Cloud110702 commited on
Commit
58fb10e
·
verified ·
1 Parent(s): ab09cb7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +46 -54
app.py CHANGED
@@ -1,14 +1,10 @@
1
- # app.py
2
  from fastapi import FastAPI, File, UploadFile
3
  from fastapi.middleware.cors import CORSMiddleware
4
- import numpy as np
5
  import tensorflow as tf
6
- from tensorflow.lite.python.interpreter import Interpreter
7
- import os
8
  import google.generativeai as genai
9
- import uvicorn
10
- from typing import Optional
11
- from pydantic import BaseModel
12
 
13
  app = FastAPI()
14
 
@@ -21,72 +17,68 @@ app.add_middleware(
21
  allow_headers=["*"],
22
  )
23
 
24
- # Load the TensorFlow Lite model
25
- interpreter = Interpreter(model_path="model.tflite")
26
- interpreter.allocate_tensors()
 
27
 
28
- # Get input and output details
29
- input_details = interpreter.get_input_details()
30
- output_details = interpreter.get_output_details()
31
 
32
- # Define categories
33
  data_cat = ['disposable cups', 'paper', 'plastic bottle']
34
  img_height, img_width = 224, 224
35
 
36
- # Configure Gemini API
37
- GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', 'AIzaSyBx0A7BA-nKVZOiVn39JXzdGKgeGQqwAFg')
38
- genai.configure(api_key=GEMINI_API_KEY)
39
-
40
- # Initialize Gemini model
41
- gemini_model = genai.GenerativeModel('gemini-pro')
 
 
 
 
 
 
 
 
 
 
42
 
43
  @app.post("/predict")
44
  async def predict(file: UploadFile = File(...)):
45
  try:
 
46
  contents = await file.read()
47
-
48
- # Preprocess the image
49
- img = tf.image.decode_image(contents, channels=3)
50
- img = tf.image.resize(img, [img_height, img_width])
51
- img_bat = np.expand_dims(img, 0).astype(np.float32)
52
-
53
- # Set input tensor
54
- interpreter.set_tensor(input_details[0]['index'], img_bat)
55
-
56
- # Run inference
57
- interpreter.invoke()
58
 
59
- # Get the result
60
- output_data = interpreter.get_tensor(output_details[0]['index'])
61
- predicted_class = data_cat[np.argmax(output_data)]
62
- confidence = float(np.max(output_data) * 100)
63
-
64
- # Generate sustainability insights with Gemini API
65
- prompt = f"""
66
- You are a sustainability-focused AI. Analyze the {predicted_class} (solid dry waste)
67
- and generate the top three innovative, eco-friendly recommendations for repurposing it.
68
- Each recommendation should:
69
- - Provide a title
70
- - Be practical and easy to implement
71
- - Be environmentally beneficial
72
- - Include a one or two-sentence explanation
73
- Format each recommendation with a clear title followed by the explanation on a new line.
74
- """
75
 
76
- try:
77
- response = gemini_model.generate_content(prompt)
78
- insights = response.text.strip()
79
- except Exception as e:
80
- insights = f"Error generating insights: {str(e)}"
81
-
82
  return {
83
  "class": predicted_class,
84
  "confidence": confidence,
85
- "insights": insights
86
  }
87
 
88
  except Exception as e:
89
  return {"error": str(e)}
90
 
91
  if __name__ == "__main__":
 
92
  uvicorn.run(app, host="0.0.0.0", port=7860)
 
 
1
  from fastapi import FastAPI, File, UploadFile
2
  from fastapi.middleware.cors import CORSMiddleware
 
3
  import tensorflow as tf
4
+ import numpy as np
5
+ from tensorflow import keras
6
  import google.generativeai as genai
7
+ import os
 
 
8
 
9
  app = FastAPI()
10
 
 
17
  allow_headers=["*"],
18
  )
19
 
20
+ # Configure Gemini API
21
+ GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', 'AIzaSyBx0A7BA-nKVZOiVn39JXzdGKgeGQqwAFg')
22
+ genai.configure(api_key=GEMINI_API_KEY)
23
+ gemini_model = genai.GenerativeModel('gemini-pro')
24
 
25
+ # Load the model
26
+ model = keras.models.load_model('Image_classify.keras')
 
27
 
28
+ # Define categories and image dimensions
29
  data_cat = ['disposable cups', 'paper', 'plastic bottle']
30
  img_height, img_width = 224, 224
31
 
32
+ def generate_recycling_insight(detected_object):
33
+ """Generate sustainability insights for detected objects"""
34
+ try:
35
+ prompt = f"""
36
+ You are a sustainability-focused AI. Analyze the {detected_object} (which is a solid dry waste)
37
+ and generate the top three innovative, eco-friendly recommendations for repurposing it. Ensure each recommendation is:
38
+ - Give the Title of the recommendation
39
+ - Practical and easy to implement
40
+ - Environmentally beneficial
41
+ - Clearly explained in one or two concise sentences
42
+ """
43
+
44
+ response = gemini_model.generate_content(prompt)
45
+ return response.text.strip()
46
+ except Exception as e:
47
+ return f"Error generating insight: {str(e)}"
48
 
49
  @app.post("/predict")
50
  async def predict(file: UploadFile = File(...)):
51
  try:
52
+ # Read and preprocess the image
53
  contents = await file.read()
54
+ image_load = tf.image.decode_image(contents, channels=3)
55
+ image_load = tf.image.resize(image_load, [img_height, img_width])
56
+ img_bat = tf.expand_dims(image_load, 0)
 
 
 
 
 
 
 
 
57
 
58
+ # Perform prediction
59
+ predictions = model.predict(img_bat, verbose=0)
60
+ score = tf.nn.softmax(predictions[0])
61
+ confidence = float(np.max(score) * 100)
62
+
63
+ if confidence < 45:
64
+ return {
65
+ "error": "Confidence too low to make a prediction",
66
+ "confidence": confidence
67
+ }
68
+
69
+ # Get prediction and insights
70
+ predicted_class = data_cat[np.argmax(score)]
71
+ sustainability_insight = generate_recycling_insight(predicted_class)
 
 
72
 
 
 
 
 
 
 
73
  return {
74
  "class": predicted_class,
75
  "confidence": confidence,
76
+ "insights": sustainability_insight
77
  }
78
 
79
  except Exception as e:
80
  return {"error": str(e)}
81
 
82
  if __name__ == "__main__":
83
+ import uvicorn
84
  uvicorn.run(app, host="0.0.0.0", port=7860)