|
|
|
|
|
import cv2 |
|
import torch |
|
from PIL import Image |
|
|
|
from ultralytics.engine.predictor import BasePredictor |
|
from ultralytics.engine.results import Results |
|
from ultralytics.utils import DEFAULT_CFG, ops |
|
|
|
|
|
class ClassificationPredictor(BasePredictor): |
|
""" |
|
A class extending the BasePredictor class for prediction based on a classification model. |
|
|
|
Notes: |
|
- Torchvision classification models can also be passed to the 'model' argument, i.e. model='resnet18'. |
|
|
|
Example: |
|
```python |
|
from ultralytics.utils import ASSETS |
|
from ultralytics.models.yolo.classify import ClassificationPredictor |
|
|
|
args = dict(model='yolov8n-cls.pt', source=ASSETS) |
|
predictor = ClassificationPredictor(overrides=args) |
|
predictor.predict_cli() |
|
``` |
|
""" |
|
|
|
def __init__(self, cfg=DEFAULT_CFG, overrides=None, _callbacks=None): |
|
"""Initializes ClassificationPredictor setting the task to 'classify'.""" |
|
super().__init__(cfg, overrides, _callbacks) |
|
self.args.task = "classify" |
|
self._legacy_transform_name = "ultralytics.yolo.data.augment.ToTensor" |
|
|
|
def preprocess(self, img): |
|
"""Converts input image to model-compatible data type.""" |
|
if not isinstance(img, torch.Tensor): |
|
is_legacy_transform = any( |
|
self._legacy_transform_name in str(transform) for transform in self.transforms.transforms |
|
) |
|
if is_legacy_transform: |
|
img = torch.stack([self.transforms(im) for im in img], dim=0) |
|
else: |
|
img = torch.stack( |
|
[self.transforms(Image.fromarray(cv2.cvtColor(im, cv2.COLOR_BGR2RGB))) for im in img], dim=0 |
|
) |
|
img = (img if isinstance(img, torch.Tensor) else torch.from_numpy(img)).to(self.model.device) |
|
return img.half() if self.model.fp16 else img.float() |
|
|
|
def postprocess(self, preds, img, orig_imgs): |
|
"""Post-processes predictions to return Results objects.""" |
|
if not isinstance(orig_imgs, list): |
|
orig_imgs = ops.convert_torch2numpy_batch(orig_imgs) |
|
|
|
results = [] |
|
for i, pred in enumerate(preds): |
|
orig_img = orig_imgs[i] |
|
img_path = self.batch[0][i] |
|
results.append(Results(orig_img, path=img_path, names=self.model.names, probs=pred)) |
|
return results |
|
|