Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,14 +1,10 @@
|
|
1 |
-
# app.py
|
2 |
from fastapi import FastAPI, File, UploadFile
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
-
import numpy as np
|
5 |
import tensorflow as tf
|
6 |
-
|
7 |
-
import
|
8 |
import google.generativeai as genai
|
9 |
-
import
|
10 |
-
from typing import Optional
|
11 |
-
from pydantic import BaseModel
|
12 |
|
13 |
app = FastAPI()
|
14 |
|
@@ -21,72 +17,68 @@ app.add_middleware(
|
|
21 |
allow_headers=["*"],
|
22 |
)
|
23 |
|
24 |
-
#
|
25 |
-
|
26 |
-
|
|
|
27 |
|
28 |
-
#
|
29 |
-
|
30 |
-
output_details = interpreter.get_output_details()
|
31 |
|
32 |
-
# Define categories
|
33 |
data_cat = ['disposable cups', 'paper', 'plastic bottle']
|
34 |
img_height, img_width = 224, 224
|
35 |
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
|
43 |
@app.post("/predict")
|
44 |
async def predict(file: UploadFile = File(...)):
|
45 |
try:
|
|
|
46 |
contents = await file.read()
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
img = tf.image.resize(img, [img_height, img_width])
|
51 |
-
img_bat = np.expand_dims(img, 0).astype(np.float32)
|
52 |
-
|
53 |
-
# Set input tensor
|
54 |
-
interpreter.set_tensor(input_details[0]['index'], img_bat)
|
55 |
-
|
56 |
-
# Run inference
|
57 |
-
interpreter.invoke()
|
58 |
|
59 |
-
#
|
60 |
-
|
61 |
-
|
62 |
-
confidence = float(np.max(
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
Format each recommendation with a clear title followed by the explanation on a new line.
|
74 |
-
"""
|
75 |
|
76 |
-
try:
|
77 |
-
response = gemini_model.generate_content(prompt)
|
78 |
-
insights = response.text.strip()
|
79 |
-
except Exception as e:
|
80 |
-
insights = f"Error generating insights: {str(e)}"
|
81 |
-
|
82 |
return {
|
83 |
"class": predicted_class,
|
84 |
"confidence": confidence,
|
85 |
-
"insights":
|
86 |
}
|
87 |
|
88 |
except Exception as e:
|
89 |
return {"error": str(e)}
|
90 |
|
91 |
if __name__ == "__main__":
|
|
|
92 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|
|
|
|
|
1 |
from fastapi import FastAPI, File, UploadFile
|
2 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
3 |
import tensorflow as tf
|
4 |
+
import numpy as np
|
5 |
+
from tensorflow import keras
|
6 |
import google.generativeai as genai
|
7 |
+
import os
|
|
|
|
|
8 |
|
9 |
app = FastAPI()
|
10 |
|
|
|
17 |
allow_headers=["*"],
|
18 |
)
|
19 |
|
20 |
+
# Configure Gemini API
|
21 |
+
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', 'AIzaSyBx0A7BA-nKVZOiVn39JXzdGKgeGQqwAFg')
|
22 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
23 |
+
gemini_model = genai.GenerativeModel('gemini-pro')
|
24 |
|
25 |
+
# Load the model
|
26 |
+
model = keras.models.load_model('Image_classify.keras')
|
|
|
27 |
|
28 |
+
# Define categories and image dimensions
|
29 |
data_cat = ['disposable cups', 'paper', 'plastic bottle']
|
30 |
img_height, img_width = 224, 224
|
31 |
|
32 |
+
def generate_recycling_insight(detected_object):
|
33 |
+
"""Generate sustainability insights for detected objects"""
|
34 |
+
try:
|
35 |
+
prompt = f"""
|
36 |
+
You are a sustainability-focused AI. Analyze the {detected_object} (which is a solid dry waste)
|
37 |
+
and generate the top three innovative, eco-friendly recommendations for repurposing it. Ensure each recommendation is:
|
38 |
+
- Give the Title of the recommendation
|
39 |
+
- Practical and easy to implement
|
40 |
+
- Environmentally beneficial
|
41 |
+
- Clearly explained in one or two concise sentences
|
42 |
+
"""
|
43 |
+
|
44 |
+
response = gemini_model.generate_content(prompt)
|
45 |
+
return response.text.strip()
|
46 |
+
except Exception as e:
|
47 |
+
return f"Error generating insight: {str(e)}"
|
48 |
|
49 |
@app.post("/predict")
|
50 |
async def predict(file: UploadFile = File(...)):
|
51 |
try:
|
52 |
+
# Read and preprocess the image
|
53 |
contents = await file.read()
|
54 |
+
image_load = tf.image.decode_image(contents, channels=3)
|
55 |
+
image_load = tf.image.resize(image_load, [img_height, img_width])
|
56 |
+
img_bat = tf.expand_dims(image_load, 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
# Perform prediction
|
59 |
+
predictions = model.predict(img_bat, verbose=0)
|
60 |
+
score = tf.nn.softmax(predictions[0])
|
61 |
+
confidence = float(np.max(score) * 100)
|
62 |
+
|
63 |
+
if confidence < 45:
|
64 |
+
return {
|
65 |
+
"error": "Confidence too low to make a prediction",
|
66 |
+
"confidence": confidence
|
67 |
+
}
|
68 |
+
|
69 |
+
# Get prediction and insights
|
70 |
+
predicted_class = data_cat[np.argmax(score)]
|
71 |
+
sustainability_insight = generate_recycling_insight(predicted_class)
|
|
|
|
|
72 |
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
return {
|
74 |
"class": predicted_class,
|
75 |
"confidence": confidence,
|
76 |
+
"insights": sustainability_insight
|
77 |
}
|
78 |
|
79 |
except Exception as e:
|
80 |
return {"error": str(e)}
|
81 |
|
82 |
if __name__ == "__main__":
|
83 |
+
import uvicorn
|
84 |
uvicorn.run(app, host="0.0.0.0", port=7860)
|