tensor and sample rate.
217
+ If the input file has integer wav format and normalization is off, then it has
218
+ integer type, else ``float32`` type. If ``channels_first=True``, it has
219
+ `[channel, time]` else `[time, channel]`.
220
+ """
221
+ with soundfile.SoundFile(filepath, "r") as file_:
222
+ if file_.format != "WAV" or normalize:
223
+ dtype = "float32"
224
+ elif file_.subtype not in _SUBTYPE2DTYPE:
225
+ raise ValueError(f"Unsupported subtype: {file_.subtype}")
226
+ else:
227
+ dtype = _SUBTYPE2DTYPE[file_.subtype]
228
+
229
+ frames = file_._prepare_read(frame_offset, None, num_frames)
230
+ waveform = file_.read(frames, dtype, always_2d=True)
231
+ sample_rate = file_.samplerate
232
+
233
+ waveform = torch.from_numpy(waveform)
234
+ if channels_first:
235
+ waveform = waveform.t()
236
+ return waveform, sample_rate
237
+
238
+
239
+ def _get_subtype_for_wav(dtype: torch.dtype, encoding: str, bits_per_sample: int):
240
+ if not encoding:
241
+ if not bits_per_sample:
242
+ subtype = {
243
+ torch.uint8: "PCM_U8",
244
+ torch.int16: "PCM_16",
245
+ torch.int32: "PCM_32",
246
+ torch.float32: "FLOAT",
247
+ torch.float64: "DOUBLE",
248
+ }.get(dtype)
249
+ if not subtype:
250
+ raise ValueError(f"Unsupported dtype for wav: {dtype}")
251
+ return subtype
252
+ if bits_per_sample == 8:
253
+ return "PCM_U8"
254
+ return f"PCM_{bits_per_sample}"
255
+ if encoding == "PCM_S":
256
+ if not bits_per_sample:
257
+ return "PCM_32"
258
+ if bits_per_sample == 8:
259
+ raise ValueError("wav does not support 8-bit signed PCM encoding.")
260
+ return f"PCM_{bits_per_sample}"
261
+ if encoding == "PCM_U":
262
+ if bits_per_sample in (None, 8):
263
+ return "PCM_U8"
264
+ raise ValueError("wav only supports 8-bit unsigned PCM encoding.")
265
+ if encoding == "PCM_F":
266
+ if bits_per_sample in (None, 32):
267
+ return "FLOAT"
268
+ if bits_per_sample == 64:
269
+ return "DOUBLE"
270
+ raise ValueError("wav only supports 32/64-bit float PCM encoding.")
271
+ if encoding == "ULAW":
272
+ if bits_per_sample in (None, 8):
273
+ return "ULAW"
274
+ raise ValueError("wav only supports 8-bit mu-law encoding.")
275
+ if encoding == "ALAW":
276
+ if bits_per_sample in (None, 8):
277
+ return "ALAW"
278
+ raise ValueError("wav only supports 8-bit a-law encoding.")
279
+ raise ValueError(f"wav does not support {encoding}.")
280
+
281
+
282
+ def _get_subtype_for_sphere(encoding: str, bits_per_sample: int):
283
+ if encoding in (None, "PCM_S"):
284
+ return f"PCM_{bits_per_sample}" if bits_per_sample else "PCM_32"
285
+ if encoding in ("PCM_U", "PCM_F"):
286
+ raise ValueError(f"sph does not support {encoding} encoding.")
287
+ if encoding == "ULAW":
288
+ if bits_per_sample in (None, 8):
289
+ return "ULAW"
290
+ raise ValueError("sph only supports 8-bit for mu-law encoding.")
291
+ if encoding == "ALAW":
292
+ return "ALAW"
293
+ raise ValueError(f"sph does not support {encoding}.")
294
+
295
+
296
+ def _get_subtype(dtype: torch.dtype, format: str, encoding: str, bits_per_sample: int):
297
+ if format == "wav":
298
+ return _get_subtype_for_wav(dtype, encoding, bits_per_sample)
299
+ if format == "flac":
300
+ if encoding:
301
+ raise ValueError("flac does not support encoding.")
302
+ if not bits_per_sample:
303
+ return "PCM_16"
304
+ if bits_per_sample > 24:
305
+ raise ValueError("flac does not support bits_per_sample > 24.")
306
+ return "PCM_S8" if bits_per_sample == 8 else f"PCM_{bits_per_sample}"
307
+ if format in ("ogg", "vorbis"):
308
+ if bits_per_sample:
309
+ raise ValueError("ogg/vorbis does not support bits_per_sample.")
310
+ if encoding is None or encoding == "vorbis":
311
+ return "VORBIS"
312
+ if encoding == "opus":
313
+ return "OPUS"
314
+ raise ValueError(f"Unexpected encoding: {encoding}")
315
+ if format == "mp3":
316
+ return "MPEG_LAYER_III"
317
+ if format == "sph":
318
+ return _get_subtype_for_sphere(encoding, bits_per_sample)
319
+ if format in ("nis", "nist"):
320
+ return "PCM_16"
321
+ raise ValueError(f"Unsupported format: {format}")
322
+
323
+
324
+ @_requires_soundfile
325
+ def save(
326
+ filepath: str,
327
+ src: torch.Tensor,
328
+ sample_rate: int,
329
+ channels_first: bool = True,
330
+ compression: Optional[float] = None,
331
+ format: Optional[str] = None,
332
+ encoding: Optional[str] = None,
333
+ bits_per_sample: Optional[int] = None,
334
+ ):
335
+ """Save audio data to file.
336
+
337
+ Note:
338
+ The formats this function can handle depend on the soundfile installation.
339
+ This function is tested on the following formats;
340
+
341
+ * WAV
342
+
343
+ * 32-bit floating-point
344
+ * 32-bit signed integer
345
+ * 16-bit signed integer
346
+ * 8-bit unsigned integer
347
+
348
+ * FLAC
349
+ * OGG/VORBIS
350
+ * SPHERE
351
+
352
+ Note:
353
+ ``filepath`` argument is intentionally annotated as ``str`` only, even though it accepts
354
+ ``pathlib.Path`` object as well. This is for the consistency with ``"sox_io"`` backend,
355
+ which has a restriction on type annotation due to TorchScript compiler compatiblity.
356
+
357
+ Args:
358
+ filepath (str or pathlib.Path): Path to audio file.
359
+ src (torch.Tensor): Audio data to save. must be 2D tensor.
360
+ sample_rate (int): sampling rate
361
+ channels_first (bool, optional): If ``True``, the given tensor is interpreted as `[channel, time]`,
362
+ otherwise `[time, channel]`.
363
+ compression (float of None, optional): Not used.
364
+ It is here only for interface compatibility reson with "sox_io" backend.
365
+ format (str or None, optional): Override the audio format.
366
+ When ``filepath`` argument is path-like object, audio format is
367
+ inferred from file extension. If the file extension is missing or
368
+ different, you can specify the correct format with this argument.
369
+
370
+ When ``filepath`` argument is file-like object,
371
+ this argument is required.
372
+
373
+ Valid values are ``"wav"``, ``"ogg"``, ``"vorbis"``,
374
+ ``"flac"`` and ``"sph"``.
375
+ encoding (str or None, optional): Changes the encoding for supported formats.
376
+ This argument is effective only for supported formats, sush as
377
+ ``"wav"``, ``""flac"`` and ``"sph"``. Valid values are;
378
+
379
+ - ``"PCM_S"`` (signed integer Linear PCM)
380
+ - ``"PCM_U"`` (unsigned integer Linear PCM)
381
+ - ``"PCM_F"`` (floating point PCM)
382
+ - ``"ULAW"`` (mu-law)
383
+ - ``"ALAW"`` (a-law)
384
+
385
+ bits_per_sample (int or None, optional): Changes the bit depth for the
386
+ supported formats.
387
+ When ``format`` is one of ``"wav"``, ``"flac"`` or ``"sph"``,
388
+ you can change the bit depth.
389
+ Valid values are ``8``, ``16``, ``24``, ``32`` and ``64``.
390
+
391
+ Supported formats/encodings/bit depth/compression are:
392
+
393
+ ``"wav"``
394
+ - 32-bit floating-point PCM
395
+ - 32-bit signed integer PCM
396
+ - 24-bit signed integer PCM
397
+ - 16-bit signed integer PCM
398
+ - 8-bit unsigned integer PCM
399
+ - 8-bit mu-law
400
+ - 8-bit a-law
401
+
402
+ Note:
403
+ Default encoding/bit depth is determined by the dtype of
404
+ the input Tensor.
405
+
406
+ ``"flac"``
407
+ - 8-bit
408
+ - 16-bit (default)
409
+ - 24-bit
410
+
411
+ ``"ogg"``, ``"vorbis"``
412
+ - Doesn't accept changing configuration.
413
+
414
+ ``"sph"``
415
+ - 8-bit signed integer PCM
416
+ - 16-bit signed integer PCM
417
+ - 24-bit signed integer PCM
418
+ - 32-bit signed integer PCM (default)
419
+ - 8-bit mu-law
420
+ - 8-bit a-law
421
+ - 16-bit a-law
422
+ - 24-bit a-law
423
+ - 32-bit a-law
424
+
425
+ """
426
+ if src.ndim != 2:
427
+ raise ValueError(f"Expected 2D Tensor, got {src.ndim}D.")
428
+ if compression is not None:
429
+ warnings.warn(
430
+ '`save` function of "soundfile" backend does not support "compression" parameter. '
431
+ "The argument is silently ignored."
432
+ )
433
+ if hasattr(filepath, "write"):
434
+ if format is None:
435
+ raise RuntimeError("`format` is required when saving to file object.")
436
+ ext = format.lower()
437
+ else:
438
+ ext = str(filepath).split(".")[-1].lower()
439
+
440
+ if bits_per_sample not in (None, 8, 16, 24, 32, 64):
441
+ raise ValueError("Invalid bits_per_sample.")
442
+ if bits_per_sample == 24:
443
+ warnings.warn(
444
+ "Saving audio with 24 bits per sample might warp samples near -1. "
445
+ "Using 16 bits per sample might be able to avoid this."
446
+ )
447
+ subtype = _get_subtype(src.dtype, ext, encoding, bits_per_sample)
448
+
449
+ # sph is a extension used in TED-LIUM but soundfile does not recognize it as NIST format,
450
+ # so we extend the extensions manually here
451
+ if ext in ["nis", "nist", "sph"] and format is None:
452
+ format = "NIST"
453
+
454
+ if channels_first:
455
+ src = src.t()
456
+
457
+ soundfile.write(file=filepath, data=src, samplerate=sample_rate, subtype=subtype, format=format)
MLPY/Lib/site-packages/torchaudio/_backend/sox.py ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import BinaryIO, Optional, Tuple, Union
3
+
4
+ import torch
5
+ import torchaudio
6
+
7
+ from .backend import Backend
8
+ from .common import AudioMetaData
9
+
10
+ sox_ext = torchaudio._extension.lazy_import_sox_ext()
11
+
12
+
13
+ class SoXBackend(Backend):
14
+ @staticmethod
15
+ def info(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str], buffer_size: int = 4096) -> AudioMetaData:
16
+ if hasattr(uri, "read"):
17
+ raise ValueError(
18
+ "SoX backend does not support reading from file-like objects. ",
19
+ "Please use an alternative backend that does support reading from file-like objects, e.g. FFmpeg.",
20
+ )
21
+ else:
22
+ sinfo = sox_ext.get_info(uri, format)
23
+ if sinfo:
24
+ return AudioMetaData(*sinfo)
25
+ else:
26
+ raise RuntimeError(f"Failed to fetch metadata for {uri}.")
27
+
28
+ @staticmethod
29
+ def load(
30
+ uri: Union[BinaryIO, str, os.PathLike],
31
+ frame_offset: int = 0,
32
+ num_frames: int = -1,
33
+ normalize: bool = True,
34
+ channels_first: bool = True,
35
+ format: Optional[str] = None,
36
+ buffer_size: int = 4096,
37
+ ) -> Tuple[torch.Tensor, int]:
38
+ if hasattr(uri, "read"):
39
+ raise ValueError(
40
+ "SoX backend does not support loading from file-like objects. ",
41
+ "Please use an alternative backend that does support loading from file-like objects, e.g. FFmpeg.",
42
+ )
43
+ else:
44
+ ret = sox_ext.load_audio_file(uri, frame_offset, num_frames, normalize, channels_first, format)
45
+ if not ret:
46
+ raise RuntimeError(f"Failed to load audio from {uri}.")
47
+ return ret
48
+
49
+ @staticmethod
50
+ def save(
51
+ uri: Union[BinaryIO, str, os.PathLike],
52
+ src: torch.Tensor,
53
+ sample_rate: int,
54
+ channels_first: bool = True,
55
+ format: Optional[str] = None,
56
+ encoding: Optional[str] = None,
57
+ bits_per_sample: Optional[int] = None,
58
+ buffer_size: int = 4096,
59
+ compression: Optional[Union[torchaudio.io.CodecConfig, float, int]] = None,
60
+ ) -> None:
61
+ if not isinstance(compression, (float, int, type(None))):
62
+ raise ValueError(
63
+ "SoX backend expects non-`None` value for argument `compression` to be of ",
64
+ f"type `float` or `int`, but received value of type {type(compression)}",
65
+ )
66
+ if hasattr(uri, "write"):
67
+ raise ValueError(
68
+ "SoX backend does not support writing to file-like objects. ",
69
+ "Please use an alternative backend that does support writing to file-like objects, e.g. FFmpeg.",
70
+ )
71
+ else:
72
+ sox_ext.save_audio_file(
73
+ uri,
74
+ src,
75
+ sample_rate,
76
+ channels_first,
77
+ compression,
78
+ format,
79
+ encoding,
80
+ bits_per_sample,
81
+ )
82
+
83
+ @staticmethod
84
+ def can_decode(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str]) -> bool:
85
+ # i.e. not a file-like object.
86
+ return not hasattr(uri, "read")
87
+
88
+ @staticmethod
89
+ def can_encode(uri: Union[BinaryIO, str, os.PathLike], format: Optional[str]) -> bool:
90
+ # i.e. not a file-like object.
91
+ return not hasattr(uri, "write")
MLPY/Lib/site-packages/torchaudio/_backend/utils.py ADDED
@@ -0,0 +1,317 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from functools import lru_cache
3
+ from typing import BinaryIO, Dict, Optional, Tuple, Type, Union
4
+
5
+ import torch
6
+
7
+ from torchaudio._extension import lazy_import_sox_ext
8
+ from torchaudio.io import CodecConfig
9
+ from torio._extension import lazy_import_ffmpeg_ext
10
+
11
+ from . import soundfile_backend
12
+
13
+ from .backend import Backend
14
+ from .common import AudioMetaData
15
+ from .ffmpeg import FFmpegBackend
16
+ from .soundfile import SoundfileBackend
17
+ from .sox import SoXBackend
18
+
19
+
20
+ @lru_cache(None)
21
+ def get_available_backends() -> Dict[str, Type[Backend]]:
22
+ backend_specs: Dict[str, Type[Backend]] = {}
23
+ if lazy_import_ffmpeg_ext().is_available():
24
+ backend_specs["ffmpeg"] = FFmpegBackend
25
+ if lazy_import_sox_ext().is_available():
26
+ backend_specs["sox"] = SoXBackend
27
+ if soundfile_backend._IS_SOUNDFILE_AVAILABLE:
28
+ backend_specs["soundfile"] = SoundfileBackend
29
+ return backend_specs
30
+
31
+
32
+ def get_backend(backend_name, backends) -> Backend:
33
+ if backend := backends.get(backend_name):
34
+ return backend
35
+ else:
36
+ raise ValueError(
37
+ f"Unsupported backend '{backend_name}' specified; ",
38
+ f"please select one of {list(backends.keys())} instead.",
39
+ )
40
+
41
+
42
+ def get_info_func():
43
+ backends = get_available_backends()
44
+
45
+ def dispatcher(
46
+ uri: Union[BinaryIO, str, os.PathLike], format: Optional[str], backend_name: Optional[str]
47
+ ) -> Backend:
48
+ if backend_name is not None:
49
+ return get_backend(backend_name, backends)
50
+
51
+ for backend in backends.values():
52
+ if backend.can_decode(uri, format):
53
+ return backend
54
+ raise RuntimeError(f"Couldn't find appropriate backend to handle uri {uri} and format {format}.")
55
+
56
+ def info(
57
+ uri: Union[BinaryIO, str, os.PathLike],
58
+ format: Optional[str] = None,
59
+ buffer_size: int = 4096,
60
+ backend: Optional[str] = None,
61
+ ) -> AudioMetaData:
62
+ """Get signal information of an audio file.
63
+
64
+ Note:
65
+ When the input type is file-like object, this function cannot
66
+ get the correct length (``num_samples``) for certain formats,
67
+ such as ``vorbis``.
68
+ In this case, the value of ``num_samples`` is ``0``.
69
+
70
+ Args:
71
+ uri (path-like object or file-like object):
72
+ Source of audio data. The following types are accepted:
73
+
74
+ * ``path-like``: File path or URL.
75
+ * ``file-like``: Object with ``read(size: int) -> bytes`` method,
76
+ which returns byte string of at most ``size`` length.
77
+
78
+ format (str or None, optional):
79
+ If not ``None``, interpreted as hint that may allow backend to override the detected format.
80
+ (Default: ``None``)
81
+
82
+ buffer_size (int, optional):
83
+ Size of buffer to use when processing file-like objects, in bytes. (Default: ``4096``)
84
+
85
+ backend (str or None, optional):
86
+ I/O backend to use.
87
+ If ``None``, function selects backend given input and available backends.
88
+ Otherwise, must be one of [``"ffmpeg"``, ``"sox"``, ``"soundfile"``],
89
+ with the corresponding backend available.
90
+ (Default: ``None``)
91
+
92
+ .. seealso::
93
+ :ref:`backend`
94
+
95
+ Returns:
96
+ AudioMetaData
97
+ """
98
+ backend = dispatcher(uri, format, backend)
99
+ return backend.info(uri, format, buffer_size)
100
+
101
+ return info
102
+
103
+
104
+ def get_load_func():
105
+ backends = get_available_backends()
106
+
107
+ def dispatcher(
108
+ uri: Union[BinaryIO, str, os.PathLike], format: Optional[str], backend_name: Optional[str]
109
+ ) -> Backend:
110
+ if backend_name is not None:
111
+ return get_backend(backend_name, backends)
112
+
113
+ for backend in backends.values():
114
+ if backend.can_decode(uri, format):
115
+ return backend
116
+ raise RuntimeError(f"Couldn't find appropriate backend to handle uri {uri} and format {format}.")
117
+
118
+ def load(
119
+ uri: Union[BinaryIO, str, os.PathLike],
120
+ frame_offset: int = 0,
121
+ num_frames: int = -1,
122
+ normalize: bool = True,
123
+ channels_first: bool = True,
124
+ format: Optional[str] = None,
125
+ buffer_size: int = 4096,
126
+ backend: Optional[str] = None,
127
+ ) -> Tuple[torch.Tensor, int]:
128
+ """Load audio data from source.
129
+
130
+ By default (``normalize=True``, ``channels_first=True``), this function returns Tensor with
131
+ ``float32`` dtype, and the shape of `[channel, time]`.
132
+
133
+ Note:
134
+ The formats this function can handle depend on the availability of backends.
135
+ Please use the following functions to fetch the supported formats.
136
+
137
+ - FFmpeg: :py:func:`torchaudio.utils.ffmpeg_utils.get_audio_decoders`
138
+ - Sox: :py:func:`torchaudio.utils.sox_utils.list_read_formats`
139
+ - SoundFile: Refer to `the official document <https://pysoundfile.readthedocs.io/>`__.
140
+
141
+ .. warning::
142
+
143
+ ``normalize`` argument does not perform volume normalization.
144
+ It only converts the sample type to `torch.float32` from the native sample
145
+ type.
146
+
147
+ When the input format is WAV with integer type, such as 32-bit signed integer, 16-bit
148
+ signed integer, 24-bit signed integer, and 8-bit unsigned integer, by providing ``normalize=False``,
149
+ this function can return integer Tensor, where the samples are expressed within the whole range
150
+ of the corresponding dtype, that is, ``int32`` tensor for 32-bit signed PCM,
151
+ ``int16`` for 16-bit signed PCM and ``uint8`` for 8-bit unsigned PCM. Since torch does not
152
+ support ``int24`` dtype, 24-bit signed PCM are converted to ``int32`` tensors.
153
+
154
+ ``normalize`` argument has no effect on 32-bit floating-point WAV and other formats, such as
155
+ ``flac`` and ``mp3``.
156
+
157
+ For these formats, this function always returns ``float32`` Tensor with values.
158
+
159
+
160
+ Args:
161
+ uri (path-like object or file-like object):
162
+ Source of audio data.
163
+ frame_offset (int, optional):
164
+ Number of frames to skip before start reading data.
165
+ num_frames (int, optional):
166
+ Maximum number of frames to read. ``-1`` reads all the remaining samples,
167
+ starting from ``frame_offset``.
168
+ This function may return the less number of frames if there is not enough
169
+ frames in the given file.
170
+ normalize (bool, optional):
171
+ When ``True``, this function converts the native sample type to ``float32``.
172
+ Default: ``True``.
173
+
174
+ If input file is integer WAV, giving ``False`` will change the resulting Tensor type to
175
+ integer type.
176
+ This argument has no effect for formats other than integer WAV type.
177
+
178
+ channels_first (bool, optional):
179
+ When True, the returned Tensor has dimension `[channel, time]`.
180
+ Otherwise, the returned Tensor's dimension is `[time, channel]`.
181
+
182
+ format (str or None, optional):
183
+ If not ``None``, interpreted as hint that may allow backend to override the detected format.
184
+ (Default: ``None``)
185
+
186
+ buffer_size (int, optional):
187
+ Size of buffer to use when processing file-like objects, in bytes. (Default: ``4096``)
188
+
189
+ backend (str or None, optional):
190
+ I/O backend to use.
191
+ If ``None``, function selects backend given input and available backends.
192
+ Otherwise, must be one of [``"ffmpeg"``, ``"sox"``, ``"soundfile"``],
193
+ with the corresponding backend being available. (Default: ``None``)
194
+
195
+ .. seealso::
196
+ :ref:`backend`
197
+
198
+ Returns:
199
+ (torch.Tensor, int): Resulting Tensor and sample rate.
200
+ If the input file has integer wav format and normalization is off, then it has
201
+ integer type, else ``float32`` type. If ``channels_first=True``, it has
202
+ `[channel, time]` else `[time, channel]`.
203
+ """
204
+ backend = dispatcher(uri, format, backend)
205
+ return backend.load(uri, frame_offset, num_frames, normalize, channels_first, format, buffer_size)
206
+
207
+ return load
208
+
209
+
210
+ def get_save_func():
211
+ backends = get_available_backends()
212
+
213
+ def dispatcher(
214
+ uri: Union[BinaryIO, str, os.PathLike], format: Optional[str], backend_name: Optional[str]
215
+ ) -> Backend:
216
+ if backend_name is not None:
217
+ return get_backend(backend_name, backends)
218
+
219
+ for backend in backends.values():
220
+ if backend.can_encode(uri, format):
221
+ return backend
222
+ raise RuntimeError(f"Couldn't find appropriate backend to handle uri {uri} and format {format}.")
223
+
224
+ def save(
225
+ uri: Union[BinaryIO, str, os.PathLike],
226
+ src: torch.Tensor,
227
+ sample_rate: int,
228
+ channels_first: bool = True,
229
+ format: Optional[str] = None,
230
+ encoding: Optional[str] = None,
231
+ bits_per_sample: Optional[int] = None,
232
+ buffer_size: int = 4096,
233
+ backend: Optional[str] = None,
234
+ compression: Optional[Union[CodecConfig, float, int]] = None,
235
+ ):
236
+ """Save audio data to file.
237
+
238
+ Note:
239
+ The formats this function can handle depend on the availability of backends.
240
+ Please use the following functions to fetch the supported formats.
241
+
242
+ - FFmpeg: :py:func:`torchaudio.utils.ffmpeg_utils.get_audio_encoders`
243
+ - Sox: :py:func:`torchaudio.utils.sox_utils.list_write_formats`
244
+ - SoundFile: Refer to `the official document <https://pysoundfile.readthedocs.io/>`__.
245
+
246
+ Args:
247
+ uri (str or pathlib.Path): Path to audio file.
248
+ src (torch.Tensor): Audio data to save. must be 2D tensor.
249
+ sample_rate (int): sampling rate
250
+ channels_first (bool, optional): If ``True``, the given tensor is interpreted as `[channel, time]`,
251
+ otherwise `[time, channel]`.
252
+ format (str or None, optional): Override the audio format.
253
+ When ``uri`` argument is path-like object, audio format is
254
+ inferred from file extension. If the file extension is missing or
255
+ different, you can specify the correct format with this argument.
256
+
257
+ When ``uri`` argument is file-like object,
258
+ this argument is required.
259
+
260
+ Valid values are ``"wav"``, ``"ogg"``, and ``"flac"``.
261
+ encoding (str or None, optional): Changes the encoding for supported formats.
262
+ This argument is effective only for supported formats, i.e.
263
+ ``"wav"`` and ``""flac"```. Valid values are
264
+
265
+ - ``"PCM_S"`` (signed integer Linear PCM)
266
+ - ``"PCM_U"`` (unsigned integer Linear PCM)
267
+ - ``"PCM_F"`` (floating point PCM)
268
+ - ``"ULAW"`` (mu-law)
269
+ - ``"ALAW"`` (a-law)
270
+
271
+ bits_per_sample (int or None, optional): Changes the bit depth for the
272
+ supported formats.
273
+ When ``format`` is one of ``"wav"`` and ``"flac"``,
274
+ you can change the bit depth.
275
+ Valid values are ``8``, ``16``, ``24``, ``32`` and ``64``.
276
+
277
+ buffer_size (int, optional):
278
+ Size of buffer to use when processing file-like objects, in bytes. (Default: ``4096``)
279
+
280
+ backend (str or None, optional):
281
+ I/O backend to use.
282
+ If ``None``, function selects backend given input and available backends.
283
+ Otherwise, must be one of [``"ffmpeg"``, ``"sox"``, ``"soundfile"``],
284
+ with the corresponding backend being available.
285
+ (Default: ``None``)
286
+
287
+ .. seealso::
288
+ :ref:`backend`
289
+
290
+ compression (CodecConfig, float, int, or None, optional):
291
+ Compression configuration to apply.
292
+
293
+ If the selected backend is FFmpeg, an instance of :py:class:`CodecConfig` must be provided.
294
+
295
+ Otherwise, if the selected backend is SoX, a float or int value corresponding to option ``-C`` of the
296
+ ``sox`` command line interface must be provided. For instance:
297
+
298
+ ``"mp3"``
299
+ Either bitrate (in ``kbps``) with quality factor, such as ``128.2``, or
300
+ VBR encoding with quality factor such as ``-4.2``. Default: ``-4.5``.
301
+
302
+ ``"flac"``
303
+ Whole number from ``0`` to ``8``. ``8`` is default and highest compression.
304
+
305
+ ``"ogg"``, ``"vorbis"``
306
+ Number from ``-1`` to ``10``; ``-1`` is the highest compression
307
+ and lowest quality. Default: ``3``.
308
+
309
+ Refer to http://sox.sourceforge.net/soxformat.html for more details.
310
+
311
+ """
312
+ backend = dispatcher(uri, format, backend)
313
+ return backend.save(
314
+ uri, src, sample_rate, channels_first, format, encoding, bits_per_sample, buffer_size, compression
315
+ )
316
+
317
+ return save
MLPY/Lib/site-packages/torchaudio/_extension/__init__.py ADDED
@@ -0,0 +1,74 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ import os
3
+ import sys
4
+
5
+ from torchaudio._internal.module_utils import fail_with_message, is_module_available, no_op
6
+
7
+ from .utils import _check_cuda_version, _init_dll_path, _init_sox, _LazyImporter, _load_lib
8
+
9
+ _LG = logging.getLogger(__name__)
10
+
11
+
12
+ # Note:
13
+ # `_check_cuda_version` is not meant to be used by regular users.
14
+ # Builder uses it for debugging purpose, so we export it.
15
+ # https://github.com/pytorch/builder/blob/e2e4542b8eb0bdf491214451a1a4128bd606cce2/test/smoke_test/smoke_test.py#L80
16
+ __all__ = [
17
+ "_check_cuda_version",
18
+ "_IS_TORCHAUDIO_EXT_AVAILABLE",
19
+ "_IS_RIR_AVAILABLE",
20
+ "lazy_import_sox_ext",
21
+ ]
22
+
23
+
24
+ if os.name == "nt" and (3, 8) <= sys.version_info < (3, 9):
25
+ _init_dll_path()
26
+
27
+
28
+ # When the extension module is built, we initialize it.
29
+ # In case of an error, we do not catch the failure as it suggests there is something
30
+ # wrong with the installation.
31
+ _IS_TORCHAUDIO_EXT_AVAILABLE = is_module_available("torchaudio.lib._torchaudio")
32
+ # RIR features are implemented in _torchaudio extension, but they can be individually
33
+ # turned on/off at build time. Available means that _torchaudio is loaded properly, and
34
+ # RIR features are found there.
35
+ _IS_RIR_AVAILABLE = False
36
+ _IS_ALIGN_AVAILABLE = False
37
+ if _IS_TORCHAUDIO_EXT_AVAILABLE:
38
+ _load_lib("libtorchaudio")
39
+
40
+ import torchaudio.lib._torchaudio # noqa
41
+
42
+ _check_cuda_version()
43
+ _IS_RIR_AVAILABLE = torchaudio.lib._torchaudio.is_rir_available()
44
+ _IS_ALIGN_AVAILABLE = torchaudio.lib._torchaudio.is_align_available()
45
+
46
+
47
+ _SOX_EXT = None
48
+
49
+
50
+ def lazy_import_sox_ext():
51
+ """Load SoX integration based on availability in lazy manner"""
52
+
53
+ global _SOX_EXT
54
+ if _SOX_EXT is None:
55
+ _SOX_EXT = _LazyImporter("_torchaudio_sox", _init_sox)
56
+ return _SOX_EXT
57
+
58
+
59
+ fail_if_no_rir = (
60
+ no_op
61
+ if _IS_RIR_AVAILABLE
62
+ else fail_with_message(
63
+ "requires RIR extension, but TorchAudio is not compiled with it. Please build TorchAudio with RIR support."
64
+ )
65
+ )
66
+
67
+ fail_if_no_align = (
68
+ no_op
69
+ if _IS_ALIGN_AVAILABLE
70
+ else fail_with_message(
71
+ "Requires alignment extension, but TorchAudio is not compiled with it. \
72
+ Please build TorchAudio with alignment support."
73
+ )
74
+ )
MLPY/Lib/site-packages/torchaudio/_extension/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (1.5 kB). View file
 
MLPY/Lib/site-packages/torchaudio/_extension/__pycache__/utils.cpython-39.pyc ADDED
Binary file (5.95 kB). View file
 
MLPY/Lib/site-packages/torchaudio/_extension/utils.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Module to implement logics used for initializing extensions.
2
+
3
+ The implementations here should be stateless.
4
+ They should not depend on external state.
5
+ Anything that depends on external state should happen in __init__.py
6
+ """
7
+ import importlib
8
+ import logging
9
+ import os
10
+ import types
11
+ from pathlib import Path
12
+
13
+ import torch
14
+ from torchaudio._internal.module_utils import eval_env
15
+
16
+ _LG = logging.getLogger(__name__)
17
+ _LIB_DIR = Path(__file__).parent.parent / "lib"
18
+
19
+
20
+ def _get_lib_path(lib: str):
21
+ suffix = "pyd" if os.name == "nt" else "so"
22
+ path = _LIB_DIR / f"{lib}.{suffix}"
23
+ return path
24
+
25
+
26
+ def _load_lib(lib: str) -> bool:
27
+ """Load extension module
28
+
29
+ Note:
30
+ In case `torchaudio` is deployed with `pex` format, the library file
31
+ is not in a standard location.
32
+ In this case, we expect that `libtorchaudio` is available somewhere
33
+ in the search path of dynamic loading mechanism, so that importing
34
+ `_torchaudio` will have library loader find and load `libtorchaudio`.
35
+ This is the reason why the function should not raising an error when the library
36
+ file is not found.
37
+
38
+ Returns:
39
+ bool:
40
+ True if the library file is found AND the library loaded without failure.
41
+ False if the library file is not found (like in the case where torchaudio
42
+ is deployed with pex format, thus the shared library file is
43
+ in a non-standard location.).
44
+ If the library file is found but there is an issue loading the library,
45
+ (such as missing dependency) then this function raises the exception as-is.
46
+
47
+ Raises:
48
+ Exception:
49
+ If the library file is found, but there is an issue loading the library file,
50
+ (when underlying `ctype.DLL` throws an exception), this function will pass
51
+ the exception as-is, instead of catching it and returning bool.
52
+ The expected case is `OSError` thrown by `ctype.DLL` when a dynamic dependency
53
+ is not found.
54
+ This behavior was chosen because the expected failure case is not recoverable.
55
+ If a dependency is missing, then users have to install it.
56
+ """
57
+ path = _get_lib_path(lib)
58
+ if not path.exists():
59
+ return False
60
+ torch.ops.load_library(path)
61
+ return True
62
+
63
+
64
+ def _import_sox_ext():
65
+ if os.name == "nt":
66
+ raise RuntimeError("sox extension is not supported on Windows")
67
+ if not eval_env("TORCHAUDIO_USE_SOX", True):
68
+ raise RuntimeError("sox extension is disabled. (TORCHAUDIO_USE_SOX=0)")
69
+
70
+ ext = "torchaudio.lib._torchaudio_sox"
71
+
72
+ if not importlib.util.find_spec(ext):
73
+ raise RuntimeError(
74
+ # fmt: off
75
+ "TorchAudio is not built with sox extension. "
76
+ "Please build TorchAudio with libsox support. (BUILD_SOX=1)"
77
+ # fmt: on
78
+ )
79
+
80
+ _load_lib("libtorchaudio_sox")
81
+ return importlib.import_module(ext)
82
+
83
+
84
+ def _init_sox():
85
+ ext = _import_sox_ext()
86
+ ext.set_verbosity(0)
87
+
88
+ import atexit
89
+
90
+ torch.ops.torchaudio_sox.initialize_sox_effects()
91
+ atexit.register(torch.ops.torchaudio_sox.shutdown_sox_effects)
92
+
93
+ # Bundle functions registered with TORCH_LIBRARY into extension
94
+ # so that they can also be accessed in the same (lazy) manner
95
+ # from the extension.
96
+ keys = [
97
+ "get_info",
98
+ "load_audio_file",
99
+ "save_audio_file",
100
+ "apply_effects_tensor",
101
+ "apply_effects_file",
102
+ ]
103
+ for key in keys:
104
+ setattr(ext, key, getattr(torch.ops.torchaudio_sox, key))
105
+
106
+ return ext
107
+
108
+
109
+ class _LazyImporter(types.ModuleType):
110
+ """Lazily import module/extension."""
111
+
112
+ def __init__(self, name, import_func):
113
+ super().__init__(name)
114
+ self.import_func = import_func
115
+ self.module = None
116
+
117
+ # Note:
118
+ # Python caches what was retrieved with `__getattr__`, so this method will not be
119
+ # called again for the same item.
120
+ def __getattr__(self, item):
121
+ self._import_once()
122
+ return getattr(self.module, item)
123
+
124
+ def __repr__(self):
125
+ if self.module is None:
126
+ return f"<module '{self.__module__}.{self.__class__.__name__}(\"{self.name}\")'>"
127
+ return repr(self.module)
128
+
129
+ def __dir__(self):
130
+ self._import_once()
131
+ return dir(self.module)
132
+
133
+ def _import_once(self):
134
+ if self.module is None:
135
+ self.module = self.import_func()
136
+ # Note:
137
+ # By attaching the module attributes to self,
138
+ # module attributes are directly accessible.
139
+ # This allows to avoid calling __getattr__ for every attribute access.
140
+ self.__dict__.update(self.module.__dict__)
141
+
142
+ def is_available(self):
143
+ try:
144
+ self._import_once()
145
+ except Exception:
146
+ return False
147
+ return True
148
+
149
+
150
+ def _init_dll_path():
151
+ # On Windows Python-3.8+ has `os.add_dll_directory` call,
152
+ # which is called to configure dll search path.
153
+ # To find cuda related dlls we need to make sure the
154
+ # conda environment/bin path is configured Please take a look:
155
+ # https://stackoverflow.com/questions/59330863/cant-import-dll-module-in-python
156
+ # Please note: if some path can't be added using add_dll_directory we simply ignore this path
157
+ for path in os.environ.get("PATH", "").split(";"):
158
+ if os.path.exists(path):
159
+ try:
160
+ os.add_dll_directory(path)
161
+ except Exception:
162
+ pass
163
+
164
+
165
+ def _check_cuda_version():
166
+ import torchaudio.lib._torchaudio
167
+
168
+ version = torchaudio.lib._torchaudio.cuda_version()
169
+ if version is not None and torch.version.cuda is not None:
170
+ version_str = str(version)
171
+ ta_version = f"{version_str[:-3]}.{version_str[-2]}"
172
+ t_version = torch.version.cuda.split(".")
173
+ t_version = f"{t_version[0]}.{t_version[1]}"
174
+ if ta_version != t_version:
175
+ raise RuntimeError(
176
+ "Detected that PyTorch and TorchAudio were compiled with different CUDA versions. "
177
+ f"PyTorch has CUDA version {t_version} whereas TorchAudio has CUDA version {ta_version}. "
178
+ "Please install the TorchAudio version that matches your PyTorch version."
179
+ )
180
+ return version
MLPY/Lib/site-packages/torchaudio/_internal/__init__.py ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ try:
2
+ from .fb import download_url_to_file, load_state_dict_from_url
3
+ except ImportError:
4
+ from torch.hub import download_url_to_file, load_state_dict_from_url
5
+
6
+
7
+ __all__ = [
8
+ "load_state_dict_from_url",
9
+ "download_url_to_file",
10
+ ]
MLPY/Lib/site-packages/torchaudio/_internal/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (347 Bytes). View file
 
MLPY/Lib/site-packages/torchaudio/_internal/__pycache__/module_utils.cpython-39.pyc ADDED
Binary file (4.5 kB). View file
 
MLPY/Lib/site-packages/torchaudio/_internal/module_utils.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import importlib.util
2
+ import os
3
+ import warnings
4
+ from functools import wraps
5
+ from typing import Optional
6
+
7
+
8
+ def eval_env(var, default):
9
+ """Check if environment varable has True-y value"""
10
+ if var not in os.environ:
11
+ return default
12
+
13
+ val = os.environ.get(var, "0")
14
+ trues = ["1", "true", "TRUE", "on", "ON", "yes", "YES"]
15
+ falses = ["0", "false", "FALSE", "off", "OFF", "no", "NO"]
16
+ if val in trues:
17
+ return True
18
+ if val not in falses:
19
+ # fmt: off
20
+ raise RuntimeError(
21
+ f"Unexpected environment variable value `{var}={val}`. "
22
+ f"Expected one of {trues + falses}")
23
+ # fmt: on
24
+ return False
25
+
26
+
27
+ def is_module_available(*modules: str) -> bool:
28
+ r"""Returns if a top-level module with :attr:`name` exists *without**
29
+ importing it. This is generally safer than try-catch block around a
30
+ `import X`. It avoids third party libraries breaking assumptions of some of
31
+ our tests, e.g., setting multiprocessing start method when imported
32
+ (see librosa/#747, torchvision/#544).
33
+ """
34
+ return all(importlib.util.find_spec(m) is not None for m in modules)
35
+
36
+
37
+ def requires_module(*modules: str):
38
+ """Decorate function to give error message if invoked without required optional modules.
39
+
40
+ This decorator is to give better error message to users rather
41
+ than raising ``NameError: name 'module' is not defined`` at random places.
42
+ """
43
+ missing = [m for m in modules if not is_module_available(m)]
44
+
45
+ if not missing:
46
+ # fall through. If all the modules are available, no need to decorate
47
+ def decorator(func):
48
+ return func
49
+
50
+ else:
51
+ req = f"module: {missing[0]}" if len(missing) == 1 else f"modules: {missing}"
52
+
53
+ def decorator(func):
54
+ @wraps(func)
55
+ def wrapped(*args, **kwargs):
56
+ raise RuntimeError(f"{func.__module__}.{func.__name__} requires {req}")
57
+
58
+ return wrapped
59
+
60
+ return decorator
61
+
62
+
63
+ def deprecated(direction: str, version: Optional[str] = None, remove: bool = False):
64
+ """Decorator to add deprecation message
65
+
66
+ Args:
67
+ direction (str): Migration steps to be given to users.
68
+ version (str or int): The version when the object will be removed
69
+ remove (bool): If enabled, append future removal message.
70
+ """
71
+
72
+ def decorator(func):
73
+ @wraps(func)
74
+ def wrapped(*args, **kwargs):
75
+ message = f"{func.__module__}.{func.__name__} has been deprecated. {direction}"
76
+ if remove:
77
+ message += f' It will be removed from {"future" if version is None else version} release. '
78
+ warnings.warn(message, stacklevel=2)
79
+ return func(*args, **kwargs)
80
+
81
+ message = "This function has been deprecated. "
82
+ if remove:
83
+ message += f'It will be removed from {"future" if version is None else version} release. '
84
+
85
+ wrapped.__doc__ = f"""DEPRECATED: {func.__doc__}
86
+
87
+ .. warning::
88
+
89
+ {message}
90
+ {direction}
91
+ """
92
+
93
+ return wrapped
94
+
95
+ return decorator
96
+
97
+
98
+ def fail_with_message(message):
99
+ """Generate decorator to give users message about missing TorchAudio extension."""
100
+
101
+ def decorator(func):
102
+ @wraps(func)
103
+ def wrapped(*args, **kwargs):
104
+ raise RuntimeError(f"{func.__module__}.{func.__name__} {message}")
105
+
106
+ return wrapped
107
+
108
+ return decorator
109
+
110
+
111
+ def no_op(func):
112
+ """Op-op decorator. Used in place of fail_with_message when a functionality that requires extension works fine."""
113
+ return func
MLPY/Lib/site-packages/torchaudio/backend/__init__.py ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ # NOTE:
2
+ # The entire `torchaudio.backend` module is deprecated.
3
+ # New things should be added to `torchaudio._backend`.
4
+ # Only things related to backward compatibility should be placed here.
5
+
6
+ from . import common, no_backend, soundfile_backend, sox_io_backend # noqa
7
+
8
+ __all__ = []
MLPY/Lib/site-packages/torchaudio/backend/__pycache__/__init__.cpython-39.pyc ADDED
Binary file (275 Bytes). View file
 
MLPY/Lib/site-packages/torchaudio/backend/__pycache__/_no_backend.cpython-39.pyc ADDED
Binary file (1.11 kB). View file
 
MLPY/Lib/site-packages/torchaudio/backend/__pycache__/_sox_io_backend.cpython-39.pyc ADDED
Binary file (11.3 kB). View file
 
MLPY/Lib/site-packages/torchaudio/backend/__pycache__/common.cpython-39.pyc ADDED
Binary file (618 Bytes). View file
 
MLPY/Lib/site-packages/torchaudio/backend/__pycache__/no_backend.cpython-39.pyc ADDED
Binary file (677 Bytes). View file
 
MLPY/Lib/site-packages/torchaudio/backend/__pycache__/soundfile_backend.cpython-39.pyc ADDED
Binary file (704 Bytes). View file
 
MLPY/Lib/site-packages/torchaudio/backend/__pycache__/sox_io_backend.cpython-39.pyc ADDED
Binary file (685 Bytes). View file
 
MLPY/Lib/site-packages/torchaudio/backend/_no_backend.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pathlib import Path
2
+ from typing import Callable, Optional, Tuple, Union
3
+
4
+ from torch import Tensor
5
+ from torchaudio import AudioMetaData
6
+
7
+
8
+ def load(
9
+ filepath: Union[str, Path],
10
+ out: Optional[Tensor] = None,
11
+ normalization: Union[bool, float, Callable] = True,
12
+ channels_first: bool = True,
13
+ num_frames: int = 0,
14
+ offset: int = 0,
15
+ filetype: Optional[str] = None,
16
+ ) -> Tuple[Tensor, int]:
17
+ raise RuntimeError("No audio I/O backend is available.")
18
+
19
+
20
+ def save(filepath: str, src: Tensor, sample_rate: int, precision: int = 16, channels_first: bool = True) -> None:
21
+ raise RuntimeError("No audio I/O backend is available.")
22
+
23
+
24
+ def info(filepath: str) -> AudioMetaData:
25
+ raise RuntimeError("No audio I/O backend is available.")
MLPY/Lib/site-packages/torchaudio/backend/_sox_io_backend.py ADDED
@@ -0,0 +1,294 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import Optional, Tuple
3
+
4
+ import torch
5
+ import torchaudio
6
+ from torchaudio import AudioMetaData
7
+
8
+ sox_ext = torchaudio._extension.lazy_import_sox_ext()
9
+
10
+
11
+ def info(
12
+ filepath: str,
13
+ format: Optional[str] = None,
14
+ ) -> AudioMetaData:
15
+ """Get signal information of an audio file.
16
+
17
+ Args:
18
+ filepath (str):
19
+ Source of audio data.
20
+
21
+ format (str or None, optional):
22
+ Override the format detection with the given format.
23
+ Providing the argument might help when libsox can not infer the format
24
+ from header or extension.
25
+
26
+ Returns:
27
+ AudioMetaData: Metadata of the given audio.
28
+ """
29
+ if not torch.jit.is_scripting():
30
+ if hasattr(filepath, "read"):
31
+ raise RuntimeError("sox_io backend does not support file-like object.")
32
+ filepath = os.fspath(filepath)
33
+ sinfo = sox_ext.get_info(filepath, format)
34
+ return AudioMetaData(*sinfo)
35
+
36
+
37
+ def load(
38
+ filepath: str,
39
+ frame_offset: int = 0,
40
+ num_frames: int = -1,
41
+ normalize: bool = True,
42
+ channels_first: bool = True,
43
+ format: Optional[str] = None,
44
+ ) -> Tuple[torch.Tensor, int]:
45
+ """Load audio data from file.
46
+
47
+ Note:
48
+ This function can handle all the codecs that underlying libsox can handle,
49
+ however it is tested on the following formats;
50
+
51
+ * WAV, AMB
52
+
53
+ * 32-bit floating-point
54
+ * 32-bit signed integer
55
+ * 24-bit signed integer
56
+ * 16-bit signed integer
57
+ * 8-bit unsigned integer (WAV only)
58
+
59
+ * MP3
60
+ * FLAC
61
+ * OGG/VORBIS
62
+ * OPUS
63
+ * SPHERE
64
+ * AMR-NB
65
+
66
+ To load ``MP3``, ``FLAC``, ``OGG/VORBIS``, ``OPUS`` and other codecs ``libsox`` does not
67
+ handle natively, your installation of ``torchaudio`` has to be linked to ``libsox``
68
+ and corresponding codec libraries such as ``libmad`` or ``libmp3lame`` etc.
69
+
70
+ By default (``normalize=True``, ``channels_first=True``), this function returns Tensor with
71
+ ``float32`` dtype, and the shape of `[channel, time]`.
72
+
73
+ .. warning::
74
+
75
+ ``normalize`` argument does not perform volume normalization.
76
+ It only converts the sample type to `torch.float32` from the native sample
77
+ type.
78
+
79
+ When the input format is WAV with integer type, such as 32-bit signed integer, 16-bit
80
+ signed integer, 24-bit signed integer, and 8-bit unsigned integer, by providing ``normalize=False``,
81
+ this function can return integer Tensor, where the samples are expressed within the whole range
82
+ of the corresponding dtype, that is, ``int32`` tensor for 32-bit signed PCM,
83
+ ``int16`` for 16-bit signed PCM and ``uint8`` for 8-bit unsigned PCM. Since torch does not
84
+ support ``int24`` dtype, 24-bit signed PCM are converted to ``int32`` tensors.
85
+
86
+ ``normalize`` argument has no effect on 32-bit floating-point WAV and other formats, such as
87
+ ``flac`` and ``mp3``.
88
+
89
+ For these formats, this function always returns ``float32`` Tensor with values.
90
+
91
+ Args:
92
+ filepath (path-like object): Source of audio data.
93
+ frame_offset (int):
94
+ Number of frames to skip before start reading data.
95
+ num_frames (int, optional):
96
+ Maximum number of frames to read. ``-1`` reads all the remaining samples,
97
+ starting from ``frame_offset``.
98
+ This function may return the less number of frames if there is not enough
99
+ frames in the given file.
100
+ normalize (bool, optional):
101
+ When ``True``, this function converts the native sample type to ``float32``.
102
+ Default: ``True``.
103
+
104
+ If input file is integer WAV, giving ``False`` will change the resulting Tensor type to
105
+ integer type.
106
+ This argument has no effect for formats other than integer WAV type.
107
+
108
+ channels_first (bool, optional):
109
+ When True, the returned Tensor has dimension `[channel, time]`.
110
+ Otherwise, the returned Tensor's dimension is `[time, channel]`.
111
+ format (str or None, optional):
112
+ Override the format detection with the given format.
113
+ Providing the argument might help when libsox can not infer the format
114
+ from header or extension.
115
+
116
+ Returns:
117
+ (torch.Tensor, int): Resulting Tensor and sample rate.
118
+ If the input file has integer wav format and ``normalize=False``, then it has
119
+ integer type, else ``float32`` type. If ``channels_first=True``, it has
120
+ `[channel, time]` else `[time, channel]`.
121
+ """
122
+ if not torch.jit.is_scripting():
123
+ if hasattr(filepath, "read"):
124
+ raise RuntimeError("sox_io backend does not support file-like object.")
125
+ filepath = os.fspath(filepath)
126
+ return sox_ext.load_audio_file(filepath, frame_offset, num_frames, normalize, channels_first, format)
127
+
128
+
129
+ def save(
130
+ filepath: str,
131
+ src: torch.Tensor,
132
+ sample_rate: int,
133
+ channels_first: bool = True,
134
+ compression: Optional[float] = None,
135
+ format: Optional[str] = None,
136
+ encoding: Optional[str] = None,
137
+ bits_per_sample: Optional[int] = None,
138
+ ):
139
+ """Save audio data to file.
140
+
141
+ Args:
142
+ filepath (path-like object): Path to save file.
143
+ src (torch.Tensor): Audio data to save. must be 2D tensor.
144
+ sample_rate (int): sampling rate
145
+ channels_first (bool, optional): If ``True``, the given tensor is interpreted as `[channel, time]`,
146
+ otherwise `[time, channel]`.
147
+ compression (float or None, optional): Used for formats other than WAV.
148
+ This corresponds to ``-C`` option of ``sox`` command.
149
+
150
+ ``"mp3"``
151
+ Either bitrate (in ``kbps``) with quality factor, such as ``128.2``, or
152
+ VBR encoding with quality factor such as ``-4.2``. Default: ``-4.5``.
153
+
154
+ ``"flac"``
155
+ Whole number from ``0`` to ``8``. ``8`` is default and highest compression.
156
+
157
+ ``"ogg"``, ``"vorbis"``
158
+ Number from ``-1`` to ``10``; ``-1`` is the highest compression
159
+ and lowest quality. Default: ``3``.
160
+
161
+ See the detail at http://sox.sourceforge.net/soxformat.html.
162
+ format (str or None, optional): Override the audio format.
163
+ When ``filepath`` argument is path-like object, audio format is infered from
164
+ file extension. If file extension is missing or different, you can specify the
165
+ correct format with this argument.
166
+
167
+ When ``filepath`` argument is file-like object, this argument is required.
168
+
169
+ Valid values are ``"wav"``, ``"mp3"``, ``"ogg"``, ``"vorbis"``, ``"amr-nb"``,
170
+ ``"amb"``, ``"flac"``, ``"sph"``, ``"gsm"``, and ``"htk"``.
171
+
172
+ encoding (str or None, optional): Changes the encoding for the supported formats.
173
+ This argument is effective only for supported formats, such as ``"wav"``, ``""amb"``
174
+ and ``"sph"``. Valid values are;
175
+
176
+ - ``"PCM_S"`` (signed integer Linear PCM)
177
+ - ``"PCM_U"`` (unsigned integer Linear PCM)
178
+ - ``"PCM_F"`` (floating point PCM)
179
+ - ``"ULAW"`` (mu-law)
180
+ - ``"ALAW"`` (a-law)
181
+
182
+ Default values
183
+ If not provided, the default value is picked based on ``format`` and ``bits_per_sample``.
184
+
185
+ ``"wav"``, ``"amb"``
186
+ - | If both ``encoding`` and ``bits_per_sample`` are not provided, the ``dtype`` of the
187
+ | Tensor is used to determine the default value.
188
+
189
+ - ``"PCM_U"`` if dtype is ``uint8``
190
+ - ``"PCM_S"`` if dtype is ``int16`` or ``int32``
191
+ - ``"PCM_F"`` if dtype is ``float32``
192
+
193
+ - ``"PCM_U"`` if ``bits_per_sample=8``
194
+ - ``"PCM_S"`` otherwise
195
+
196
+ ``"sph"`` format;
197
+ - the default value is ``"PCM_S"``
198
+
199
+ bits_per_sample (int or None, optional): Changes the bit depth for the supported formats.
200
+ When ``format`` is one of ``"wav"``, ``"flac"``, ``"sph"``, or ``"amb"``, you can change the
201
+ bit depth. Valid values are ``8``, ``16``, ``32`` and ``64``.
202
+
203
+ Default Value;
204
+ If not provided, the default values are picked based on ``format`` and ``"encoding"``;
205
+
206
+ ``"wav"``, ``"amb"``;
207
+ - | If both ``encoding`` and ``bits_per_sample`` are not provided, the ``dtype`` of the
208
+ | Tensor is used.
209
+
210
+ - ``8`` if dtype is ``uint8``
211
+ - ``16`` if dtype is ``int16``
212
+ - ``32`` if dtype is ``int32`` or ``float32``
213
+
214
+ - ``8`` if ``encoding`` is ``"PCM_U"``, ``"ULAW"`` or ``"ALAW"``
215
+ - ``16`` if ``encoding`` is ``"PCM_S"``
216
+ - ``32`` if ``encoding`` is ``"PCM_F"``
217
+
218
+ ``"flac"`` format;
219
+ - the default value is ``24``
220
+
221
+ ``"sph"`` format;
222
+ - ``16`` if ``encoding`` is ``"PCM_U"``, ``"PCM_S"``, ``"PCM_F"`` or not provided.
223
+ - ``8`` if ``encoding`` is ``"ULAW"`` or ``"ALAW"``
224
+
225
+ ``"amb"`` format;
226
+ - ``8`` if ``encoding`` is ``"PCM_U"``, ``"ULAW"`` or ``"ALAW"``
227
+ - ``16`` if ``encoding`` is ``"PCM_S"`` or not provided.
228
+ - ``32`` if ``encoding`` is ``"PCM_F"``
229
+
230
+ Supported formats/encodings/bit depth/compression are;
231
+
232
+ ``"wav"``, ``"amb"``
233
+ - 32-bit floating-point PCM
234
+ - 32-bit signed integer PCM
235
+ - 24-bit signed integer PCM
236
+ - 16-bit signed integer PCM
237
+ - 8-bit unsigned integer PCM
238
+ - 8-bit mu-law
239
+ - 8-bit a-law
240
+
241
+ Note: Default encoding/bit depth is determined by the dtype of the input Tensor.
242
+
243
+ ``"mp3"``
244
+ Fixed bit rate (such as 128kHz) and variable bit rate compression.
245
+ Default: VBR with high quality.
246
+
247
+ ``"flac"``
248
+ - 8-bit
249
+ - 16-bit
250
+ - 24-bit (default)
251
+
252
+ ``"ogg"``, ``"vorbis"``
253
+ - Different quality level. Default: approx. 112kbps
254
+
255
+ ``"sph"``
256
+ - 8-bit signed integer PCM
257
+ - 16-bit signed integer PCM
258
+ - 24-bit signed integer PCM
259
+ - 32-bit signed integer PCM (default)
260
+ - 8-bit mu-law
261
+ - 8-bit a-law
262
+ - 16-bit a-law
263
+ - 24-bit a-law
264
+ - 32-bit a-law
265
+
266
+ ``"amr-nb"``
267
+ Bitrate ranging from 4.75 kbit/s to 12.2 kbit/s. Default: 4.75 kbit/s
268
+
269
+ ``"gsm"``
270
+ Lossy Speech Compression, CPU intensive.
271
+
272
+ ``"htk"``
273
+ Uses a default single-channel 16-bit PCM format.
274
+
275
+ Note:
276
+ To save into formats that ``libsox`` does not handle natively, (such as ``"mp3"``,
277
+ ``"flac"``, ``"ogg"`` and ``"vorbis"``), your installation of ``torchaudio`` has
278
+ to be linked to ``libsox`` and corresponding codec libraries such as ``libmad``
279
+ or ``libmp3lame`` etc.
280
+ """
281
+ if not torch.jit.is_scripting():
282
+ if hasattr(filepath, "write"):
283
+ raise RuntimeError("sox_io backend does not handle file-like object.")
284
+ filepath = os.fspath(filepath)
285
+ sox_ext.save_audio_file(
286
+ filepath,
287
+ src,
288
+ sample_rate,
289
+ channels_first,
290
+ compression,
291
+ format,
292
+ encoding,
293
+ bits_per_sample,
294
+ )
MLPY/Lib/site-packages/torchaudio/backend/common.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def __getattr__(name: str):
2
+ if name == "AudioMetaData":
3
+ import warnings
4
+
5
+ warnings.warn(
6
+ "`torchaudio.backend.common.AudioMetaData` has been moved to "
7
+ "`torchaudio.AudioMetaData`. Please update the import path.",
8
+ stacklevel=2,
9
+ )
10
+ from torchaudio import AudioMetaData
11
+
12
+ return AudioMetaData
13
+ raise AttributeError(f"module {__name__!r} has no attribute {name!r}")
MLPY/Lib/site-packages/torchaudio/backend/no_backend.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def __getattr__(name: str):
2
+ import warnings
3
+
4
+ warnings.warn(
5
+ "Torchaudio's I/O functions now support par-call bakcend dispatch. "
6
+ "Importing backend implementation directly is no longer guaranteed to work. "
7
+ "Please use `backend` keyword with load/save/info function, instead of "
8
+ "calling the udnerlying implementation directly.",
9
+ stacklevel=2,
10
+ )
11
+
12
+ from . import _no_backend
13
+
14
+ return getattr(_no_backend, name)
MLPY/Lib/site-packages/torchaudio/backend/soundfile_backend.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def __getattr__(name: str):
2
+ import warnings
3
+
4
+ warnings.warn(
5
+ "Torchaudio's I/O functions now support par-call bakcend dispatch. "
6
+ "Importing backend implementation directly is no longer guaranteed to work. "
7
+ "Please use `backend` keyword with load/save/info function, instead of "
8
+ "calling the udnerlying implementation directly.",
9
+ stacklevel=2,
10
+ )
11
+
12
+ from torchaudio._backend import soundfile_backend
13
+
14
+ return getattr(soundfile_backend, name)
MLPY/Lib/site-packages/torchaudio/backend/sox_io_backend.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def __getattr__(name: str):
2
+ import warnings
3
+
4
+ warnings.warn(
5
+ "Torchaudio's I/O functions now support par-call bakcend dispatch. "
6
+ "Importing backend implementation directly is no longer guaranteed to work. "
7
+ "Please use `backend` keyword with load/save/info function, instead of "
8
+ "calling the udnerlying implementation directly.",
9
+ stacklevel=2,
10
+ )
11
+
12
+ from . import _sox_io_backend
13
+
14
+ return getattr(_sox_io_backend, name)