Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# app.py
|
2 |
+
from fastapi import FastAPI, File, UploadFile
|
3 |
+
from fastapi.middleware.cors import CORSMiddleware
|
4 |
+
import numpy as np
|
5 |
+
import tensorflow as tf
|
6 |
+
from tensorflow.lite.python.interpreter import Interpreter
|
7 |
+
import os
|
8 |
+
import google.generativeai as genai
|
9 |
+
import uvicorn
|
10 |
+
from typing import Optional
|
11 |
+
from pydantic import BaseModel
|
12 |
+
|
13 |
+
app = FastAPI()
|
14 |
+
|
15 |
+
# Add CORS middleware
|
16 |
+
app.add_middleware(
|
17 |
+
CORSMiddleware,
|
18 |
+
allow_origins=["*"],
|
19 |
+
allow_credentials=True,
|
20 |
+
allow_methods=["*"],
|
21 |
+
allow_headers=["*"],
|
22 |
+
)
|
23 |
+
|
24 |
+
# Load the TensorFlow Lite model
|
25 |
+
interpreter = Interpreter(model_path="model.tflite")
|
26 |
+
interpreter.allocate_tensors()
|
27 |
+
|
28 |
+
# Get input and output details
|
29 |
+
input_details = interpreter.get_input_details()
|
30 |
+
output_details = interpreter.get_output_details()
|
31 |
+
|
32 |
+
# Define categories
|
33 |
+
data_cat = ['disposable cups', 'paper', 'plastic bottle']
|
34 |
+
img_height, img_width = 224, 224
|
35 |
+
|
36 |
+
# Configure Gemini API
|
37 |
+
GEMINI_API_KEY = os.getenv('GEMINI_API_KEY', 'AIzaSyBx0A7BA-nKVZOiVn39JXzdGKgeGQqwAFg')
|
38 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
39 |
+
|
40 |
+
# Initialize Gemini model
|
41 |
+
gemini_model = genai.GenerativeModel('gemini-pro')
|
42 |
+
|
43 |
+
@app.post("/predict")
|
44 |
+
async def predict(file: UploadFile = File(...)):
|
45 |
+
try:
|
46 |
+
contents = await file.read()
|
47 |
+
|
48 |
+
# Preprocess the image
|
49 |
+
img = tf.image.decode_image(contents, channels=3)
|
50 |
+
img = tf.image.resize(img, [img_height, img_width])
|
51 |
+
img_bat = np.expand_dims(img, 0).astype(np.float32)
|
52 |
+
|
53 |
+
# Set input tensor
|
54 |
+
interpreter.set_tensor(input_details[0]['index'], img_bat)
|
55 |
+
|
56 |
+
# Run inference
|
57 |
+
interpreter.invoke()
|
58 |
+
|
59 |
+
# Get the result
|
60 |
+
output_data = interpreter.get_tensor(output_details[0]['index'])
|
61 |
+
predicted_class = data_cat[np.argmax(output_data)]
|
62 |
+
confidence = float(np.max(output_data) * 100)
|
63 |
+
|
64 |
+
# Generate sustainability insights with Gemini API
|
65 |
+
prompt = f"""
|
66 |
+
You are a sustainability-focused AI. Analyze the {predicted_class} (solid dry waste)
|
67 |
+
and generate the top three innovative, eco-friendly recommendations for repurposing it.
|
68 |
+
Each recommendation should:
|
69 |
+
- Provide a title
|
70 |
+
- Be practical and easy to implement
|
71 |
+
- Be environmentally beneficial
|
72 |
+
- Include a one or two-sentence explanation
|
73 |
+
Format each recommendation with a clear title followed by the explanation on a new line.
|
74 |
+
"""
|
75 |
+
|
76 |
+
try:
|
77 |
+
response = gemini_model.generate_content(prompt)
|
78 |
+
insights = response.text.strip()
|
79 |
+
except Exception as e:
|
80 |
+
insights = f"Error generating insights: {str(e)}"
|
81 |
+
|
82 |
+
return {
|
83 |
+
"class": predicted_class,
|
84 |
+
"confidence": confidence,
|
85 |
+
"insights": insights
|
86 |
+
}
|
87 |
+
|
88 |
+
except Exception as e:
|
89 |
+
return {"error": str(e)}
|
90 |
+
|
91 |
+
if __name__ == "__main__":
|
92 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|